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Abstract.

This work presents different novel approaches to the implementation of morphological opera-
tions, like opening and close-open filter. In the restricted case of binary mathematical morphology,
we propose a propagation algorithm well-suited for opening. Another algorithm, based on a “slid-
ing window”, is described for the implementation of grey-level openings. Finally we present some
theoretical results that simplify the computation of complex operations.
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1. Introduction

Over the years, mathematical morphology has become very attractive. The gain of
popularity is due to the recent development of powerful tools, like the watershed,
but also to the discovery of fast algorithms that make morphology competitive in
comparison with linear operations.

The fast implementation of morphological operations is an important task for
both hardware and software. Unfortunately, the requirements of these two are often
in conflict. In this paper, we propose a way of optimizing the implementation of mor-
phological operations. The leading idea is that knowledge about previous operations
can be used to decrease the complexity of further morphological stages, a property
which could for instance significantly decrease the computation time of alternate se-
quential filters. In fact, it has been thought for many years that an opening is always
computed as an erosion followed by a dilation. This is not true as will appear from
the algorithms described in sections 3 and 4.1.

2. Reminder

We briefly recall the definitions and notations used in this paper. Let f be a function
defined on R? and B C R? a planar structuring element. The erosion f © B (resp.
dilation f @ B) of a function f by B transforms f into another function defined as:

foB@ =\ fa@ =\ flz+)

beB beB

foB@ =\ fiz)=\/ fz-0)

beB beB
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for every z € R2.
The opening f o B and closing f e B result from cascading erosion and dilation
operations:

foB=(feB)®B
feB=(f®B)oB

By definition, the opening of a set X with respect to a structuring element B,
denoted X o B, is the union of the translates of B included in X. It can also be
obtained from the above definition by replacing the infimum and the supremum
respectively with the intersection and the union.

3. Propagation algorithm for binary opening

As could be assumed from the definition, the computation of the opening is propor-
tional to the surface area. In practice, testing the correspondence for each position
would be too slow and several methods were proposed to overcome this difficulty:

—  Linear decomposition. A large structuring element is decomposed into a suc-
cession of dilations of smaller sets. Suppose for example that C = B @ B then
XoC=(((X©eB)oB)®B)® B;

—  Logarithmic decomposition. Originated by PECHT [5], this method enhances
the linear decomposition by removing some redundant computations ;

—  ScHMITT [6] and VINCENT [9] proposed methods which analyze the border of
both X and B.

Other techniques were also suggested in the literature (cf. [1, 8]). All these
methods perform an opening as an erosion followed by a dilation. The algorithm
described hereafter is based on the propagation of the structuring element inside of
X and will not proceed by intermediate erosions and dilations.

3.1. ALGORITHM DESCRIPTION

The proposed algorithm is adaptive in the sense that it relies locally on the set X:
an early step detects the border elements of X where B could be anchored and
propagates the structuring element inside the set in order to minimize the number
of tests for each displacement.

In mathematical terms, the idea is the following. Let B, B, denote the trans-
lation of B by p, ¢, and \ the set subtraction. Suppose B, C X. If B;\B, C X
then By C X o B. The algorithm proceeds in two steps: (1) detection of Bj-like
candidates and (2) check if B,\B,, C X for several positions ¢ close to p. Ideally we
could expect the number of tests to be small: 1 per element added to X o B. This
lower limit will be reached if X is homothetic to B.

Step 1: detection of an anchored homothetic version of B. It is obvious that X o B
touches X at several border points. These points, called anchor points, characterize
the opening to some extent. The first step of the algorithm is the detection of
anchor points and associated homothetic sets of B. Figure 1 represents X, B and
possible anchor points of X respectively. It is not necessary to detect all homothetic
sets of B anchored at a point because of a propagation step. For the same reason,
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further anchor points will only be detected during the image scan, after the previous
propagations. X B

H
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Fig. 1. A set X, the structuring element B and the possible anchor points of X.

Step 2: propagation of B inside X. The propagation process is complex. FEight
propagation directions are defined for our purpose which is an opening with a square
in 8-connectivity ; the principle is similar for 4 or 6-connectivity openings. The
algorithm checks possible propagations in these directions and starts with the larger
propagation front. Throughout the propagation in a given direction, new fronts
may appear in perpendicular or forward-diagonal directions. They are pushed on a
stack until the initial propagation ends. Then each popped front will initiate a new
propagation process. When the stack is empty, the algorithm searches for another
anchor point.

Example. The first steps of the algorithm are decomposed in Fig. 2. During a hori-
zontal image scan, the algorithm finds the upper left corner of X which is an anchor
point and initializes a propagation process. Each propagation direction is checked
and the larger front propagates first. In this example, a diagonal propagation is
initiated. After propagation step 3, the algorithm detects that the diagonal prop-
agation is no longer possible and changes the direction. But as soon as the front
width allows it, the front direction is changed to a diagonal (step 6).

It is easy to adapt the algorithm to the opening of each region of a label image.
For this kind of operation, a label propagates only in the corresponding region. All
regions will be treated in a single scan in contrast with other methods which would
require dealing with each region in turn after binarization.

3.2. NUMERICAL RESULTS

The two curves of Fig. 3 compare the linear decomposition with the propagation
algorithm for the computation of a binary opening by a square. The given results
were obtained on a NeXT 68040 station with gcc and gprof. The original image
was “photograph” of 256x256 pixels, threshold at 128. Note that in the propagation
method, the time is independent of the square size. Moreover, also at the origin, the
propagation algorithm performs better.

4. Grey-level operations

4.1. GREY-LEVEL OPENING

The key idea of improving the efficiency of an erosion algorithm is that it is useless
to recompute a minimum on the set of points representing the structuring element
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Fig. 2. First steps of a binary opening by propagation. For better understanding, the propagation
fronts indicated in light grey are a half pixel wide.
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Fig. 3. Computation times of a linear decomposition opening algorithm compared with the

proposed propagation algorithm applied on a simple binary image.
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for two neighbouring points. This has led HUANG et al. [4] to use a sliding window
combined with a histogram analysis to compute rank-order filters. For each window
position, a pixel of the output image receives the local minimum value. However, if
the minimum is compared to each output pixel contained in the window, it is possible
to compute an opening in a single pass. The general algorithm is the following :

1. All the pixels that enter a window for the first time receive the minimum value.
2. The other pixels receive the maximum between the previously retained value
and the local minimum.

This algorithm takes a simplified form when B is a segment because it is easy
to track the local minimum values. In that case, the complete step 2 is only needed
when the local minimum has increased after the window translation. Otherwise
the algorithm attributes the minimum value to the new pixel covered by the win-
dow. Fig. 4 illustrates the principle. Other structuring elements lead to similar
simplifications.

e f oB
SSroB
‘ Situation (2)

Situation (1)

Fig. 4. Two different situations occur during the computation of the opening of f with a linear
segment B as the one represented on the left (the origin is located in the middle). Suppose we
scan the function from left to right. The negative slope of situation (1) corresponds to a decreasing
sliding minimum as is confirmed by the erosion curve f © B. It is easy to see that only the opening
value of the utmost right point has to be modified after a translation. On the contrary, all values
of f o B covered by B need to be reallocated in situation (2).

4.2. THEORETICAL RESULTS

In this section, we provide some theoretical results and utilize them to speed up the
computation of close-open filters.

An initial theorem establishes a connection between structuring elements involved
in grey-level erosions and dilations.

Theorem 1
(fed)eB<(feC)eD (1)

if and only if
AeCDOBaD.

Proof.

The proof is made of two parts:

(1) Vf, (feAd)eB<(feC)eD == B&@DCAaC:
Write o for the origin. A = 0@ A C A is equivalent to 0 C A © A because
(©, @) is an adjunction [3]. If we replace f by A in (1), the relation becomes




MARC VAN DROOGENBROECK

B=0®BC (A6 A)®BC (A®(C) S D. By the adjunction again, it results
inBeaDCAa®C.

(2) Vf, (fed)eB<(feC)eD <« BaDCAaC:
Bo®D C A@ C implies (foA)@BaeD < (fo A @& Ad C. Moreover,
(foAd)pAdC = (foA)®C < f@C. This means that (fOA)eBdD < fal,
or (fo A)® B < (f ®C)© D by the adjunction.
As the proof uses the algebraic framework introduced by HEIJMANS and RONSE [3]),
the demonstration scheme is also valid for grey-level erosions and dilations, i.e. with
non-flat structuring elements. ]

It is interesting to note that there exists a relationship between structuring el-
ements that induces (f © A) ® B < (f @ C) & D. We concentrate below on the
combination of openings and closings.

Theorem 2 If A®@C D B®C and A C B (which implies that Ae C = B C)
then
[(foC)®AleB=(foC)eB.

Proof.

IfACBthen (foC)@ AL (foC)®B,and [(foC)® Al©B < (fo()eB as

erosion is increasing.

On the other hand, A@C D B&C & Cd A D C® B, so that we have (f®A)oB >

f o C following relation (1). As this inequality holds for any function f, we may use

itfor foC: [(foC)®Al&B> (foC)oC = foC. It is known that closing is

an increasing operation : ([(f o C) ® A] © B) e B > (f o C) e B. Moreover, for any

function g, (9© B)e B = go B (see [2]). In conclusion, [(foC)®A]©B > (foC)eB.
|

The previous theorem only makes sense if A@C O B®C and A C B are realistic.
In fact, the induced condition A®C = B®C is not a severe one. Suppose for instance
B = C. Then the condition becomes A @® B = B® B, called the reduction condition.
Fig. 5 shows different sets that satisfy the reduction condition.

In both cases, A is a subset of the border of B. But it is by no means necessary to
take all the border points since some of them are redundant. Yet, if A is the border
of B, the reduction condition is always satisfied as confirmed by next theorem (the
proof can be found in [7]).

Theorem 3 Let B be the border of the compact set B C R%. Then
Be®B=B®doB

IfB=C,ACBand A@CDOB®(C,then[(foB)®Al©oB=(foB)eB.In
other words a dilation by B is replaced by a less expensive dilation by A. Because
in alternate sequential filters (a typical case where filtering operators follow one
another) the number of involved operations is very high, theorem 2 will prove very
useful.

The conditions A® C O B® C and A C B do not imply that C is included in B
or contains B. Fig. 6 confirms this remark in Z.
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AeB=B®B
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Fig. 5. Two pairs of sets (A, B C R? and A’, B’ C Z?) that satisfy the reduction condition. Each
black disk indicates the origin of the corresponding structuring element.

JEEREE
4] L
s

Fig. 6. B and C do not need to be included in each other, even if A@C O B® C and A C B.
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4.3. NUMERICAL RESULTS

We have implemented different morphological operations with a horizontal segment.
The algorithms are based on a sliding window of which the minimum is the relevant
information. All the steps have been integrated so that only one image scan is
required. The aim of this description is to compare erosion, opening and close-open
computation times.

Fig. 7 presents the computation times on a large image (1440x1280). The lower
curve corresponds to the erosion algorithm. The second curve represents the time
needed for an opening implemented as indicated in section 4.1. With other algo-
rithms, it is twice that of the erosion curve because an opening is an erosion followed
by a dilation. Everything happens here as if the dilation was performed during the
same scan process as the erosion. The last curve is the close-open filter. Usually this
curve is four times the lower one, but due to the combination of the new opening
algorithm and theorem 2, it is only about 1.4 higher.
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Fig. 7. Computation times of different morphological operations on a large image.
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