

Study of 2-ethanolamine degradation

UTCCS 1

<u>Grégoire Léonard</u>, Dominique Toye, Georges Heyen

January 26th, 2012

- 1. Introduction
- 2. Degradation Test Rig
- 3. Solvent degradation
- 4. Conclusions and perspectives

1. Introduction

January 26th, 2012

1. Introduction

Original topic: Simulation and optimal conception of the post-combustion CO_2 capture process

However, simulation does not consider some important parameters!

- Focus set on solvent degradation
 - Process operating costs:
 - Solvent replacement: up to 22% of the CO₂ capture OPEX^[1]!
 - Removal and disposal of toxic degradation products
 - Process performance:
 - Decrease of the solvent loading capacity
 - Increase of viscosity
 - Foaming, fouling
 - Capital costs
 - Corrosion
- ^[1] Abu Zahra M., 2009. Carbon dioxide capture from flue gas, PhD Thesis, TU Delft, The Netherlands.

1. Introduction

> 3 types of degradation mecanisms: temperature, O_2 , $CO_2^{[2]}$

^[2]Lepaumier H., Picq D., Carrette P.L., 2009. Degradation study of new solvents for CO₂ capture in post-combustion. Energy Procedia 1, 893-900.

January 26th, 2012

2. Degradation Test Rig

January 26th, 2012

- Detailed screening of solvent degradation
- Study of the impact of operating conditions: temperature, gas composition and flow rate, ...
- Study of the effect of additives: degradation inhibitors, metals

- => Need for accelerated degradation conditions
 - High temperature (up to 140°C), high pressure (up to 25 bar)
 - Enhanced gas-liquid contact
 - Varying gas flow rate and composition

9

- 5. Control panel
- 4. Gas flow
- 3. Water balance
- 2. Gas supply
- 1. Reactor

Université de Liège

January 26th, 2012

2.2 Degradation Test Rig

- 1. Reactor
- 2. Gas supply
- 3. Water balance
- 4. Gas flow
- 5. Control panel

- Liquid phase:
 - HPLC (High Pressure Liquid Chromatography): MEA quantification
 - GC-FID (Gas Chromatography): identification & quantification of the degradation products
 - IC (Ionic Chromatography): *quantification of organic anions*
 - AAS (Atomic Absorption Spectroscopy) and CE (Capillar Electrophoresis): *quantification of inorganic ions*
 - Karl-Fischer Titration: water quantification
- Gas phase:
 - **FTIR** (Fourier Transform Infrared Spectroscopy):

NH₃ and MEA quantification

3. Solvent degradation

January 26th, 2012

First test-campaign with MEA

					Operating conditions								
Name	Experiment	Experiment	Length	Parameter	Т	Ptot	P _{O2}	P _{CO2}	P _{N2}	Gas flow	Solvent	Mass balance	Problems
Name	Start	end	[Days]	tested	[°C]	[bar]	[bar]	[bar]	[bar]	[mln/min]	[wt% MEA]	[%]	Toblems
Experiment 1	19/02/2011	5/03/2011	14	Base case	120	4	0.2	3	0.8	80	30.00	not recorded	-
Experiment 2	24/03/2011	5/04/2011	12	Exp. Length/strong cond.	140	20	1	15	4	200	30.00	-3.33	Gas exhaust stopped due to crystal formation in the condenser, pressure up to 25 bar
Experiment 3	11/04/2011	25/04/2011	14	Temperature	120	20	1	15	4	200	30.01	10.07	-
Experiment 4	10/05/2011	19/05/2011	9	Pressure (N ₂)	140	20	0.2	3	16.8	500	30.05	-1.43	Foaming, temperature sensor defectuous => heating stopped automatically
Experiment 5	27/05/2011	10/06/2011	14	Repetability	120	4	0.2	3	0.8	80	30.01	-62.33	Crystal formation in the condenser, pressure up to 20 bar for a few hours, mass losses
Experiment 6	1/07/2011	15/07/2011	14	Repetability	120	4	0.2	3	0.8	80	30.02	-47.60	Mass losses (150g)
Experiment 7	20/07/2011	3/08/2011	14	Batch	120	20	0.2	3	0.8	0	29.99	-0.33	Corrosion of the temperature sensor
Experiment 8	24/08/2011	31/08/2011	7	Temperature and gas flow	120	20	0	0	20	20	30.00	-2.33	-
Experiment 9	31/08/2011	9/09/2011	9	Temperature and gas flow	120	20	0	0	20	200	30.00	-3.70	Gas bottle empty (2 days), current shortage
Experiment 10	13/09/2011	27/09/2011	14	New base case	120	4	0.2	0.6	3.2	160	29.99	-11.30	Mass losses

3.1 Results Summary

- \succ Experimental feedback of the 1st test campaign:
- Corrosion
- Crystal formation
- Mass balance regulation
- Agitation •

14

> Quantification of MEA in degraded samples

3.3 Karl Fischer Titration

- Quantification of water in degraded amine sample
- Good correspondance with mass balance results!

3.4 GC-FID

Identification of degradation products

3.4 GC-FID

Comparison with degraded MEA from a real pilot plant

Experiment 7 in batch:

- 30 wt % MEA
- 120°C
- 20 bar
- 5%O₂, 75%CO₂, 20%N₂
- no gas flow
- -2 weeks

3.4 GC-FID

Comparison with degraded MEA from a real pilot plant

=> Experiment 10 has been chosen as the new base case for next tests campaign:

- 30 wt % MEA
- 120°C
- 4 bar
- 5%O₂, 15%CO₂, 80%N₂
- 160 mln/min gas flow
- -2 weeks

4. Conclusions and perspectives

January 26th, 2012

- Experimental bench for the study of accelerated solvent degradation, with different analytical methods
- Detailed screening of MEA degradation is in progress
- Influence of temperature, gas flow rate, gas composition and pressure may already be observed
- The study of MEA degradation under accelerated conditions can be related to pilot scale results
 definition of a new base case

- Second test campaign with MEA
 - influence of gas composition and temperature
 - influence of metals and degradation inhibitors.
- Construction of a simulation model for CO₂ capture including degradation results
- This model will be **validated** with pilot plant data

=> Goal is to perform a multi-objective optimisation of the CO₂ capture process

This project has been made possible thanks to the financial support of the belgian national center for scientific research, and thanks to the technical and financial support of the compagny Laborelec (GDF SUEZ)

F.R.I.A. – F.N.R.S

Thank you for your attention!

