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Abstract 

This paper is devoted to the description of recent and 
prospective decorrelation techniques used in image pro- 
cessing. Two classes are taken into consideration : the 
universal or generic methods and the adaptive methods. 
The first class performs signal processing independently 
of  its specificity. These methods only rely on statisti- 
cal properties of the signal. They are principally based 
on orthogonal transforms and subband coding. In op- 
position, the adaptive techniques take the a posteriori 
contents of the images into account. Some of them adapt 
universal techniques to the signal content (i.e. adaptive 
subband coding or hybrid methods). Others are based 
on feature extraction processes which include more phy- 
sical entities like edges and regions. For example, object 
approaches attempt to describe images as collections of 
regions characterized by their shape and their aspect. 

Key words : Image processing, Decorrelation, Statistical method, 
Adaptive method, Digital image, Image coding, Orthogonal transfor- 
mation, Subband decomposition, Mixed method, Non uniform sam- 
piing, Pattern extraction, Object oriented method. 

TECHNIQUES DE DI~CORRI~LATION 
R~CENTES ET FUTURES 

POUR TRAITEMENT D'IMAGE 

tiques. Ces m6thodes sont essentiellement constitutes 
de transformations orthogonales et de d~compositions 
en sous-bandes. Par contre, les techniques adaptatives 
considdrent davantage le contenu a posteriori de l' image 
traitde. Certaines r~sultent d'une simple adaptation de 
techniques universelles au contenu du signal (i.e. le 
codage en sous-bandes auto-adaptatif ou les ms 
hybrides). D'autres reposent davantage sur l'extrac- 
tion de caract#ristiques propres, ou d'entit~s physi- 
ques comme des contours ou des rOgions. Par exemple, 
l'approche orient~e objet essaie de d#crire une image 
sous la forme d'une collection de r~gions d#finies par 
leur forme et leur contenu. 

Mots cl~s : Traitement image, D6corr61ation, M6thode statistique, 
M6thode adaptative, Image num6rique, Codage image, Transformation 
orthogonale, D6composition sous bande, M6thode mixte, Echantillon- 
nage non uniforme, Extraction forme, M6thode orient6e objet. 
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R~sum~ 

L'article pr~sente les techniques de d~corr~lation 
actuellement utiliss ou ds en traitement 
d'images. Elles sont regroup~es en deux classes : les 
m~thodes universelles, encore appel~es g~n~riques et les 
m~thodes adaptatives. Dans le premier cas, le signal 
est trait~ inddpendamment de ses propres caractdris- 

I. INTRODUCTION 

In this paper, we are concerned with digital images. 
They are signals composed of  a large amount of  sam- 
pies, usually called pixels or  pels, which are coded with 
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a certain accuracy (i.e. on a given amount of bits). For 
images, like those met in television, medical and satellite 
applications, the associated binary flows, which would 
be required for perfect transmission or lossless storage, 
are usually prohibitive. In the sense of the information 
theory, different lossy coding techniques (i.e. compres- 
sion techniques which introduce information losses) ena- 
ble to reduce the amount of bits which have to be hafid- 
led, while keeping a still acceptable level of degradation. 

A typical source coding scheme consists of the fol- 
lowing three steps as described in Figure 1, although in 
specific applications, some of them might be missing : 

decorrelator �9 quantizer ~ e ntrgpic 

FIG. 1. - -  Typical  source coding scheme. 
It consists of a decorrelator,  a quant izer  and an entropy coder. 

Schema typique de codeur de source. 
11 est g~nOralement constitu~ d' un d~corr~lateur, 

d'un quantificateur et d'un codeur entropique. 

1) A decorrelative coder which transforms the pixels 
into slightly uncorrelated coefficients [63]. Basically, an 
important redundancy should exist among the pixels of 
any usual image. It means that the statistical correlation 
Forig(r) between the pixels in the spatial domain is a 
rather broadly peaked function of the distance between 
them r. It is illustrated by the left-hand side plot in 
Figure 2, in the case of  a typical gray scale still image. 

J 
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FIG. 2. - -  Correlat ion funct ion before  and after DPCM coding. The left- 
hand side plot shows a un id imens iona l  correlation function between 
the pixels of a typical  gray  scale  image ,  before any processing, versus 
~-, the distance be tween those pixels .  The r ight-hand side plot shows 
the correlation function obta ined after  applicat ion of a DPCM (i.e. at  

the output  of  the decorrelator).  

Fonction de correlation avant et aprds codage par MICD. Le graphe 
de gauche reprOsente la fonction de correlation d u n e  dimension 
entre pixels d'une image typique, en fonction de ~-, la distance entre 
ces pixels. Le graphe de droite repr~sente la fonction de correlation 

obtenue aprOs DPCM (en sortie du d~corr~lateur). 

Therefore, to optimally code the signal (i.e. to use 
the minimum amount of  bits), basic information theory 
implies to perform a conditional coding which takes all 
the former spatial history of  the signal into account. 
Unfortunately, such coders are rather difficult to 
implement and time consuming. It is far more easy and 
fast to prearrange the pixels into less correlated coef- 
ficients which, according to information theory, do not 

2/14 

391 

require any more conditional coders (i.e. the signal can 
now be fairly considered as generated by independent 
sources). The correlation function FDPCM(r) obtained 
with a classical decorrelation process (DPCM, see later 
in the text), is presented in Figure 2 (right-hand side 
plot). In fact, the coefficients should rather be statisti- 
cally independent, but decorrelation is the best that can 
be achieved with second order statistics. As the correla- 
tion is reduced, we may also expect that only non negli- 
gible coefficients carry relevant information. Therefore, 
the quantization errors introduced at the second step, 
should produce fairly minimal distortions on the recons- 
tructed signal. An additional advantage is that it often 
happens that the decorrelator automatically rearranges 
the pixels into coefficients with physical (e.g. frequency) 
or perceptual meanings, and therefore are usually well 
suited for further processing. 

2) A quantizer which reduces the accuracy on the 
coefficients down to a still acceptable quality. It may be 
implemented with a scalar or a vector quantizer [41, 62, 
74], adaptive or not. Although it is sometimes difficult 
to dissociate from the decorrelator, it is only at this le- 
vel that losses are introduced. Scalar quantizers reduce 
the numerical accuracy used to describe the new coeffi- 
cients (i.e. by discarding least significant bits (LSB)). On 
the other hand, vector quantization gathers up neigh- 
bouring coefficients into vectors which are adaptively 
approximated by centroids for coding purposes. 

3) An entropy coder which efficiently codes the quan- 
tized signal without any further distortion (i.e. lossless). 
It relies upon the statistical properties of its input bit 
flow [4]. The basic principle of  an entropy coder is to 
code more (less) probable coefficients by shorter (lon- 
ger) words (e.g. Huffmann code [23]). In consequence 
its complexity highly depends on the efficiency of the 
two preceding steps. 

Although this paper is concentrated on still image 
decorrelation techniques, for some applications as tele- 
vision broadcasting, videotelephony or HDTV, it is also 
necessary to consider the temporal correlation which 
characterizes the redundancy between successive 
images. It guarantees to further decrease the associa- 
ted bit rate. As those temporal decorrelative aspects are 
beyond the scope of this paper, we will just describe, in 
short terms, the motion estimation and compensation [2, 
61]. 

Motion estimation techniques compute the relative 
displacement between areas present in successive 
images of  a moving sequence. Usually, those areas are 
blocks of pixels in a block matching technique or the 
pixels themselves in a pel-recursive technique. They 
could also be regions produced by an object oriented 
coder. Only the difference between the current area and 
the motion-compensated area from the previous frame is 
then coded. This approach to reduce the temporal redun- 
dancy is very similar to the predictive coding descri- 
bed in Section II.1. except that the predictions are given 
by this motion-compensated areas. The block matching 
algorithm is a deeply experimented technique for mo- 
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tion estimation. It divides an image into the block pat- 
tern which better matches the corresponding blocks in 
the previous image, following a given criterion like, for 
instance, the mean of the absolute difference between 
the pixels of  the blocks. Thereafter, we transmit the dif- 
ference between those blocks and the associated motion 
vectors. 

The purpose of this paper is limited to the description 
of still image decorrelative techniques. Coding schemes 
involving classical discrete cosine transform (OCT) pro- 
vide good results for medium compression rates (bet- 
ween 15 and 20). In the same way, subband coding and 
recursive block coding (RBC) methods present a wider 
diversity of  tools thanks to, among other things, wave- 
lets, perfect reconstruction structures, efficient statistical 
models or perceptual decompositions. The efficiency of 
those universal techniques which are described in Sec- 
tion II is reduced for larger compression rates (greater 
than 25). To reach such rates, decorrelative techniques 
have to take a posteriori properties of  the signal into 
account which means that these properties depend on 
the contents of  each image, in opposition to properties 
from a statistical model based on a representative set of 
images, which we call a priori properties. This leads to 
the adaptive techniques which include methods adapted 
to the signal characteristics and feature extraction pro- 
cesses. The Section III  is devoted to the description of 
those techniques. 

II .  U N I V E R S A L  T E C H N I Q U E S  

The universal techniques (also more recently known 
as generic methods) perform signal processing indepen- 
dently of  its specificity (i.e. TV images,...). They rely 
upon statistical a priori models of  the signal, espe- 
cially upon the expected high redundancy between adjoi- 
ning samples (remember Figure 2). Therefore, they are 
always adapted to a class of images but never really to 
a particular image. The spatial and spectral interpreta- 
tions of  these methods contributed to their popularity 
in the eighties all the more so as their implementation 
complexity remains fairly acceptable. 

Predictive methods were the first techniques proposed 
to take advantage of the correlation between adjoining 
pixels. However, the compression ratios were not large 
enough for a lot of applications. It was mandatory to bet- 
ter rearrange the signal. Stochastic function theory sug- 
gests that some linear orthogonal transformation should 
be powerful techniques : the signal is studied in a new 
domain, close to the one defined by the Karhunen-Lo~ve 
transformation (KLT), which theoretically is the optimal 
decorrelative process. To satisfy the conditions neces- 
sary to efficiently approximate the KLT, the image has 
to be split up into blocks. Unfortunately, because of 
those blocks, unbearable effects appear at large com- 
pression ratios. Improvements implied the introduction 
of techniques applied on the whole signal (e.g. subband 
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coding) or on overlapping blocks (e.g. lapped orthogonal 
transform, recursive block coding). All those techniques 
allowed to increase the coding efficiency for a given 
compression ratio. 

II.1. Predictive and pyramidal coding. 

Predictive [31] and pyramidal (Laplacian) [7] techni- 
ques may be considered as pioneers in this field. In the 
predictive difference pulse code modulation (I)PCM), the 
signal value at a given moment is used as prediction for 
the next signal value. Therefore, we just have to trans- 
mit the error of  prediction. In pyramidal techniques, the 
signal is split up into coarse approximations (obtained 
by lowpass filters) and error functions. The error signals 
are expected to be weakly correlated and/or suitable for 
further processing. This appears very clearly in Figure 2. 
Unfortunately, in the case of the pyramidal techniques, 
the total number of  coefficients which have to be trans- 
mitted increases with the level of decomposition. It pro- 
bably explains the reason for the lack of popularity of 
the pyramidal approaches, till the introduction of hierar- 
chical subband coding which follows the same idea [49] 
(see Section 11.3.). 

II.2. Orthogonal transforms. 

The previous techniques have been partially supplan- 
ted by orthogonal transforms [1]. These transforms per- 
form a change of basis : the transformed coefficients 
y result from the projection of a vector x made by 
the pixels of the original signal on an orthogonal basis 
defined by the matrix T : 

"(1) y = T .  x 

Orthogonal transforms are linear operations. Besides, 
thanks to their unitary property, their inverse transforms 
are defined by the transpose T T of the transform matrix 
and the energy content is preserved. All this concurs 
to simplify implementation and analysis of orthogonal 
transformations. 

Ideally, we should always perform a Karhunen-Lo~ve 
transform (KLT) which leads to the optimal decorrelation. 
Indeed, this transform diagonalizes the covariance ma- 
trix of the signal to be coded [65]. As the basis func- 
tions are also the eigenvectors of  this matrix, there is 
no fast implementation algorithm. Of course it excludes 
any practical applications! Therefore, other basis func- 
tions have to be chosen on the ground of a priori sta- 
tistical models of  the signal, in such a way that the 
associated coefficients of  decomposition should be fairly 
well decorrelated. Among the wide variety of  suitable 
transforms, we can mention the Hadamard transform, 
the discrete Fourier transform (Dvr), the discrete cosine 
transform (DCT) . . . .  

The discrete cosine transform (DCT) [ 1 ,  7 8 ]  optimally 
decorrelates first order Markovian highly correlated 
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signals [11] and it provides a good compromise bet- 
ween decorrelation and implementation complexity. Fur- 
thermore, it can be easily interpreted in the frequency 
space. Each basis function performs a bandpass filtering 
with a different central frequency. Figure 3 shows those 

FIG. 3. - -  Basis functions of  an eight order DCT. 

Fonctions de base d' une transformation 
en cosinus discrdte d'ordre 8. 

basis functions in the case of an eighth order ocT. Video 
applications involve separable block OCT : unidimensio- 
nal OCT is successively performed along both coordinate 
axes of  a block of pixels. Block size of 8 by 8 pixels 
yields good decorrelation and fast implementation. This 
explains why block DCT is an essential tool in the de- 
correlative coders of the CCITT/PEG and MPEG standards 
[2, 34]. Unfortunately, blocking and mirroring effects in- 
troduce unbearable distortions at very high compression 
rates [44]. 

The LOT (lapped orthogonal transform) [52, 53] has 
been introduced in order to reduce those parasitic effects. 
This transform is still linear and orthogonal, but the basis 
functions of one block slightly overlap on the adjoining 
blocks as shown in Figure 4. The block effects are 
eliminated at the cost of a longer computation time as 
the basis functions are twice more spread. 
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FIG. 4. - -  Basis functions and overlap window of a LOT. The left-hand 
side plot shows some basis functions of  an 32th order LOT, applied 
on blocks of  16 pixels. The  right-hand side plot shows the overlap 
window be tween  adjoining blocks per formed by the basis functions of 

the LOT. 

Fonctions de base et fen~tre de recouvrement d'une transformation 
orthogonale f recouvrement (LOT). La figure de gauche montre quel- 
ques fonctions de base d'une LOT d'ordre 32, appliqude sur des blocs 
de 16 pixels. La figure de droite montre la fen~tre de recouvrement 

entre blocs voisins rOalis~e par la LOT. 
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II .3 .  S u b b a n d  c o d i n g .  

Subband coding [12] has been presented as an effi- 
cient extension of the transform methods. The spectral 
interpretation of the OCT basis functions suggests to de- 
correlate with filters in the spectral domain. The idea of 
subband coding is to split up the signal into different fre- 
quency subbands which are separately coded. In the case 
of weakly stationary signals, it can be shown [65] that 
perfect decorrelation can be achieved between disjoined 
subbands. However, as there should still remain corre- 
lation inside the subbands, their number has to be large 
enough to ensure an adequate level of decorrelation. The 
goal of  the subband decomposition is to obtain signals 
well conditioned for further efficient vector quantization 
o r  DPCM/PCM decorrelation. As the signal is processed as 
a whole, compression applied on the different subbands 
does not lead to blocking effects on the reconstructed 
signal as encountered with a block OCT transform. 

In practice, the signal is split up into different fre- 
quency subbands by bandpass filters. The resulting 
signals are downsampled in order to keep constant the 
total number of  samples. For the reconstruction, the dif- 
ferent subbands are interpolated by adequate zero inser- 
tion and bandpass filtering. For example, a two-subbands 
scheme is shown in Figure 5. This scheme is compo- 
sed by low- and high-pass filters H(z) and G(z )  follo- 
wed by downsamplers by 2 in the decomposition stage, 
and upsamplers by 2 followed by adequate filters in the 
reconstruction stage. 

~ H(z) ~ ~I(z) ~ 

- -  + 

a(z) OCz) ] 

FIG. 5. - -  Two-channels  subband scheme.  

Schema sous-bande ?~ 2 canaux. 

It can be shown that orthogonal decompositions into 
wavelet packet bases [45, 49] are in fact particular 
subband decompositions. Wavelet transform and wavelet  
packet transform are new time-frequency analysis tools 
[14]. For images, the terms time-frequency have to 
be understood in the broader sense of  space-spectrum. 
Also, any orthogonal block transform can be easily 
implemented with a subband coding scheme [78]. 

In the field of  video applications, the subband decom- 
position is more often implemented with a separable 
scheme : unidimensional filter banks, like the one shown 
in Figure 5, successively operate in the horizontal and 
the vertical directions. However, non-separable decom- 
positions have been recently introduced in order to 
reduce the weaknesses of separable approaches. Both 
subband decompositions are described below. 

II.3.1. Separable  subband decomposi t ion.  

As separable subband decompositions successively 
act in the horizontal and the vertical directions, we will 
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only discuss a unidimensional subband scheme. In fact, 
the basic tool of such decompositions is the above- 
mentioned two-subbands scheme (see Figure 5). 

The filter banks are designed to cancel out aliasing 
errors introduced by downsampling which yields an 
overlapping of the repeated spectra at the output of the 
finite impulse response (FIR) filters. The quadrature mir- 
ror filters (QMF) [12] approach was introduced to fulfill 
such antialiasing requirement. Their low-pass H(f~) and 
high-pass G(f~) filters are symmetric around f~ = 7r/2. 
The classical QMF proposed by Crochiere and designed 
by Johnston [33] produces amplitude modulation. The 
elimination of residual modulation errors is achieved by 
lossless subband schemes. The additional perfect recons- 
truction constraints lead to the design of new lattice filter 
structures - -  with or without linear phase - -  and poly- 
phase representations [77, 83]. 

Until recently, the design of filters was commonly 
based on the half-band approach [12] which minimizes 
the difference between ideal and designed frequency 
filter response. Wavelet theory [69], besides the fact that 
it is the background theory of subband coding, provides 
a new approach for filter design : spline subband analysis 
[49] and FIR regular filters [13]. With those filters, 
it is possible to control the mathematical regularity 
and stability of the decompositions. It seems to have 
some important effects on the perceptual quality of the 
reconstructed images, for a given quantization process. 

Separable subband decompositions are practically 
obtained by cascading the above-mentioned two-bands 
schemes. There are three types of  subband decomposi- 
tions (see Figure 6) : 
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0 7r 0 7r 0 ~r 
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FIG. 6. - -  U n i f o r m  (a),  h i e ra rch ic  (b) 
a n d  op t ima l  (c) d e c o m p o s i t i o n s .  

D~compositions uniforme (a), hMrarchique (b) et optimale (c). 
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criterion is fulfilled [79]. This ends up with a pattern 
intermediate between the two first types. 

II .3 .2 .  N o n - s e p a r a b l e  d e c o m p o s i t i o n .  

Although the separable subband decomposition is 
quite popular, subband coding does not have to be sepa- 
rable. It can also be achieved by means of direct convo- 
lutions with two-dimensional non-separable filters. As 
the separability condition reduces the number of degrees 
of freedom, they might be less suited to the 2-D speci- 
ficities of video signal. Moreover it is well known that 
visual perception separates signals in channels, called 
perceptual components, tuned with respect to the posi- 
tion, the frequency and the orientation [64]. 
Separable subband decomposition does not sufficiently 
take those perceptual effects into account : the diago- 
nal band contains mixed orientations (i.e. +45 ~ and 
-45~ Thanks to their more general characteristics, non- 
separable decompositions enable to discriminate bet- 
ween those orientations. 

Two different approaches are taken into considera- 
tion : quincunx and hexagonal decompositions. Figure 7 
shows such hierarchic decompositions. In the quincunx 
case [20, 84] (Fig. 7b), the signal is split up into two 
subbands with a diamond shaped lowpass band. This 
decomposition better fits the 2-D hyperbolic shape of 
any video energy spectrum. Hexagonal decompositions 
[75] (Fig. 7a) provide better orientation analyses. The 
signal is split up into a low frequency and three high fre- 
quency subbands oriented towards - 3 0  ~ 30 ~ and 90 ~ 
Contrary to separable decompositions, the orientations 
are now well separated. 

I tO v 

ix 

; 5 ,  

a b 

- -  u n i f o r m  d e c o m p o s i t i o n  : the decomposition 
scheme is iterated on each subband. The resultant 
decomposition is fairly similar to the spectral location 
of  the block OCT basis functions ; 

- -  h i e r a r c h i c a l  o r  w a v e l e t  d e c o m p o s i t i o n  : at each 
step, only the low frequency subband is further decom- 
posed. This decomposition is well consistent with the 
space-scale nature of the human visual perception which 
seems to decompose the signal into octave scale bands 
[56]. Furthermore, such transforms provide good decor- 
relative properties thanks to the finer decomposition pro- 
duced in the more energetic low frequency areas; 

- -  o p t i m a l  i n t e r m e d i a t e  d e c o m p o s i t i o n s  : the different 
subbands are decomposed provided that a given a p r i o r i  
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FIG. 7. - -  Non- sepa rab l e  h i e ra rch ica l  s u b b a n d  decompos i t i ons  : 
h e x a g o n a l  (a) a n d  q u i n c u n x  (b). 

D~compositions sous-bande hi#rarchiques non s~parables : 
hexagonale (a) et quinconce (b). 

The difficulty with those non-separable decomposi- 
tions is the relative incompatibility between the desired, 
often even special, shape of the subbands and the per- 
fect reconstruction constraints which are drastic [35]. For 
example, in the hexagonal case, orthogonal QMF banks 
[75] are mandatory just in order to cancel any aliasing 
error. A complex optimization is thereafter required to 
cancel the remaining modulation errors. Perfect 
reconstruction lattices provide a graceful way to 
reduce the complexity of the synthesis process [37]. 
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Other approaches involve orthogonal wavelets [25, 37]. 
Nevertheless, insufficiently developed techniques for 
2-D filter design as well as too complex implementa- 
tions restrain the performances of non-separable subband 
decompositions. 

At the present time, separable subbands decomposi- 
tions have reached a degree of maturity which allows 
their introduction in the next generations of normali- 
zed coders (MPEG coder for example). Some researches 
are now devoted to the design of adaptive filters or de- 
compositions like those described in Section III. 1.1. On 
the other hand, non-separable subbands decompositions 
rather belong to the experimental domain. 
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and prediction may be adaptive or not. For example in 
adaptive quadtree RBC shown in Figure 9, the image is 
initially divided into blocks ol e a certain size. The error 
of prediction of each block is computed and coded. If, 
for some blocks, it requires too many bits, they are fur- 
ther divided into four smaller blocks and the process is 
iterated on each of those new blocks until the associated 
predictions are estimated accurate enough. 

II.4. Recursive block coding. 

We should also mention the recursive block coding 
(RBC) technique [19]. It is a general formulation which 
encompass, among other things, transform coding, pre- 
dictive coding, quadtree coding, applied on a residual 
error (of prediction) signal instead of the original signal. 

R~C has been proposed as a solution to the bloc- 
king effects which appear in a lot of image processing 
techniques. In those techniques, the blocks were usually 
introduced in order to satisfy, not only implementation 
constraints, but also some hypotheses which are only 
locally valid. Like, for instance, the Markovian beha- 
vior, in the case of  the DCT [11, 44]. The blocking effect 
appears when the manipulations applied on adjoining 
blocks have too unalike effects near their boundaries. 
Improvement implies that joined information is intro- 
duced within those adjoining blocks. In RBC, the image 
is divided into overlapping blocks. The preceding boun- 
dary values, common between adjoining blocks, are used 
to predict the content of  the whole block, with an a pr ior i  

minimum variance representation (MW) (i.e. a Markov 
chain model) of  the signal to be coded. In other words, 
as illustrated in Figure 8, two sides of a block are used 
as input for the predictor of  the pixels inside the block 
while the two others are used as partial prediction of 
two adjoining blocks. The algorithm of block division 

FIG. 8. - -  The over lap  be tween  adjoining blocks in RBC. 

Le recouvrement existant entre les blocs utilis#s 
en codage en blocs r~cursif 

FIG. 9. - -  Adapt ive  quadtree RBC. Ill quadtree RBC, the size of the 
blocks is adaptive. We start wi th  the b lock  presented on the left. 
The boundaries  are used to predict  the b lock  content and the error 
of predict ion is quant ized and coded. I f  it st i l l  requires too many  bits, 
the decis ion is taken to split  up the b lock  into smal ler  blocks (middle).  
The process  is i terated unti l  the predic t ion  is graded satisfactory for 
each block. On the right, we  end up wi th  a b lock  decomposi t ion which  

is opt imal  for this  RBC algori thm. 

Codage en quadrant rdcursif adaptatif  Cette approche permet d'auto- 
adapter la mille des blocs. Nous partons du bloc pr~sent~ ~ gauche. 
Les bords sont utilis~s pour pr~dire le contenu du bloc et l'erreur de 
prediction est quantifi~e et encodde. Si cela demande encore trop de 
bits, la d~cision est prise de diviser le bloc (centre). La procedure est 
ainsi it~rOe, jusqu'~ ce que" la prediction soit jug~e satisfaisante pour 
chaque bloc. La configuration ainsi obtenue (droite), est optimale pour 

l'algorithme utiliss 

As expected, the main advantage of such techniques 
is analogous to subband coding and to the LOT : because 
of the overlapping between the different blocks, most of 
the distortions inherent in transform coding (essentially 
the blocking effects) are now dramatically reduced for a 
same compression rate. 

I lL  A D A P T I V E  T E C H N I Q U E S  

Universal techniques provide good results for 
medium compression rates (between 15 and 20) as 
those which are used in ccrrr  standard coders for TV 
broadcasting [2, 34]. However, videotelephony and HDTV 
need appropriate decorrelation algorithms adapted to the 
nature of the information. For several years, image 
coding covers other fields. For example, very high reso- 
lution images occur more often in teledetection or medi- 
cal analysis. Methods based on feature extraction - -  like 
edges, shapes, textures or even more local information 
(e.g. singularities) - -  may be more suitable for those 
new applications. Anyway, this kind of images requires 
new methods for efficient, lossless or not, storage. Image 
processing also takes various forms, like object detection 
and recognition, computer vision, image synthesis .... 

The so-called adaptive techniques are decorrelative 
methods which take the a pos ter ior i  contents of the 
images into consideration. They do not any more rely 
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only upon statistical properties of an image class. Two 
ways are presented in this paper : the adaptation of 
universal techniques to the signal contents and feature 
extraction methods which represent an image like a 
set of characteristic points, or like a set of objects. 
The coding process of  adaptive techniques is sometimes 
rearranged : it starts with an analysis, followed by 
a compression which preserves entities or properties 
detected during the first step. For example, in radiology, 
it might happen that we are only interested into the 
detection of lesions. Once those important regions have 
been detected, their degradation is minimized, whatever 
will happen to the other regions. Those very particular 
techniques are often not any more universal (i.e. not 
appropriate for any type of image). 

III.1. Adaptation of universal techniques. 

III.1.1. Adaptive subband coding. 
The design of subband filters is most usually based on 

the synthesis of  bandpass frequency responses. Never- 
theless, other processes based on optimization criteria 
have been recently proposed to adapt the filter design 
to the signal characteristics [80]. One can mention for 
instance : entropy minimization [15], lateral lobes limi- 
tation, minimization of the product of the variances of 
the different subbands augmented by the reconstruction 
errors .... The goal is always the same : to be able to tune 
the filter bank like a fairly good approximation of the 
KLT, which implies that output signals should be as de- 
correlated as possible. We have already mentioned that 
all the block transforms can be performed as subband 
decompositions at a relatively low computation cost. In 
consequence, this adaptive approach should provide the 
degrees of  freedom required to drive out efficiently the 
KLT. 

The adaptive best basis subband decompositions are 
also promising processes. They are similar to the classi- 
cal subband coding schemes because, at first, the signal 
is uniformly decomposed down to an a p r i o r i  determined 
level as illustrated by the top row in Figure 10. At each 
step of this process, the intermediate subbands are quan- 
tized and they may even be entropy coded. A measure 
of the coding efficiency, denoted/z(.)  (e.g. the number 
of negligible coefficients or an optimal linear combi- 
nation between the amount of bits after quantization of 
the subband and its associated error of reconstruction,...) 
is computed on each of t h e  subbands and stored in 
memory. In the original algorithm proposed by Wicker- 
hauser [85], the different values of /z( . )  are stored in a 
tree structure, where each cell, associated to a subband f 
is the father of  the cells associated to the new subbands 
obtained by subband decomposition of f (see Figure 10, 
left bottom). When the whole uniform decomposition is 
completed, the measure functions are compared and the 
optimal intermediate subband decomposition is determi- 
ned. If necessary, some subbands are recombined accor- 
dingly. It ends up with a subband algorithm where the 
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FIG. 10. - -  Adaptive best basis subband decomposition. 

D~composi t ion sous-bande optimale adaptative. 

different subbands at each level of decomposition have 
been further split up provided that the given a p o s t e r i o r i  

criterion is fulfilled (Fig. 10, bottom right). 

III.1.2. Hybrid methods. 

The hybrid methods of decorrelation are combinations 
of predictive methods, RBC, orthogonal transformations 
and subband decompositions. 

An often mentioned hybrid coding consists in coding 
with DeCM the coefficients which are obtained by trans- 
form coding of the original signal [30]. It was initially 
developed for speech processing with efficient vocoders 
[38]. The performances rely on the well suited statistical 
properties of the signal obtained after transformation. 

An other example has been introduced for classifica- 
tion purposes of similar still images (e.g. face pictures). 
It combines an adaptive best basis subband coding algo- 
rithm (see Section III.1.1), with a gET transform applied 
on the few remaining low energy coefficients while all 
the other coefficients are set to zero. Images of the same 
type can be coded on a very small number of coefficients 
[86]. 

We also mention optimal hybrid transform-subband 
coding schemes [46] which are subband best basis de- 
compositions with decision criteria (similar to those used 
for adaptive best basis subband coding) to apply further 
subband decompositions on a spatial subband or on its 
transform. In Figure 11, we see the operators A and B, 
applied on the subbands. They have to be well chosen in 
order to allow perfect reconstruction during the synthe- 
sis process. In particular, there is the optimal OcT-hybrid 

subband coding decomposition (i.e. where A and 
are simultaneously the identity or DCT operators) which 
optimally and adaptively splits up the signal in smaller 
regions (spatial or frequential) with adequate properties 
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FIG. 11. - -  Decomposition stage of an hybrid transform-subband 
coding scheme. It is a classical two-subbands coding stage, but 

additional operators A and B may be applied on the subbands. 

Etage de d~composition d'un schema de codage hybride sous-bande- 
transformation. C'est  un ~tage ~ deux sous-bandes classique, avec 
des op~rateurs suppl~mentaires "A and B qui peuvent s'appliquer sur 

les sous-bandes. 

for further decorrelation or coding. The decisions are 
feedbacks from the entropy coder : a subband is further 
decomposed and an operator is applied on this subband, 
only if it significantly reduces the associated bit flow 
after quantization. It is essentially a best basis algorithm 
with additional degrees of  freedom provided by the sub- 
band operators. After optimal decomposition, additional 
operators may be applied on and/or between the different 
subbands (e.g. DCT, DPCM,...). 

We also have to point out the partial subband predic- 
tions [47] as will be described in Section III.2.1. Hybrid 
subband coding can also be used to model the signal 
properties (e.g. determination of statistical properties, re- 
cognition and identification,...). 

In the same way, Mallat [51] has introduced the 
concept of  local time/frequency multilayer orthogonal 
transforms. A large set of basis functions associated to 
different classical transformations (e.g. subband coding, 
Gabor transform, block OCT,...) are stored in a dictionary. 
The signal is iteratively decomposed into successively 
best matching subsets of functions belonging to the 
dictionary. Such an algorithm leads very easily to an 
optimal combination of the different techniques used to 
build the dictionary. 

III.1.3. Adaptive non regular sampling. 
Adaptive non regular sampling implies that the signal 

is sampled at locations which are not regularly spaced. 
There essentially exist two classical approaches : non- 
uniform sampling [32] and zero-crossings [29]. The 
distinction between both of them is somewhat confused. 
Let us say that for non-uniform sampling, the sample 
locations are chosen a priori, while in zero-crossings, 
we transmit the positions where some events (decided a 
priori) happen. 

Shannon's sampling theorem [38] implies that the 
uniform sampling rate is determined by the highest 
frequency contained in the signal. Somehow, it seems 
intuitively more interesting to try to apply Shannon's 
sampling theorem on smaller portion of the signal. If  
uniform sampling was performed in these regions, the 
bit rate would depend upon the local frequency contents 
and it would increase whenever the maximum frequency 
increases and conversely, as it is suggested in Figure 12. 

A / ~ A  f(x) 
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Uniform sampling: 

ihA . , ,  n r l lFI FITn n , .  4, . , I ;  . . . .  ~n nTl111r l l l ln  i11111 _ 
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Locally critical non-uniform sampling: 

i if\ r(x) 

. . . . .  1 . . . . .  . J 4',. ~-,,I t i . - - r  . . . . . . . . . . .  1 

FIG. 12. - -  Adaptive non-uniform sampling. The signal to sample is 
shown in the figure at the top. In the case of uniform sampling (figure 
in the middle), the sampling frequency is determined by the highest 
frequency in the whole signal. In locally critical non-uniform sampling 
(figure at the bottom), we try to use a sampling frequency determined 

only by the local highest frequency content. 

Echantillonnage non uniforme adaptatif. Le signal ~ dchantillonner 
est illustr~ d la figure du dessus. Dans le cas de l'dchantillonnage 
uniforme (figure du milieu), la fr~quence d'~chantillonnage est d~ter- 
mince par  la plus haute fr~quence pr~sente dans le signal considdr~ 
dans sa totalitd. Dans le cas de l'~chantillonnage localement criti- 
que non uniforme (figure du dessous), nous essayons d'utiliser une 
fr~quence d'~chantillonnage d~termin~e par la plus haute fr~quence 

localement pr~sente. 

We decide to speak of local methods when such an 
approach is attempted. On the other hand, we speak of 
global methods when the sampling processes are applied 
on the whole image. 

Global methods lead to a data flow roughly equal 
to Nyquist 's critical density as for uniform sampling. 
To improve the efficiency, it is mandatory to have a 
more local approach, according to our intuitive idea 
presented in Figure 12 (i.e. to sample near the critical 
rate for the local frequency content [48]). Maxima or 
other characteristics detection in subband coding, or 
even after other transformations, is a potential way to 
increase the sampling rate only where there are relevant 
singularities [50]. For example, the Figure 13 sketches 

f(~) 
Wavelet 

transform 

in octaves 

& • : A •  Max. extract.  

)~:A~ Max. extract.  

- - ~  Max. extract.  

- - : : - ~  Max. extract.  

- - - : - ~  Max. extract.  

~ 3 : ~  Max. extract.  

FIG. 13. - -  Mallat's maxima wavelet representation. An approximation 
of the locally critical non-uniform sampling is obtained by taking the 
wavelet transform (at each octave) of the signal. For each octave, only 

the locations and the amplitudes of the wavelet transform are kept. 

Representation par  maximum des ondelettes de Mallat. Une approxi- 
mation d'un dchantillonnage localement critique non uniforme est ob- 
tenue en prenant la transform~e en ondelette (~t chaque octave) du 
signal. Pour chaque octave, nous conservons uniquement la position 

et l'amplitude de la transformde en ondelette. 
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Mallat's wavelet maxima representation algorithm. The 
wavelet transform is computed for each octave, and only 
the locations and amplitudes of the local maxima of 
the wavelet transform are kept. This algorithm leads to 
results very close to our intuitive goal : samples are taken 
only at the location of the singularities of  the image. 

This is closely related to Marr 's  conjecture [55], 
which claims that all the valuable information is contai- 
ned in the positions, the value, the steepest slopes and 
the orientations of the edges in a well smoothed version 
of the original signal. There exist sets of  signal charac- 
teristics which ensure almost perfect reconstruction [48, 
50]. For instance, we could mention the local maxima of 
the wavelet transform in the case of the algorithm des- 
cribed in Figure 13. All those approaches require itera- 
tive reconstruction processes based on Banach fix point 
theorem, and such a process is always time consuming. 
If  degradations are tolerated, some subsets of characte- 
ristics can be neglected. By progressively relaxing the 
constraints, it becomes possible to reach huge compres- 
sion rates for still images (between 80 and 120 and even 
more !), with degradations which are optimally kept to 
a minimum or at least well controlled from a perceptual 
point of view [22, 50]. Efficiency can perhaps still be 
further improved with hybrid methods. 

III .2 .  Feature  extract ion  m e t h o d s .  

Attempts have been made to include more physical 
entities such as edges, objects or regions. It becomes 
mandatory, in order to reach higher compression rates 
which imply degradation of the image, to develop algo- 
rithms able to detect, classify and select the relevant 
characteristics. 

Here appears a difficulty inherent in all feature orien- 
ted coding scheme : there is no way to detect all of 
those features [66]. The problem lies somewhere bet- 
ween image coding, pattern recognition and psychophy- 
sics [43]. One naive, but in our context, an extremely 
efficient way to work, is to consider that the only rele- 
vant features are those which deserve a coding purpose. 
And this set of  features is not necessary the one which 
an observer would see in an image. 

Increasing attention has been devoted to singularity 
detection in an image, partially as the eye is very 
sensitive to abrupt variations [55]. Also, because in 
domains like medical imaging, robotic vision or remote 
sensing, the important information, which has to be 
transmitted, is sometimes only the location or the type of 
different singularities. The alteration of the global aspect 
of the image is, in that case, of  far less importance. 

Therefore, in a first approach, singularities are pre- 
served throughout the whole process. Unfortunately, 
spectral methods consist in narrow filtering the signal to 
extract the high frequency content as singularity tracks. 
As singularities usually have a broad spectrum, those 
spectral methods spread profile changes over adjoining 
pixels, in a way which is often excessive. In feature 
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oriented algorithms, the local changes are, by definition, 
preserved (or even accentuated). 

An other approach follows a more global point 
of view : an image embodies regions with uniform 
properties (e.g. brightness, color or texture,...). Their 
boundaries are among the local singularities, defined 
here above. Therefore, it seems intuitively possible to 
detect those edges by splitting up the signal into different 
regions with similar properties. This should lead to a 
division into closed regions. Unfortunately, as it is often 
not satisfied, typical region algorithms are necessary. 

After a presentation of the techniques used for singu- 
larity detection and coding, we will discuss the object 
oriented approaches. 

III.2.1. Detection and characterization of local singulari- 
ties. 

Since Marr 's works [55], it is commonly admitted 
that a lot of information on the singularities is included 
in different frequency channels. 

Wavelet theory confirms this approach and allows to 
accurately understand how this information is distribu- 
ted throughout the frequency domain [27]. This infor- 
mation is also geometrically correlated [47] (i.e. the 
shape of a singularity and the associated.content in the 
different subbands is correlated) and this can be used 
to reduce the coefficient flow, in subband coding, by 
partial predictions of  the different subbands correspon- 
ding to the different orientations or to the different scale 
levels (see hybrid subband coding). It implies that simi- 
lar patterns appear inside the different subbands and this 
explains the good results obtained with vector quantiza- 
tion applied on the output signal [3]. 

The human visual system is particularly sensitive 
to one type of singularities : the edges [55]. We 
define edges as locations of  wide variations in inten- 
sity, in one dominant direction (comers are intersec- 
tions of  two, or more, edges). There is a wide range 
of edge detectors (which may be used as a part of seg- 
mentation algorithms) : Marr 's  Laplacian zero-crossings, 
high frequency filters, directional decomposed based 
coding methods, non-linear variational methods, local 
non-uniform sampling, energy content maximization, 
neural networks, non-linear and morphological filters .... 
We briefly describe the principle of  those methods : 

- -  Marr's Laplacian zero-crossings consists in the 
following process [55]. Firstly, the image is fed through 
a bandpass gaussian filter. Secondly, the edges are 
detected as inflection points of  the resulting signal (zero- 
crossings). Actually in his original algorithm, Marr uses 
zero-crossings on the signal obtained after filtering with 
the second derivative of the Gaussian, but this remains to 
the same as what we have presented so far. This method 
is a particular case of the local non uniform sampling 
edge detection [22, 48] which has been described in Sec- 
tion III. 1.3. : the characteristics points (e.g. local maxima 
of the wavelet transform) used to reconstruct the signal 
can be considered as the edges of the image [50]. This 
method does not only characterize the position of the 
edges but also their profile. 
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- -  With highpass filters and directional decomposed 
based coding methods, the signal is fed through high- 
pass filters (more or less directional, depending on the 
algorithm) and the edges are detected by thresholding 
[39]. The main informations produced by this method 
are the location and the orientation of the edges. 

- -  Local non-linear variational methods consists in 
edge detection by minimization of pseudo-energy func- 
tionals [8, 9]. Those functionals are defined by ana- 
logy to the elasticity equations of thin membranes and 
straps. The energy contains an internal contribution 
which constrains the smoothness of the curve, a confor- 
mal contribution which ensures the conformity between 
the original signal and its segmented version, and an 
external contribution which pushes the contours towards 
the salient image features. An additional contribution is 
mandatory to limit the cumulated edge length or the 
number of edges. 

- -  In energy content maximization, edges are located 
at positions where the local energy content is maximum 
[70, 82]. The difficulty is, of course, to define an appro- 
priate local energy content. Some definitions based on 
the Hilbert transform have given excellent results. For 
instance, we can define the local energy content as the 
sum of the squared signals obtained by convolution with 
an even and an odd filter [82]. 

- -  In neural network edge detection, the local spatial 
average values of  the signal are computed. Edges are 
automatically drawn, by use of a neural network, where 
the local average changes too fast [57, 58]. It is a way 
to implement the image pre-processing performed by a 
human retina. For this application, the neural networks 
are not used for any type classification or learning 
purpose, but rather like a non linear filter! 

- -  In signal processing, one usually calls a filter any 
operation which is linear and translation invariant. It 
is a well-known result that the filter turned to be the 
convolution product of  the signal by a (generalized) 
function. In practice, the filters are often transformed 
into more or less bandpass filters, a process that makes 
an identical further filtering insignificant in the case of 
an ideal filter; this property is called idempotence. A 
transformation r is linear when r  + g) = r  + 
r Such a condition is apparent when the structure 
of the physical phenomenon is itself linear. However, 
although many signals combine additively, visual signals 
obey a different law. Furthermore edges often have 
a large spectral content. As a consequence the filter 
only smooths the signal, which makes the detection 
of edges even harder. Instead of linearity, one could 
require the preservation of inclusion relations which 
may exist between objects. A very powerful theory was 
only constructed upon the two axioms of idempotence 
and inclusion (which is incompatible with linearity) : 
the theory of morphological filters [73]. A very simple 
morphological filter cascades a minimum operator and 
a maximum operator both taken on a 3 x 3 square. If  
we compare gray values to elevations on a topographic 
surface, the minimum operation will cut small peaks and 
the maximum removes all the narrow valleys. To detect 
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the edges one just has to compute the difference between 
the original image and the filtered image. 

We want to mention that those edge detection algo- 
rithms are also often used for image analysis instead of 
image decorrelation and coding. 

III.2.2. Object  approach.  

Object approaches attempt to describe an image as a 
collection of closed sets (also called regions) of pixels 
which share a common property [66, 71]. Each region 
is characterized by its shape (contour) and its aspect 
(texture). These entities seems to be more natural as 
they coincide with psychological concepts of vision. 
However, as the objects serve coding purposes, the 
coder algorithm may detect, code and transmit object 
informations different from those naturally indicated by 
a human observer. For some kind of scenes, like a forest 
scene, it is even impossible to find a unique collection 
of regions. This is a consequence of the difficulty to 
define the concept of a region. Nevertheless, in specific 
applications (e.g. videophony) or for images which are 
easy to describe, the scientific literature proposes models 
for regions and give compression ratios [5, 39, 76]. 

Figure 14 is the block-diagram of a simple object 
oriented coding scheme for still images. It contains at 
least three steps : the segmentation, the contour coding 
and the texture coding. 

111.2.2.1. Segmentation. 

The aim of image segmentation is to divide the 
image into several meaningful areas, resulting in a set of 
regions of any shape. The boundaries of those regions 
are the contours of the object. 

Image 

1 
[Segmentat ion [ 

1 
Objects 

I 
1 

Contours 

J 
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1 
I  ansmissi~ [ 

1 
[ Decoding t 
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Textures 

1 
Coding [ 
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I Transmissi~ I 

1 
............... ~ Dec~ I 
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FIG. 14. - -  Block-diagram of a simple object oriented coding scheme. 

Schema d'un codeur simple, orientd par la notion d'objet. 
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The principal techniques [71] of object oriented seg- 
mentation are the top-down and the bottom-up (also cal- 
led region growing methods). Top-down techniques start 
with the whole image as a unique region. During the 
segmentation process a region is split up into smaller 
regions (e.g. in a quadtree decomposition), whenever 
the region seems to contain non uniform regions. On 
the contrary, bottom-up methods regroup regions which 
have analogou s texture contents. Sometimes, they are 
gathered together like for the ~plit-and-merge technique. 
The uniformity criterion depends upon the nature of the 
image under study; in most models, it is a combina- 
tion of different stochastic statistics (mean, variance,...) 
estimated on each region. We caution against mixing 
parameters with different units as unfortunately done for 
many criteria proposed in papers. Images which have to 
be segmented on the basis of  their macroscopic patterns, 
also called textures, require extremely complex models 
[36]. Gabor filters are intensively used for the segmen- 
tation of patterns that show significant spatial organiza- 
tion characteristics [6, 16] ; their use leads to interesting 
results. 

The set-theoretical body of mathematical morphology 
[26, 72] proposes also different segmentation techniques 
which are region growing methods. They are all based 
on the watershed transform [59]. The best way to appre- 
hend this tool is to return to the topographic interpreta- 
tion of an image function : the lighter the gray tone of a 
pixel, the higher the altitude on the topographic surface. 
To each minimum is associated a catchment basin. If  a 
drop of water falls at a given location on the surface, 
it will follow the steepest slope and reach a local mini- 
mum. As we expect, a region is defined as the set of 
all points which have the same attracting minimum and 
its contours are located on separation lines where a drop 
of water is equally attracted by two adjoining basins. 
The major drawback of the method - -  although it is not 
limited to this one - -  is the occurrence of severe over- 
segmentation. Many techniques are proposed to over- 
come this common inconvenient (e.g. pre-processing fil- 
tering). 

111.2.2.2. Contour coding. 

To achieve significant compression ratio~, the coder 
has to optimize the code related to the contours because 
it often represents about 80% of the total bit rate. 
For that reason, a multitude of techniques have been 
developed for efficient shape description; they belong 
to two families : the external and the internal shape 
description algorithms. 

The external family consists into contour descriptors : 
they code along the contour and apply even when a 
contour is not closed, so that they can also be used for 
the coding of singularities. 

The most widely used coding techniques are run- 
lengths [10] - -  the ones applied for facsimile trans- 
mission [28] - -  4- or 8-connected chain codes [21, 42, 
60] and piecewise linear approximations [17] or curve 
approximations (Fourier descriptors, polynomial appro- 
ximations, etc). 
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�9 A run-length coder transforms sequences of suc- 
cessive identical symbols into numbers which give 
each sequence length. For example, the one-dimensional 
binary signal 00111000011 would be transformed in the 
byte sequence : 2342. In the case of two-dimensional 
signals like contours, the coder mostly works on the 
contour direction sequences. 

�9 Chain coders too use the contour direction ele- 
ments : they relate each direction to the previous one 
and describe it as an element of  a given set of possi- 
ble directions, i.e. the 4-connected set {forward, right, 
backward, left}. 

�9 The line or curve approximations of border~ consti- 
tute the last category among the external methods; the 
contours are divided and approximated with several 
straight or curved segments whose relative .anchor posi- 
tions are transmitted by the coder. Although convenient 
for large regions, the method lacks of  efficiency for small 
regions. 

A frequently used reference for the measure of the 
efficiency is 1.5 bit per contour point plus starting points 
[18]. 

Since they follow lines, the external methods are 
usually easy to implement. However, a disadvantage of 
simple boundary coding is that all the regions boundaries 
are coded to represent region locations. This causes no 
difficulty for large regions but in the case of small 
regions, especially for one pixel wide regions or irregular 
contours, the shape cannot be treated in the same way. 

The second class of shape representations is the cate- 
gory of internal or area descriptors. This time all the 
efforts are concentrated on coding the surface of each 
region, whose borders form the contours. Usually the 
shape is transformed into an alternative spatial represen- 
tation. Many articles are concerned with the morpholo- 
gical skeletons [54, 68, 72]. The skeleton of a region is 
somewhat like a human skeleton : a thinned version of 
the external shape. To reconstruct the original border in 
the Euclidean space, it is sufficient to associate to each 
skeleton point the radius of  the largest circle included 
in the region (this is not the unique way to define the 
morphological skeleton). In a digital space, the circle 
is replaced by a square, a hexagon or any convex set. 
The contour representation it produces is a collection 
of triplets {(z, y, r)},  where (x, y) is the position and 
r the size of the scaled form used during the skeleton 
extraction. Unfortunately the lack of experiments does 
not really permit to conclude about the efficiency. 

111.2.2.3. Texture coding. 

A good texture coding should interact with the 
contour coding since these two entities are not totally 
independent. This is why, as shown in Figure 14, the 
texture coding branch gets the contour information. The 
result is that the receiver has to decode first the shape 
before the texture. As an outcome, texture coding is not 
a well studied problem in opposition to contour coding 
and to texture analysis. The latter subject has throughout 
been explored since the end of the sixties. The aim of 
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texture analysis is to determine parameters which exactly 
describe the signal. An associated compression techni- 
que transmits the parameter values only and the receiver 
synthesizes the texture with respect to a model and to 
these parameter values. 

Up to now only a few papers have considered the task 
of coding the texture of  arbitrarily shaped regions. As 
usual, they work in the spatial domain or in a transform 
domain. 

Spatial methods, like polynomial representations, are 
almost the only ones which have been developed [36, 
39]. In a polynomial representation, the texture is 
approximated by a two-dimensional polynomial func- 
tion; the order of the polynomial function and the coef- 
ficient values are chosen to minimize the approximation 
error. Although this kind of algorithms produces high 
compression ratios, yet obviously many image details 
are lost, especially in dense regions. To counter a dissa- 
tisfactory restitution we either could increase the amount 
of  regions or the polynomial order. The first solution 
is very costly since contour coding techniques do not 
accommodate to small contour segments. An increase 
of  the polynomial order is not a constructive solution 
because of a higher sensitivity to noise. In practice the 
polynomials are limited to the second order which means 
that any texture is described with a maximum of six 
parameters and that they can not be applied on a large 
variety of textures. 

In opposition to spatial methods and in agreement 
with the interesting frequency interpretation, we can 
code textures by means of transform coefficients. How- 
ever, in order to avoid that the texture spectrum includes 
part of the border information, spectral methods require 
an extrapolation of the texture on a regular domain (e.g. 
a rectangle) or the definition of generalized orthogonal 
transforms : 

(i) Figure 15 illustrates how the shape spectrum 
alters the texture spectrum. The upper-left image is the 
texture defined on his support; it is a 8-bit image enclo- 
sed in a square of size 64 • 64. The observed texture 
o(x, y) can be modeled as the product of a window func- 
tion w(x, y), which takes the value 1 inside the window 
and 0 outside, by an extrapolated textured signal e(x, y) 
which would cover the whole circumscribing rectangle; 
the upper-right image of Figure 15 shows such a signal. 
In the spectral domain, the previous product is equivalent 
to the convolution product O(u, v) = W(u, v)| v). 
As clearly indicated by this last equation, the best-suited 
spectrum $(u,  v) for coding purposes is affected by the 
window spectrum ]/Y(u, v) ;  it is why a spatial extrapo- 
lation technique, which tries to restore e(x, y) from the 
observed signal o(x, y), is also called a deconvolution 
technique. Images (c) and (d) of Figure 15 compare two 
coded textures : (e) is the original texture reconstruc- 
ted with only 50 coefficients of  the Fourier transform; 
the other coefficients are equal to zero. The last image 
represents the reconstruction with 50 Fourier coefficients 
after the original texture has been extrapolated by a de- 
convolution process described in [81]. As it can be seen, 
if we fix the amount of  coefficients or the compression 
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FIG. 15. - -  Extrapolat ion of  a regular  texture to a square. The first 
s ignal  represents  the texture on an arbi trar i ly shaped region. Picture 
(b) is a poss ib le  extension of the texture which  contains no information 
about the shape. (c) is the s ignal  reconstructed with 2% of  the total 
amount  of  Fourier  coefficients wi thout  extrapolat ion.  (d) is the same 

as (c) but  after extrapolat ion.  

Extrapolation d'une texture rdguliOre d u n  carrd. Le premier signal 
reprdsente la texture sur un segment de forme arbitraire. La figure (b) 
est une extrapolation possible ot~ n'est prdsente aucune information de 
forme. (c) est le signal obtenu avec 2% des raies du spectre de Fourier, 

sans extrapolation. (d) correspond d (c) mais avec extrapolation. 

ratio, the extrapolated texture is closer to the original 
than the reconstructed texture with no extrapolation. 

(ii) Gilge et al. [24] develop a scheme which 
decomposes the texture signal into an orthogonal 
basis adapted to each region whatever its shape is. This 
is done by redefining the inner product : the generalized 
inner product between functions f (x ,  y) and 9(x, y) is 
f fD w(x, y)f(x,  y)g(x, y) clz dy where D and w(x, y) 
are respectively the smallest rectangle that circumscribes 
the region and the window function. The choice of, for 
example, cosine functions defined on 7) for f (x ,  y) and 
g(x, y) leads to an orthogonalization process and even- 
tually to a spectral texture description adapted on each 
region shape. Unfortunately the receiver has to compute 
the basis functions again because the region dependent 
function w(x, y) was used during the orthogonalization 
process. This is not suitable for real time applications. 

Because of the additional overhead needed for the 
transmission of the region borders, an object oriented 
coder is not necessarily more efficient than the other 
techniques presented here above. In addition there is a 
risk to produce complex algorithms. Powerful represen- 
tation scheme for contours and textures are mandatory, 
in order to achieve more efficient compression ratios. 

A primal interrogation is the evaluation of the quality 
in object oriented coding schemes; i.e. how does a 
human perceive shape deformation ? 

An other outlook is the integration of the shape coding 
into a multiresolution scheme like it is done for progres- 
sive transform coding. Theoretical ideas were suggested 
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but not deeply tested. We also need improvements for 
texture coding. Leou [40 developed a simple idea : the 
two-dimensional texture signal is ranged into a row by 
following the pixels of a region in a counterclockwise 
direction along the border towards its centroid until all 
pixels are traced out. Then he applies a polyline descrip- 
tion of the new one-dimensional signal. 

It would also be fruitful to apply classical spatial 
coding techniques for the texture representation assu- 
ming that the region shapes are given. 

111.2.3. Contextual coding techniques. 

Object oriented methods enable to include complex 
a priori information [71]. A new class of methods 
called model-based image coding has recently attracted 
attention, especially for facial expression, because of its 
data compression performances and its various appli- 
cations. In this coding system, the analysis of input 
images and the synthesis of the output are performed 
assuming a prior information on the characteristics of 
the object to be coded. The inherent difficulty is related 
to the choice of a good model and efficient parameters 
for the application which is under consideration. Neural 
network classifiers are promising candidates for the 
preliminary analysis part (recognition and classification 
of the objects) [67]. 

IV. CONCLUSION 

In this paper, we have shown that the decorrela- 
tive methods for image processing are not confined 
to the classical DCT, RBC or subband decompositions. 
New methods try to extract relevant information on 
the image contents in order to improve the efficiency 
of the whole coding process. We should also keep in 
mind that the movement between successive images can 
also be used in order to further increase the compression 
efficiency (3-D subband coding, block matching, object 
matching,...). 

Manuscrit refu le 10 f~vrier 1993. 
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