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Abstract 

Restoration of calcareous grasslands was promoted as a conservation strategy to reduce the 

risks imposed by habitat loss and fragmentation. Restoration already provided promising results 

for several taxa, however some specialist species still fail at colonizing restored habitats. We 

aimed at explaining this lack of colonization success for three calcareous grasslands specialist 

species in Southern Belgium: Pulsatilla vulgaris, Trifolium montanum  and Veronica prostrata. We 

studied: (i) Germination in control and outdoor conditions (cold, heat, smoke and litter effects); 

(ii) In-situ seedling emergence patterns (effects of seed addition and germination microsites 

availability). The three species were able to germinate in Petri dishes in the absence of treatment. 

Cold enhanced the germination of V. prostrata. Fire-related treatments (heat shock and smoke 

exposure) did not enhance germination and were deleterious to V. prostrata. Litter cover improved 

P. vulgaris emergence in outdoor containers, but had a negative effect on V. prostrata. In the 

field, V. prostrata did not emerge. T. montanum seedlings were observed in the reference 

grasslands when seeds were added, but not in the restored grasslands. P. vulgaris emerged in the 

reference grasslands, and to a lower degree in the restored grasslands. The combination of seed 

addition and microsites availability for seed germination resulted in enhanced seedling emergence 

for P. vulgaris. Our results suggest that seed and microsite availability can be limiting factors for 

site colonization, but the combination of both is likely much more limiting. Lower seedling 

emergence in restored than in reference grasslands suggests a lower habitat quality in restored 

grasslands. 

 

Keywords: Belgium; Calcareous grasslands; Fire-related cues; Microsite availability; 

Restoration; Seed availability. 
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Introduction 

The last century has shown a decline in natural and semi-natural habitats throughout many 

parts of Europe. One consequence of habitat fragmentation is a decrease in specialist plant 

species population size and connectivity, leading to increased risk of extinctions (Leimu et al. 

2006). Jongman and Pungetti (2004) proposed habitat restoration as a conservation strategy to 

reduce the risks imposed by habitat loss and fragmentation. One aim of ecosystem restoration is 

to create and expand habitat that support species characterizing former plant communities 

(Society for Ecological Restoration International Science & Policy Working Group 2004).  

Species colonization within a site is largely controlled by two factors that limit seedling 

recruitment, including seed availability within the dispersal area (i.e. the number of seeds reaching 

the site) and seedling establishment based on microsite availability (i.e. number of microsites 

suitable for regeneration) (Coulson et al. 2001). These two processes determine if seeds spread 

over a site and if seeds establish as seedlings once settled on a site. Limited or lack of dispersal is 

a well-known constraint for semi-natural habitat restoration (Turnbull et al. 2000). Also microsite 

availability is a vital element in site colonization (Foster 2001; Münzbergová and Herben 2005). 

Biotic factors, such as inter-specific competition, notably with grass species, or litter effects 

(mechanical interaction, alteration of light and moisture conditions) can be responsible for the 

lack of microsite availability, reducing seedling survival. Microsite availability can be improved 

through application of disturbance regimes, which creates regeneration niches or gaps for 

germination and establishment through vegetation and/or litter effect removal. Moreover, 

disturbance may enhance seedling emergence after seed addition (Edwards et al. 2007). 

In Belgium, approximately 100 ha of calcareous grasslands have been restored over the last 

20 years. All restored sites were pre-forest communities comprised of 40-100 years old forests. 

Restoration protocols included tree and shrub clearing followed by sheep and goat grazing. As for 

restoration projects in Europe (Dzwonko and Loster 1998; Barbaro et al. 2001; Baba 2003), 

restored grasslands in Belgium globally tended to resemble reference habitats despite some 

differences in vegetation structure and floristic composition (Piqueray et al. 2011a). At the site 

scale, species richness rapidly recover when new habitat areas are created (Piqueray et al. 2011b). 

However, some characteristic species may fail at colonizing restored sites, despite the close 

vicinity of seed sources (Zobel et al. 1996; Piqueray et al. 2011a). Most calcareous grassland 

species exhibit low spatial and temporal dispersal (seed bank) ability (Kalamees and Zobel 1997; 

Stampfli and Zeiter 1999; Bisteau and Mahy 2005). In addition, Zobel et al. (2000) showed that 

some calcareous grassland species were dependant on microsite availability for recruitment. In 

this type of habitat, the influence of fire on germination and microsite availability is particularly 

important. The indirect effects of fire can lead to a reduction in competition by vegetation 

removal or a direct effect on seed germination through the actions of heat and smoke (Thomas et 
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al. 2003). Fire was formerly used as a traditional management technique to prevent shrub 

overgrowth (Kahmen et al. 2002). Currently, this practice is not recommended as a management 

tool, as comparative studies revealed it was not effective at maintaining traditional calcareous 

grassland communities (Kahmen et al. 2002; Köhler et al. 2005; Piqueray and Mahy 2010). However, 

at the species level, these same studies revealed that some plants benefit from fire treatments 

and some specialist species present in calcareous grassland seed banks germinate better after 

heat shock (e.g. Thymus pulegioides, Globularia bisnagarica) (Bossuyt and Honnay 2008). 

In this study, we evaluated germination, and seed and microsite availability in three 

calcareous grassland species (Pulsatilla vulgaris, Trifolium montanum and Veronica prostrata) that 

failed at colonizing restored calcareous grasslands despite the close vicinity of seed sources. Our 

objective was to determine the factors limiting the spread and establishment of these species by 

addressing the following questions: (i) do the study species produce viable seed and do the seeds 

require treatments (cold, heat shock and smoke exposure) to germinate?; (ii) do microsite 

(presence of litter and/or disturbance) conditions influence seedling emergence?; (iii) does 

seedling emergence differ between restored and reference calcareous grasslands?; and (iv) can 

seed addition improve seedling emergence? 

Methodology 

Study species and seed collection 

Our study evaluated three rare species in Belgium occurring only in calcareous grasslands: 

Pulsatilla vulgaris, Trifolium montanum and Veronica prostrata. The species are highly threatened 

and listed in the regional Red Data Book (Saintenoy-Simon et al. 2006). Species morphological 

descriptions can be found in Tutin et al.  (1964-1980) and were therefore not reported here.  

Pulsatilla vulgaris Mill. (Ranunculaceae) seeds mature from May-June (J. Piqueray, pers. 

obs.). Achenes are 1 x 3.5-4.5 mm, bearing a ca. 3 cm appendage. The species has however a low 

potential of wind dispersal (Tackenberg 2003). Achenes average mass is 4.2 mg and they exhibit 

no dormancy (BIOPOP Database, Poschlod et al. 2003). Seed bank is transient (Thompson et al. 

1997). 

Trifolium montanum L. (Fabaceae) seed maturity occurs in July-September (J. Piqueray, 

pers. obs.). Seeds are 1.2-1.7 x 0.8-1 mm (Bojnansky and Fargasova 2007), and mass is 0.85 mg in 

average (Cerabolini et al. 2003). Seeds do not exhibit dormancy and the soil seed bank is mainly 

transient as few seeds are able to survive more than one year in the soil (Thompson et al. 1997; 

Tremlová and Münzbergová 2007). It may be dispersed by endozoochory (BIOPOP Database, 

Poschlod et al. 2003). Seed bank is transient (Thompson et al. 1997). 



5 

 

Veronica prostrata L. (Scrophulariaceae) seed maturity occurs in June-July (J. Piqueray, 

pers. obs.). Seeds are subglobose to obovoid, compressed, dorsal side is slight convex, the ventral 

with central oval hilum and seam, 1.4-1.6 x 1.2-1.4 mm (Bojnansky and Fargasova 2007). Seeds may 

disperse by boleochory (BIOPOP Database, Poschlod et al. 2003), but due to the plant small size, 

it is likely that dispersal ability is low (Vittoz and Engler 2007). Only V. prostrata subsp. scheereri 

occurs in Belgium. Matus et al. (2003) found that seed bank was likely short-term persistent.  

All three species are mainly associated with species typical of old calcareous grasslands (e.g. 

Helianthemum nummularium, Koeleria macrantha, Brachypodium pinnatum) (Wells and Barling 1971; 

Gibson and Brown 1992; Butaye et al. 2005; Piqueray et al. 2007). 

Seeds of each species were hand-collected in 2006 for germination in Petri dishes and 

outdoor container experiments, and for in-situ experiments at maturity in 2007 (Table 1). For P. 

vulgaris and T. montanum, the seeds of 10 randomly selected flower heads were collected in each 

population, each year. For V. prostrata, the seeds of 15 randomly selected racemes were collected 

in each population, each year.  

Germination in Petri dishes 

We studied germination in Petri dishes for each of the three species under three 

treatments as follows: (i) cold; (ii) heat; and (iii) smoke. This resulted in eight treatment 

combinations (control (o), cold (c), heat (h), smoke (s), cold+heat (ch), cold+smoke (cs), smoke+heat 

(sh), and cold+heat+smoke (csh)). Seeds were subjected to the following treatments before 

germination: cold treatment for two months at 4°C; heat treatment of 20 min at 60°C in an oven, 

which corresponds to topsoil conditions during a fire (Auld and Bradstock 1996); and seeds 

exposed to a smoke treatment by burning Brachypodium pinnatum (Poaceae) hay for 20 minutes, 

with smoke produced using a bee smoker injected into airtight glass bottles containing seeds. 

Experiment was replicated four times. Following seed treatments for each of the three study 

species, we established a total of 96 Petri dishes, containing 10 seeds each, placed on double 

filter paper moistened with distilled water. Petri dishes were randomly placed (the three species 

mixed) in a climatic chamber for 120 days (18°C constant temperature, 16h photoperiod, 70-80% 

humidity). We proceeded to dishes randomization and removing of rotten seeds every week. In 

case of high fungi development, dishes were replaced in order to avoid contamination of remaining 

seeds. 

Data were analyzed independently for each species. Effects of the three treatments on 

final germination percentages (data for P. vulgaris and V. prostrata was arcsin-transformed in 

order to improve homoscedasticity) were tested through three-ways ANOVA. In case of 

significant effects, pairwise comparisons of treatment combinations were made using Tukey’s 

tests.  
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Emergence and development in containers  

At the end of October 2006, an outdoor container experiment was established on an open 

homogenous area in Gembloux (Belgium; 50°33’57”N; 4°42’11”E; alt. 153 m; annual mean 

temperature ca. 9°C, annual rainfall ca. 800mm). Area was settled in an arable field. It was fenced 

and covered with a geotextile. Container size was 0.6m length x 0.15m width x 0.15m depth. Each 

container was filled with a bottom layer of calcareous stones (5 L, caliber 40 mm) followed by a 

commercial compost (pH = 7.5). Twenty seeds were sown in each container. Three treatments were 

set up: (i) no treatment = “control treatment”; (ii) seeds sown after heat and smoke treatments 

(see Petri dish experiment for procedure) = “fire treatment”; and (iii) containers covered with 2 

cm B. pinnatum litter = “litter treatment”. Each treatment was repeated four times for each 

species (total: 36 containers). Containers were randomly placed within area, the three species 

mixed. In each container, emergence and survival rates were recorded monthly. In November 

2007, seedling size for all three species (mean of the two largest perpendicular plant diameters in 

mm) and number of leaves of P. vulgaris was recorded. B. pinnatum litter was re-applied at this 

time. The final number of individuals per container was recorded at the end of the experiment in 

April 2008 (Total duration of the experiment: 18 months).  

The percent final emergence, seedling size at the end of the first growing season and final 

number of individuals were compared among the three treatments using one-way ANOVAs, 

followed by Tukey’s tests in the case of significant differences. In order to improve 

homoscedasticity, P. vulgaris germination was arcsin-transformed, P. vulgaris seedling size, T. 

montanum seedling size and V. prostrata final number of individuals were log-transformed, T. 

montanum germination and final number of individuals were sqrt-transformed. Seedling fate 

(survival or mortality) at the end of the experiment was analyzed among the three treatments 

using a chi-square test. 

In situ experiments 

In situ experiments were conducted at five sites. Sites were selected to meet the following 

conditions: (i) the sites exhibited a large population (hundreds individuals) of one of the study 

species, called “target species” (each site having one target species, see Table 1); (ii) a restored 

area occurred in close vicinity to the population; and (iii) the target species did not occur in the 

restored area. Each site was composed of two parcels, the “reference parcel” where the species 

occurred and the “restored parcel”, where the species was absent. These sites were therefore 

suitable for studying the absence of re-colonization of restored sites by the target species, 

despite the close vicinity of a seed source. Under these very limited conditions, we were able to 

find only one site supporting V. prostrata and two sites for T. montanum and P. vulgaris (Table 1). 

The site “Montagne-aux-Buis” (target species: V. prostrata) is located in the Viroin Valley, the 
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other sites are located in the Lesse Valley (see Butaye et al. (2005) and Piqueray et al. (2007) for 

vegetation descriptions). Restored parcels were formerly forest stands that were clear cut at 

different periods (Table 1). Since 2003, all sites have been managed by grazing using migrating 

sheep flocks (duration: 2-3 weeks/year, resulting to a grazing intensity of 1-2 sheep/ha*year; 

restored parcels are grazed each year, reference parcels every 2 or 3 years depending on site). 

The experiment was settled at the five selected sites from May to August 2007, at the propagule 

release time for each species.  

Table 1: Study sites for each of the study species. Time since parcel restoration. 

Name Localisation Target species 
Time since 

restoration 

Les Grignaux 50°07’N – 5°10’30’’E Pulsatilla vulgaris 3 years 

Tienne des Vignes 50°06’N – 5°10’E Pulsatilla vulgaris 10 years 

Lorinchamps 50°06’N – 5°14’E Trifolium montanum 4 years 

Les Pairées 50°06’N – 5°11’E Trifolium montanum 12 years 

Montagne-aux-Buis  50°05’30’’N – 4°34’E Veronica prostrata 9 years 

 

Within each parcel (restored parcel and reference parcel) of each site we established four 

2 m x 2 m experimental units. Each unit was divided into four 1 m x 1m subunits, corresponding to: 

(i) control (no treatment, O); (ii) seed addition (S); (iii) disturbance (D); and (iv) seed addition + 

disturbance (SD). Seed addition was the manual addition of seeds (25 seeds). Disturbance was 

litter and above-ground vegetation removing in 25 5cm x 5cm microsites. These treatments were 

randomly assigned to subunits. At each site, added seeds were collected within the site in order 

to insure the genetic integrity of local populations. In May 2008, seedlings were counted in each 

subunit (Experiment duration: 13 months, 10 months and 11 months respectively for P. vulgaris, T. 

montanum and V. prostrata). 

In-situ seedling emergence was analyzed using three-ways ANOVA. A preliminary analysis 

tested for site effects. In the case of significant site effects (single effect or interaction with 

treatments or parcel type), further analyses were computed independently for each site. In case 

of significant effects, pairwise comparisons between treatments were made using Tukey’s tests. 

No transformation permitted to improve homoscedasticity. 
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Results 

Germination in Petri dishes 

 

Fig. 1: Petri dish germination of each study species under the eight treatment combinations. Error 

bars are standard errors. The letters c, h and s correspond respectively to cold, heat and smoke 

treatments, and their combinations. Different letters under plots indicate significant differences. 
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Germination initiated following 4, 11 and 18 days for T. montanum, V. prostrata and P. 

vulgaris, respectively. The control treatment germination percentage for T. montanum was 37.5% 

(SE=8.54%) and was not significantly changed under the treatment conditions (Table 2; Fig. 1). 

Control V. prostrata germination percentage was 57.5% (SE=4.79%). Germination percentage of 

this species significantly increased with cold treatment (P<0.001). Smoke treatment tended to 

decrease germination percentage (p=0.044). However we observed a nearly significant heat*smoke 

interaction (p=0.098). No clear conclusions can therefore be made about smoke effect. The 

highest germination percentage was obtained when cold treatment was applied alone (Fig.1). 

Germination in the absence of treatment was 80% (SE=8.16%) for P. vulgaris. ANOVA detected a 

significant effect of cold treatment (p=0.007). This treatment tended to enhanced germination. 

However significant or nearly significant interactions between effects (e.g. p=0.048 for 

cold*smoke, p=0.063 for cold*smoke*heat, Table 2) made the interpretation of the results 

difficult. Tukey’s test among treatment combinations revealed only the difference between 

cold+smoke+heat (csh: 97.5 %) and smoke+heat (sh: 60 %) as significant (Fig. 1). 

Table 2 : ANOVA table of the response of germination in Petri dishes for the three study species. 

Response to cold, heat and smoke treatment are given as well as their interactions. 

  

Pulsatilla  

vulgaris 

Trifolium 

montanum 

Veronica 

prostrata 

  F[1;24] p F[1;24] p F[1;24] p 

Cold 8.82 0.007 0.76 0.392 20.01 <0.001 

Heat 0.03 0.857 0.08 0.774 1.95 0.176 

Smoke 0.04 0.844 0.00 1.000 4.52 0.044 

Cold*Heat 2.16 0.155 0.34 0.566 0.71 0.409 

Cold*Smoke 4.33 0.048 0.08 0.774 0.94 0.342 

Heat*Smoke 1.79 0.193 0.08 0.774 2.96 0.098 

Cold*Heat*Smoke 3.80 0.063 3.04 0.094 1.07 0.312 

Emergence and development in containers 

Container growing experiments revealed different phenological patterns between species 

(Fig. 2). T. montanum and V. prostrata emerged both in autumn and spring, but in different 

proportions. Respectively, for T. montanum and V. prostrata, we recorded the following emergence 

percentages: 32% and 11% in the first autumn (2006), 62% and 86% in the first spring (2007), 

and 6% and 3% in the second autumn (2007). Both species exhibited an emergence peak in March 

and mortality occurred primarily in the first spring, with a peak in April. P. vulgaris emerged 

entirely in summer between mid-June and mid-August and the highest mortality occurred the 

following winter.  
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Fig. 2: Emergence (white bars) and mortality (black bars) phenology in outdoor containers for each 

study species. Species dependant y-scales were used in graphs. Due to low occurrences of 

emergence/mortality events at this period, the months from December 2007 to April 2008 were pooled 

under the term “winter-07”. 
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V. prostrata emergence and survival percentages were reduced by fire treatment (smoke + 

heat) relative to the control (emergence: 6% vs. 31%: P = 0.014; survival: 0% vs. 64%, P = 0.012; 

Table 3). Brachypodium litter reduced V. prostrata emergence rate (7% vs. 31% in control, P = 

0.014; Table 3). However, Brachypodium litter resulted in an increased emergence (30% vs. 11% in 

control, P = 0.014), final number of individuals per container (5.25 vs 1.25 in control, P = 0.003) and 

survival (87% vs 44% in control, P = 0.038) of P. vulgaris (Table 3). Finally, T. montanum survival 

was the lower in control (12% vs. 57% with fire treatment and 60% with litter treatment, P = 

0.016; Table 3). However, the final number of individuals per container was not significantly 

different among treatments for this species due to an inverse pattern in germination.  

Table 3: Study species response in outdoor containers under three treatments. Under fire treatment 

conditions, seeds were submitted to heat (20 min at 60°C) and smoke (20 min of smoke) before sowing. 

Under litter treatment conditions, containers were covered with Brachypodium litter. P indicates the p-

value of the performed test. When significant, a pair-wise comparison was computed; letters indicate 

significant differences. Final number of individuals is given per container. 

  Treatment     

  Control Fire Brachypodium test P 

Pulsatilla vulgaris      

Germination (%) 11 ab 9 b 30 a F[2;9]=5.84 0.024 

Survivorship (%) 44 71 87 χ²[2]=6.53 0.038 

Final number of 

individuals 1.25 b 1.00 b 5.25 a F[2;9]=11.70 0.003 

Seedling size (mm²) 270 215 577 F[2;7]=2.88 0.122 

Number of leaves 2.2 1.9 2.8 F[2;7]=1.97 0.209 

      

Trifolium montanum      

Germination (%) 21 9 12 F[2;9]=0.30 0.750 

Survivorship (%) 12 57 60 χ²[2]=8.26 0.016 

Final number of 

individuals 0.50 1.00 1.50 F[2;9]=0.46 0.644 

Seedling size (mm²) 49 2761 1732 F[2;5]=1.24 0.366 

      

Veronica prostrata      

Germination (%) 31 b 6 a 7 a F[2;9]=7.06 0.014 

Survivorship (%) 64 0 83 χ²[2]=8.87 0.012 

Final number of 

individuals 4.00 a 0.00 b 1.25 ab F[2;9]=6.82 0.016 

Seedling size (mm²) 14413 - 16768 F[1;4]=0.10 0.771 
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In situ experiments 

In-situ experiments revealed highly contrasting patterns among species. Germination was 

not observed under any treatment conditions for V. prostrata.  

Twelve T. montanum seedlings were recorded. A preliminary ANOVA revealed several 

significant interactions for sites, notably for seed addition and disturbance (results not shown). 

As a consequence, we analyzed the effects of treatments and parcels in each site separately 

applying a three-way ANOVA (Table 4). At “Les Pairées”, only two seedlings emerged and no 

significant effect was found. At “Lorinchamps”, seedling emergence only occurred in reference 

parcel, resulting in a significant difference with restored parcel (P=0.013). At this site, seed 

addition increased seedling emergence (P=0.043). The higher seedling emergence was observed 

when disturbance and seed addition were combined (7 seedlings vs. 0, 1 and 2 seedlings, 

respectively for the control, disturbance alone, and seed addition alone, Fig. 3).  
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Fig. 3: In-situ seedling emergence (mean number of seedlings per 1 x 1 m subunit) under the different 

treatments in the two parcel types for: (a) Pulsatilla vulgaris (2 sites pooled), (b) Trifolium montanum 

at “Lorinchamps”, and (c) Trifolium montanum at “Les Pairées”. Error bars are standard errors. The 

letters D and S are indicated respectively when disturbance and seed addition occurred. 

 

We observed a total of 105 P. vulgaris seedlings. Emergence patterns were similar at “Les 

Grignaux” and “Tienne des Vignes” (no significant interactions with site effect, result not shown). 

Significantly lower seedling emergence was recorded in restored than in reference parcels (75 

seedlings vs. 30 seedlings, P=0.006; Fig. 3). Both seed addition and disturbance had a significant 

positive effect (P<0.001 in both cases). Moreover, the significant interaction between both 
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treatments (P<0.001) indicates that seedling emergence was enhanced by a combination of 

disturbance and seed addition. The significant triple interaction (P=0.030) indicates that this 

enhancement was more important within reference parcels (Fig. 3, Table 4).  

Table 4: Response of P.vulgaris and T.montanum to in-situ experiments treatments (ANOVA). The 

tested effects were parcel type (reference Vs. restored; parcel), disturbance (D) and seed addition 

(S). 

  

Pulsatilla vulgaris 

overall sites 

Trifolium montanum 

at « Lorinchamps » 

Trifolium montanum  

at « Les Pairées » 

  F[1;56] p F[1;24] P F[1;24] P 

Parcel 8.25 0.006 7.14 0.013 3.00 0.096 

D 20.53 <0.001 2.57 0.122 3.00 0.096 

S 26.72 <0.001 4.57 0.043 3.00 0.096 

Parcel*D 3.91 0.053 2.57 0.122 3.00 0.096 

Parcel*S 1.75 0.192 4.57 0.043 3.00 0.096 

D*S 22.91 <0.001 1.14 0.296 3.00 0.096 

Parcel* D*S 4.99 0.030 1.14 0.296 3.00 0.096 

 

Discussion 

Germination and seedling development  

The three species evaluated in this study generated viable seeds, with a germination 

percentage varying from 40% to 80% in Petri dishes in the absence of treatment. T. montanum 

germination without treatment was lowest. However, it reached approximately 45% over all 

treatments, which is consistent with the results of Schleuning and Matthies (2009).  

We did not proceed to viability tests of non-germinating seeds in Petri dishes experiment, in 

order to make distinction between non-viable and dormant seeds. For P. vulgaris, the high 

germinability under control treatment suggests that few seeds were dormant. At the contrary, 

the nearly 100% germination of V.prostrata after cold treatment, compared to the ca. 60% 

germination in control treatment, suggests that nearly all seed were viable, but some were 

dormant. Death of seeds due to fire or smoke treatment was however probable in other 

treatments. Nearly all non-germinating T. montanum seeds had rotten during experiment and were 

not viable anymore.  
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In outdoor containers, a small number of V. prostrata seeds germinated in autumn, the 

majority germinated in spring. This result could be related to a necessity for a cold period, which 

was demonstrated to enhance germination in Petri dishes. However, a similar phenological pattern 

was observed for T. montanum, although this species exhibited no significant increase in 

germinability after cold treatment. Spring germination, observed for P. vulgaris, allows a reduction 

in winter seedling mortality, while seedlings emerging in autumn have a competitive advantage if 

they survive, which is more likely during a mild winter. Bi-seasonality (observed for T. montanum 

and V. prostrata) in seedling emergence can therefore be a bet-hedging strategy to reduce year-

to-year variation in recruitment (Masuda and Washitani 1992).  

The T. montanum and V. prostrata mortality pattern (greater in spring than in winter) likely 

reflects weather conditions than an intrinsic characteristic of the species. Indeed, the 2006-

2007 winter was exceptionally mild in Belgium, with mean temperatures 3.5°C higher than usual 

over the period from December to February, with only a few days below 0°C. However, these mild 

winter conditions were likely sufficient to meet the cold requirement for V. prostrata 

germination, as mean temperature was similar to these applied during cold treatment in the Petri 

dishes experiment. In other respects, an exceptional drought occurred in April 2007, with the 

total absence of rain for this month likely explaining the observed high mortality (MeteoBelgique 

2010 for weather conditions).  

None of the three species was favoured by fire-related treatments (heat and smoke), 

regardless of the experimental conditions (Petri dishes or outdoor containers). Even, V. prostrata 

exhibited a decreased germination percentage following fire-related treatments. Indeed heat can 

be responsible for the death of seeds (Baskin and Baskin 1998).  

Response to litter addition in outdoor containers was two-fold and species dependant. On 

the one hand, T. montanum and V. prostrata exhibited a decreased germination percentage in 

containers covered by B. pinnatum litter, although this effect was not significant for T. montanum. 

On the other hand, seedling survival was significantly higher for T. montanum. This dual effect of 

litter has already been described in fen grasslands (Rasran et al. 2007). Litter can inhibit 

recruitment by decreasing light availability for seedlings and mechanically prevent emergence 

(Xiong and Nilsson 1999). Alternatively, litter can protect seedlings against severe drought or 

chill, and therefore facilitate emergence. A similar effect was described for moss layer in 

calcareous grasslands (Jeschke and Kiehl 2008). Inhibition and facilitation may act differently 

following the plant life stage, and their interplay is likely to strongly influence final emergence 

(Callaway and Walker 1997). As a whole, litter was favourable for T. montanum recruitment and 

exhibited a negative effect on V. prostrata evidenced by decreased germination. Finally, P. 

vulgaris exhibited the best performance in containers covered by litter. This result is congruent 

with Pfeifer et al. (2002), who found that artificial shadowing increased P. vulgaris performance 

under transplantation conditions.  
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Seed or microsite limitations? 

A lack of seed can be limiting for both recruitment within populations or new site 

colonization in grassland habitats (Zobel et al. 2000; Donath et al. 2007; Edwards et al. 2007; 

Rasran et al. 2007). When seed addition enhances seedling emergence in restoration areas, this 

indicates dispersal limitations for new site colonization (Münzbergová and Herben 2005). We 

identified such a dispersal limitation for P. vulgaris that emerged in restored areas only with the 

addition of seeds. In reference parcels emergence enhancement observed for P. vulgaris and T. 

montanum suggests that recruitment within population is also seed limited. However, little 

recruitment was observed in reference parcels for both species without seed addition, implying 

that natural recruitment is not null. This recruitment is likely due to seed rain, given the transient 

nature of seed bank of both species (Thompson et al. 1997). 

V. prostrata and T. montanum did not emerge in restored areas. As a consequence, no 

conclusion could be made for these species about limitations for colonization operating in restored 

sites. Even in reference grasslands no (V. prostrata) or little (T. montanum) seedlings emerged. It 

is likely that the low number of added seeds in in-situ experiments (25/m², 400/site) can be part 

of the cause for the low emergence of this species. Indeed, even in control treatment in container 

experiment, these species exhibited low final emergence (20% and 2.5% for V. prostrata and T. 

montanum respectively). In the field, the additional competition constraint likely reduced 

emergence and lead to the low final emergence observed, making significant differences unlikely 

to occur. This could have been avoided by increasing the number of sown seed. However, due to 

the rarity of the species, we were allowed to collect a limited seed number, which limited the 

extent of the experiment. This limitation was likely responsible for a lack of power in statistical 

tests overall the study. It is however worth noting that T. montanum emergence in the field was 

between 1% and 5% based on site. Although these percentages indicate low emergence rates, they 

are slightly higher than those reported by Schleuning et al. (2009) for the same species and 

considered sufficient to maintain population size if management practices were suitable. 

For P. vulgaris, a significant positive effect of seed addition and disturbance combination 

was shown in both reference and restoration grasslands. In reference grasslands, each treatment 

alone did not result in more seedlings than the control treatment. Limitations to recruitment are 

therefore not a dichotomy of seeds vs. microsites, but rather a combination of both effects. It 

was already observed that disturbance increased the effectiveness of seed addition (Zobel et al. 

2000; Hofmann and Isselstein 2004; Poschlod and Biewer 2005; Edwards et al. 2007; Hellström et 

al. 2009). The same pattern was observed in T. montanum at the “Lorinchamps” site, but the 

effect was not significant. A replication of the experiment, including higher level of seed addition, 

would therefore be needed to confirm this pattern. 
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The results observed in outdoor containers are valuable to explain field results. The better 

a species performed under Brachypodium litter in outdoor containers, the better it performed in 

the field. P. vulgaris that showed enhanced performance with litter exhibited the best emergence 

in the field in contrast to V. prostrata that did not emerge in the field. This pattern suggests 

that the 5 cm x 5 cm microsites used were too small for microsite dependant species, particularly 

V. prostrata. Therefore, it would be worth studying the effect of microsite size and type on V. 

prostrata recruitment and, to a lesser extent, T. montanum. Also, global shadowing and crown 

cover would be interesting to be put in relation with emergence of these species. Germinability 

may also be partly responsible for the patterns observed in containers and in the field. The better 

a species germinated in Petri dishes, the better it performed in outdoor containers. T. montanum 

had a relatively low germinability in Petri dishes under control treatment (37.5%). This low 

germinability, combined to the low number of added seeds in in-situ experiments (25/m², 

400/site) can be part of the cause for the low emergence of this species.  

Implications for conservation  

One of the aims of ecological restoration is to provide new habitat opportunities for 

characteristic species in order to create new populations and increase population size and 

connectivity. In our study, while target species produce viable seed that survive under controlled 

conditions, the three target species failed at colonizing restored areas. Seedling emergence in 

restored areas could only be achieved after seed addition. These results point out the importance 

of propagule availability for restoration success. Several authors stated that occurrence of seed 

sources in the near vicinity of restored sites was an important determinant for this (Bakker et al. 

1996; Kiefer and Poschlod 1996; Pärtel et al. 1998; Willems and Bik 1998). Our study 

demonstrated that it is not always sufficient and that supplementary actions may be needed to 

completely recover target species pool in restored areas, even when restoration occur at a small 

distance from old grasslands. 
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Also, sufficient bare ground availability is important to be achieved.  Both T. montanum and 

V. prostrata had lower seedling emergence under litter accumulation conditions and P. vulgaris 

emergence in the field was enhance by combining sowing and disturbance. Piqueray et al. (2011a) 

reported that current management did not permit to maintain bare ground in restored areas. 

Further studies are therefore necessary to determine if alternative management practices i.e. 

type, timing and intensity (different from the current grazing management) can improve microsite 

availability. Increased disturbance and gap creation is required to reduce litter accumulation, 

leading to better recruitment, essential in individual species population dynamics. It is especially 

essential for V. prostrata which optimal habitats in Belgium are the most xeric grasslands, 

characterized by a 15% bare ground cover in average, and a lower vegetation height (Piqueray et 

al. 2007). In less xeric grasslands, such as our study site, such vegetation characteristic only 

occur at earlier successional stages obtained under high grazing intensity. Applied disturbance (5 

cm x 5 cm microsites) was shown to be insufficient for the recruitment of this species. 

Finally, fewer seedlings of P. vulgaris were observed in restored areas than in reference 

grasslands. Restored areas showed the absence of seedling emergence for T. montanum and V. 

prostrata. These results suggested that conditions in restored parcels are less suitable for 

species recruitment (seedling establishment and survival). Piqueray et al. (2011a) found no 

difference in soil conditions between restored and reference parcels within study sites. They 

however revealed that restored areas supported an increased frequency of the competitive 

grasses B. pinnatum and Bromus erectus. Management to limit the extent of these species may 

therefore be a prerequisite to target species establishment. 
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