
ALGORITHMS FOR OPENINGS OF BINARY AND LABEL IMAGES WITH
RECTANGULAR STRUCTURING ELEMENTS

MARC VAN DROOGENBROECK
Department of Electricity, Electronics and Computer Science
Montefiore B-28, Sart Tilman, B-4000 Liège, Belgium
URL: http://www.ulg.ac.be/telecom

Abstract. Two new families of algorithms for computing openings of binary and label images are presented
in this paper. The first family of algorithms is based on an horizontal scan, and a vertical scan that takes the
result of the horizontal scan as input. With the results of these two scans it is possible to compute an opening
with respect to a rectangle of any size. The second family of algorithms is based on the construction of an
exhaustive list of rectangles included in an object. Rectangles of this list all have a maximal extension, i.e.
no larger rectangle included in a region contains them. The opening then results from filling the output
image with rectangles larger than the structuring element. After a description of the algorithms we provide
a comparison of several algorithms in terms of computation time efficiency. The comparison shows that
some of the new algorithms advantageously compete with existing algorithms.

Key words: Algorithm, binary opening, opening of a label image

1. Introduction

While most of the research efforts on efficient algorithms were focused on gray level
openings, binary openings still play an important role in industrial applications. As
often in mathematical morphology, a direct transcription of the definition is an inef-
ficient way to implement operators. Most efficient algorithms result either from the
operator properties or from a geometrical interpretation.

In this paper we propose alternatives to implement binary openings with respect
to rectangles. The algorithms are inspired by the geometrical interpretation of a bi-
nary opening. After a brief reminder we review existing algorithms, describe new
algorithms and compare the algorithms.

1.1. DEFINITIONS

We first recall the definitions and notations used in this paper. Let
�����

be discrete
sets defined on ��� . The erosion

�	�
�
and dilation

�	���
of a set

�
are defined as:

�
�������
�����
��� �

�
�������
�����
� �

2 MARC VAN DROOGENBROECK

The opening
��� �

results from an erosion followed by a dilation:
��� � ��� � �

��� ���
. A set

�
of size � , denoted � � , is usually defined as

� � � � � � �	�
��� � ��
�� �
� ��� dilations

(1)

In this paper we adopt a different convention for convenience and assume that,
for linear structuring elements, ��� is a � -pixels wide segment. We also assume the
structuring element

�
to be a rectangle.

1.2. REVIEW OF EXISTING ALGORITHMS

Suppose
� � ��� ����� where � ,

�
respectively are horizontal and vertical seg-

ments, and we need to compute
�	��� ��� ������� . A direct application of the definition

leads to an algorithm with a complexity proportional to ��� � , i.e. to the area of the
structuring element. A better approach, called linear decomposition, is based on the
chain rule and results in

����� � � ��� � � �!��� � ��� � �"�!� . The complexity of the
linear decomposition is proportional to �$# � . Although better algorithms exist, some
commercial softwares implement binary openings with the linear decomposition al-
gorithm because of its simplicity. PECHT [6] and VAN DEN BOOMGAARD [8] have
established a logarithmic decomposition which further reduces the computation time.
The logarithmic decomposition suppresses the redundancy inherent to recursive dila-
tions with a unique structuring element. For example, if % � ��� denotes the border of�

, it can be shown that & �
� � � % � �'� � % � ��� � % �)(�'� � % �+* �'� . According to
the property that states that

� � � � � � % � �'� (see [10]), other decompositions are
possible. & � could as well has been written as

� � % � �'� � % � ��� � % �+,��'� � % �),���� .
This formulation offers the small advantage that only two different types of dilation
are needed instead of three.

A completely different approach to the implementation of openings was provided
by CHAUDHURI [1] who extended the work of HUANG et al. [3]. Both authors based
their algorithms on a local histogram computed in a sliding window. Contrary to other
methods the computation time of histogram based algorithms does not depend on the
size of the structuring element, but it depends on the image content.

In [11] VAN HERCK proposed a 1-D algorithm based on separability and a combi-
nation of block recursive series which are evaluated forwards and backwards. Similar
ideas led GIL and KIMMEL [2] to the definition of efficient algorithms. In their scheme
an opening is not seen as an erosion followed by a dilation, but rather as the supremum
of translated versions of a function - .

Although all these algorithms were developed for a function - they are applicable
to binary openings. Algorithms dedicated to binary openings have also been proposed.
VAN VLIET [12] et al., SCHMITT [7], and later VINCENT [13] provided methods
which analyze the border of both

�
and
�

. LAY [5] developed an algorithm based
on the distance function. The geometric interpretation, that an opening is the union of
translated

�/.
included in

�
, led VAN DROOGENBROECK [9] to propose a propagation

algorithm for binary openings with a rectangle and a method for the direct computation
of linear openings (also applicable to functions). Although

�0�1� ��� � �����32�4� ���
��� �5�6�!� , direct linear opening algorithms can still help reducing the computation
times as

�7�3� ��� �8�!��� �9�:��� � � ��� � �;�!��� � ��� � �8��� �<�:��� � � ��� � �

ALGORITHMS FOR OPENINGS OF BINARY AND LABEL IMAGES 3

�!��� � �!� � � ��� �4��� �	� ��� � �5����� � ��� . Algorithms based on the geometric
interpretation of openings have the drawback that they depend on the content of the
image which makes a hardware implementation harder. But implemented in software
they appear to be competitive in terms of computing time.

2. First family of algorithms: 2D scan-based algorithms

The algorithms of the first family can be summarized as follows. In a first phase we
scan the input image and build two matrices. These matrices contain all the informa-
tion needed to perform an opening with a rectangle of any size. In the second phase
the output image is filled with thresholded values of a matrix computed during the first
scan.

Our algorithms, called “2-D scan” hereafter, are similar to fast erosion and dila-
tion algorithms that use thresholded distance maps except that our techniques directly
provide the opening and work with two matrices.

2.1. DESCRIPTION OF THE FIRST PHASE

The first matrix, denoted � ����� � ���
	 or � ��� , is filled with the distance of each pixel
contained in an object to the right border of that object. An horizontal scan from right
to left provides the result. To compute the second matrix, denoted

��� �
, the algorithm

compares the values in the columns of � ��� .
�
� ��� � ���
	

is the length of the vertical
segment of � ��� that has all its value larger or equal to � ����� � ���
	 . Fig. 1 gives a
simplified version of the corresponding program fragment. A worked out example is
provided in Fig. 2.

2.2. DESCRIPTION OF THE SECOND PHASE

The first phase does not depend on the size of the structuring element; it is a generic
phase that provides all the rectangles included in

�
. Because

��� �
was built on

� ��� , it appears that � ��� and
��� �

suffice to compute the opening with a rectan-
gle of any size. In the second phase, each pair of elements � ����� � ���
	 � ��� ��� � ���
	 is
analyzed in order to find appropriate values. Suppose we want to compute

� � � ��� ��!���
. If � ����� � ���
	�� � and

�
� ��� � ����	�� �
then the value � ����� � ���
	 is copied in

the output image, denoted
�����

, not only at
� � ��� �

but also in the column at neigh-
boring positions where ��� �	�!� fits. These neighboring positions

� � ��� �
are such

that � ����� � ����	�� � ����� � ����	 . Because of possible multiple accesses to
�����
� � ����	

, it
is important that a new value is put in

�����
� � ���
	
only if it is larger than the previous

value.
After all pairs have been analyzed

�����
contains the run lengths of all the hori-

zontal segments of
� �/� ��� � �!��� . It then remains to fill the output image

�����
to

the right according to the values of
������� � ���
	

. The second phase, when performed on
the object of Fig. 2, is illustrated in Fig. 3.

2.3. IMPLEMENTATION ISSUES

There are several ways to optimize the algorithm. The major optimization techniques
are listed hereafter:
� Better use of hardware and software characteristics. Due to the linear structure of

4 MARC VAN DROOGENBROECK

for all
� ���

do
if � ����� � ���
	 2���

then��� �����
	���

/* Scan to the top */� � � �

while � ����� � ����	 � � ����� � ���
	 do��� �����
	�� ��� �����
	 #�
� � � �

end while
/* Scan to the bottom */� � � #�

while � ����� � ����	 � � ����� � ���
	 do��� �����
	�� ��� �����
	 #�
� � � #�

end while��� ��� � ���
	 � ��� �����
	

else��� ��� � ���
	 � �
end if

end for

Fig. 1. Program fragment for building ����� .

Original image HOR VER
1 1 1 1 1 0 0 0 1 0 5 4 3 2 1 0 0 0 1 0 2 5 5 5 7 0 0 0 1 0
1 1 1 1 1 1 0 1 0 0 6 5 4 3 2 1 0 1 0 0 1 4 4 4 6 7 0 7 0 0
0 1 1 1 1 1 1 1 0 0 0 7 6 5 4 3 2 1 0 0 0 3 3 3 5 6 6 7 0 0
1 1 1 1 1 1 1 1 1 0 9 8 7 6 5 4 3 2 1 0 1 2 2 2 4 5 5 5 5 0
0 1 1 1 1 1 1 1 1 0 0 8 7 6 5 4 3 2 1 0 0 2 2 2 4 5 5 5 5 0
0 1 0 0 1 1 1 1 1 1 0 1 0 0 6 5 4 3 2 1 0 8 0 0 2 3 3 3 3 3
1 1 1 0 1 1 1 1 1 1 3 2 1 0 6 5 4 3 2 1 2 2 2 0 2 3 3 3 3 3
1 1 1 1 0 1 1 1 1 1 4 3 2 1 0 5 4 3 2 1 1 1 1 1 0 3 3 3 3 3

Fig. 2. A binary object and its corresponding two matrices ����� and ����� .

memory blocks, accesses along a row in a 2-D array are faster than accesses along
a column. In order to accelerate the computation of

��� �
, � ��� is transposed

before being stored.
� Avoid some computation redundancy. If � ����� � ����	 � � ����� � ��� �
 	 then

� � ��� �
and
� � ��� �
 � belong to the same rectangle, and therefore have the same vertical

extension. This means that
��� ��� � ���
	 � �
� ��� � ��� �
 	 .

� Avoid rewriting pixels in the output image. As can be seen in Fig. 2 and Fig. 3,

ALGORITHMS FOR OPENINGS OF BINARY AND LABEL IMAGES 5

Original image INTERMEDIATE RESULT OUT

1 1 1 1 1 0 0 0 1 0 0 4 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0

1 1 1 1 1 1 0 1 0 0 0 5 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0

0 1 1 1 1 1 1 1 0 0 0 5 0 0 4 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0

1 1 1 1 1 1 1 1 1 0 0 5 0 0 5 4 0 0 0 0 0 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 0 0 5 0 0 5 4 0 0 0 0 0 1 1 1 1 1 1 1 1 0

0 1 0 0 1 1 1 1 1 1 0 0 0 0 5 4 0 0 0 0 0 0 0 0 1 1 1 1 1 0

1 1 1 0 1 1 1 1 1 1 0 0 0 0 5 4 0 0 0 0 0 0 0 0 1 1 1 1 1 0

1 1 1 1 0 1 1 1 1 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 1 1 1 1 0

Fig. 3. Illustration of the second phase: the last image is the opening for ����� ����� � . Positions where
�����	�
���
������ and �����	�
���
������ have been underlined.

some pixels
� � ��� �

are part of several run lengths. To avoid that a pixel of
�����

is addressed several times, the algorithm starts filling
�����

, and compares the
remaining length to the value of the intermediate matrix for each location. Then
it adapts the remaining length if the value contained in the intermediate matrix is
the largest.

All these optimizations were included in the implementations.

2.4. GENERALIZATION TO LABEL IMAGES

Algorithms based on the geometrical interpretation of an opening are easily extended
to label images; in practice it is sufficient to check the value of each label. How the 2D
scan-base algorithm applies to label images is illustrated in Fig. 4. In this example,
the image is made of 4 regions labelled 1 to 4. The label 0 indicates that a pixel does
not belong to any region.

3. Second family of algorithms: list-based algorithms

3.1. PRINCIPLE

If all the rectangles included in
�

were known, it would be straightforward to keep
the rectangles larger than

�
to perform

� � �
. However we do not need all the

rectangles as some of them might be included in other rectangles. The second family
of algorithms we propose builds a list of rectangles � � ��� �����
� � ��� such that
� � ��� � �
� all rectangles of � are maximum in size: if � ��� such that for one of the rectangles���

included in � ,
��� � ���!� �

then
���

is included in �
� the list does not contain any redundant rectangle: " � � � �$# contained in � ,

� � 2�
�%#

and
�%# 2� � �

.

3.2. SUMMARIZED DESCRIPTION

A complete description of the algorithm is beyond the scope of this paper because it
would be necessary to discuss many pathological configurations and the program is
about 1000 lines of C code long. We therefore limit the description to the major steps.

6 MARC VAN DROOGENBROECK

LABEL IMAGE

1 1 1 2 2 2 2 2 2 2 2 3

1 1 1 1 2 2 2 2 2 3 3 3

1 1 1 1 2 2 2 2 3 3 3 3

4 1 1 1 2 2 2 3 3 3 3 3

4 4 4 1 1 2 2 2 2 3 3 3

4 4 4 4 4 2 2 2 3 3 3 3

4 4 4 4 4 2 2 2 3 3 3 3

4 4 4 4 2 2 2 2 3 3 3 3

HOR

3 2 1 8 7 6 5 4 3 2 1 1

4 3 2 1 5 4 3 2 1 3 2 1

4 3 2 1 4 3 2 1 4 3 2 1

1 3 2 1 3 2 1 5 4 3 2 1

3 2 1 2 1 4 3 2 1 3 2 1

5 4 3 2 1 3 2 1 4 3 2 1

5 4 3 2 1 3 2 1 4 3 2 1

4 3 2 1 4 3 2 1 4 3 2 1

VER

3 4 4 1 1 1 1 1 1 1 1 8

2 3 3 4 2 2 2 2 2 7 7 8

2 3 3 4 3 3 3 3 2 7 7 8

5 3 3 4 4 8 8 1 2 7 7 8

4 4 4 1 1 1 1 1 1 7 7 8

2 2 2 2 2 4 4 4 3 7 7 8

2 2 2 2 2 4 4 4 3 7 7 8

3 3 3 3 1 4 4 4 3 7 7 8

OUT

1 1 1 0 2 2 2 2 0 0 0 0

1 1 1 1 2 2 2 2 0 3 3 3

1 1 1 1 2 2 2 2 0 3 3 3

0 1 1 1 2 2 2 0 0 3 3 3

4 4 4 0 0 2 2 2 0 3 3 3

4 4 4 0 0 2 2 2 3 3 3 3

4 4 4 0 0 2 2 2 3 3 3 3

4 4 4 0 0 2 2 2 3 3 3 3

Fig. 4. The 2D scan-based algorithm applied to a label image (����� � ��� �).

The list-based algorithm first calculates � ��� . Then � ��� is scanned line per line
starting from the upper left-hand corner. When a value � ����� � ���
	 is encountered the
algorithm looks for the vertical extension of the newly detected rectangle. The position
of the upper left corner is stored in a C structure as well as other informations, like
the width and the height of the rectangle. After having put the rectangle (which has a
size of � ����� � ���
	 � � � ��� � ����) in a list, the algorithm moves to the next pixel. It then
tries to detect a rectangle that would be smaller in width but larger in height. Such a
new rectangle is wide of � ����� � ���
	 �
 � � ����� � #
 ����	 pixels and

��� ��� � #
 ���
	����� ��� � ���
	
. If such a rectangle exists it is added to the list � . Fig. 5 shows detected

rectangles and the corresponding list. The detection process is repeated as long as
� ��� 2��� .

In order to counter the detection of redundant rectangles the algorithm uses an
additional matrix, denoted � . A critical case, where R3 could be detected several
times, is shown in Fig. 6. Locations

� � ��� �
that led to the detection of a rectangle

�

have to be marked as follows. Suppose
� � ��� �

is a pixel belonging to the first column of�
such that � ����� � ���
	 equals the width of

�
. Let � be the set vertical coordinates of

the first column of
�

. " ��� � , if � ����� � ����	 � � ����� � ���
	 then � � � ����	 � � ����� � ���
	 .
As an example, with the image of Fig. 5, the algorithm has detected 21 non-redundant
rectangles.

The final result, a list of rectangles, may be seen as a particular data structure for
a skeleton or medial axis transform. This is not surprising as it is well known that
some skeletons can be expressed as erosions and openings. In his thesis [4], KRESCH

ALGORITHMS FOR OPENINGS OF BINARY AND LABEL IMAGES 7

1 1 1 1 1 0 0 0 1 0 5 4 1 0

1 1 1 1 1 1 0

Original image HOR
3 2 1 0 0 0

1 0 0 6 5 4 3 2 1 0 1 0 0

0 1 1 1 1 1 1 1 0 0 0 7 6 5 4 3 2 1 0 0

1 1 1 1 1 1 1 1 1 0 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 1 1 0 0 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 1 1 1 0 1 0 0 6 5 4 3 2 1

1 1 1 0 1 1 1 1 1 1 3 2 1 0 6 5 4 3 2 1

1 1 1 1 0 1 1 1 1 1 4 3 2 1 0 5 4 3 2 1

(i,j)=(0,0) Width=5 Height=2
(i,j)=(1,0) Width=4 Height=5
(i,j)=(4,0) Width=1 Height=7
...

Fig. 5. An image, the ����� matrix and the first elements of the list of rectangles � .

R1

R2

R3

Fig. 6. Multiple detections of rectangle R3 have to be avoided.

developed several variants of skeleton transforms.
There is an other issue with list-based algorithms: intersections between rectan-

gles. As a direct consequence of the detection process, rectangles have a non-empty
intersection with all the rectangles detected during the scan of the same run-length.
For a large object

�
it is not rare to have a ratio between the sum of areas of the

non-redundant rectangles and the area of
�

larger than
 � . The problem of multiple
intersections has to be solved as otherwise the computation time would dramatically
increase due to multiple accesses to

�����
. Therefore we developed two solutions:

1. Avoid rewriting pixels in
�����

owing to the technique described in section 2.3.
2. Stores all the intersections between elements of � . For each rectangle

�
of � ,

intersections between
�

and other rectangles are stored as a list
� � � �

joined to
the C structure of

�
. A thorough examination of all the intersections leads to a

variant of the algorithm, called area-specific hereafter, for which no output pixel
is written twice. The rule is that, when processing a list member

�
of � ,

�����
is

filled with pixels of the set difference
��� ���

where
���

has a larger height than
�

and a width
� ��� . This even allows to compute the area of

� � �
without having

to fill the output image. The area-specific algorithm combined with a progressive

8 MARC VAN DROOGENBROECK

cleaning of the list is particularly suited for the computation of a granulometric
curve.

4. Discussion and comparison

We have implemented different algorithms for binary openings. All the algorithms
have been optimized and algorithms applicable to functions, like the histogram based
algorithm, have been rewritten for the case of binary images. The computation times
were obtained with the gprof profiler.

4.1. COMPUTATION TIMES OF OUR ALGORITHMS

Figure 7 presents the computation times of 2D scan and listed-based algorithms.
Curve 1 (Generic 2D scan-based) was obtained with an implementation that includes
all the optimization techniques we discussed in section 2.3.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

5 10 15 20 25 30 35 40

C
om

pu
ta

tio
n

tim
e

[s
]

Size n

1. Generic 2D scan-based
2. Size-specific 2D scan-based

3. List of rectangles
4. List of rectangles (area specific)

Fig. 7. Computation times of 2D scan and list-based algorithms with respect to a ����� square.

Curve 2 (Size-specific 2D scan-based) corresponds to a particular implementation
where we used the size of the structuring element during the building of � ��� and��� �

. All values strictly lower than the rectangle size were replaced by zeros. As a
consequence the first phase is not generic anymore but this implementation cuts the
computation times by half. The respective contributions of the first and second phase
to the total amount of time are about 80%-20%.

In the case of list-based algorithms the respective contributions of the first and
second phase to the total amount of time are about 90%-10%. List-based algorithms

ALGORITHMS FOR OPENINGS OF BINARY AND LABEL IMAGES 9

are mainly justified when openings with multiple sizes are needed, for example when
computing a granulometric curve.

As can be seen from the curves, the computation time slightly decreases with the
size. This unusual behavior is specific to the algorithms. It can be explained by a
decreasing number of rectangles included in

�
when rectangles get larger.

4.2. COMPARISON WITH OTHER ALGORITHMS

Fig. 8 compares the computation times of several algorithms on a large binary image.
As mentioned previously we have reimplemented algorithms applicable to gray level
images to include several optimizations. For the particular case of VAN HERK’s al-
gorithm (often used as a benchmark), we transposed the intermediate matrix twice,
after

�
� ��� and
�:� � � ��� � � ����� �;�!� , to achieve a fair comparison with our

algorithms.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

5 10 15 20 25 30 35 40

C
om

pu
ta

tio
n

tim
e

[s
]

Size n

Linear decomposition

Propagation

Binary histogram

Generic 2D scan−based

Size specific 2D scan−based

List of rectangles

List of rectangles (area specfic)

van Herk

Fig. 8. Computation times of several algorithms for binary openings with respect to a ��� � square.

As can be seen on the graph, the size specific 2D scan-based algorithm is the fastest
algorithm. It is twice as fast as VAN HERK’s algorithm that needs 3 comparisons per
pixel for an erosion or a dilation.

Computation speed is only one criteria for comparison. Other criteria are provided
in table I. Algorithms that allow multiple simultaneously computations permit effi-
cient computations of granulometric curves. It should be mentioned that algorithms
that process openings in a single step can be used for the computation of binary ero-
sions as well, as

� ��� ��� � � � �
� �
.

An extension to gray level images is more difficult and until now we did not find a

10 MARC VAN DROOGENBROECK

way to extend our algorithms to the general case of gray level openings.

Histogram van Herk Scan-based List-based

Program complexity Low Low Medium High

Relative computation speed Fast Fast Very fast Slow

Applicable to label images Yes No Yes Yes

Allow multiple computations No No Yes Yes

Dependent on the content Slightly No Yes Yes

TABLE I
Comparison of algorithms that do not depend on the size of the structuring element.

References

1. B. Chaudhuri. An efficient algorithm for running window pel gray level ranking in 2-D images.
Pattern Recognition Letters, 11(2):77–80, February 1990.

2. J. Gil and R. Kimmel. Efficient dilation, erosion, opening and closing algorithms. In J. Goutsias,
L. Vincent, and D. Bloomberg, editors, Mathematical Morphology and its Applications to Image and
Signal Processing V, pages 301–310, Palo-Alto, USA, June 2000. Kluwer Academic Publishers.

3. T. Huang, G. Yang, and G. Tang. A fast two-dimensional median filtering algorithm. IEEE Transac-
tions on Acoustics, Speech and Signal Processing, 27(1):13–18, February 1979.

4. R. Kresch. Morphological image representation for coding applications. PhD thesis, Technion Israel
Institute of Technology, Haifa, 1995.

5. B. Laÿ. Recursive algorithms in mathematical morphology. In Acta Stereologica, Vol. 6, pages 691–
696, Caen, 1987. ICS.

6. J. Pecht. Speeding up successive Minkowski operations. Pattern Recognition Letters, 3(2):113–117,
1985.

7. M. Schmitt. Des algorithmes morphologiques à l’intelligence artificielle. PhD thesis, École nationale
supérieure des mines de Paris, February 1989.

8. R. van den Boomgaard. Mathematical morphology: Extensions towards computer vision. PhD thesis,
Amsterdam University, March 1992.

9. M. Van Droogenbroeck. On the implementation of morphological operations. In J. Serra and P. Soille,
editors, Mathematical morphology and its applications to image processing, pages 241–248. Kluwer
Academic Publishers, Dordrecht, 1994.

10. M. Van Droogenbroeck. Traitement d’images numériques au moyen d’algorithmes utilisant la mor-
phologie mathématique et la notion d’objet : application au codage. PhD thesis, Catholic University
of Louvain, May 1994.

11. M. van Herk. A fast algorithm for local minimum and maximum filters on rectangular and octogonal
kernels. Pattern Recognition Letters, 13(7):517–521, July 1992.

12. L. van Vliet and B. Verwer. A contour processing method for fast binary neighbourhood operations.
Pattern Recognition Letters, 7:27–36, 1988.

13. L. Vincent. Morphological transformations of binary images with arbitrary structuring elements.
Signal Processing, 22(1):3–23, January 1991.

