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Abstract : The scattering coefficient of a diffusing surface accounts for the part of sound power which is “non-specularly”
reflected. This coefficient is an essential parameter for the description of walls and surfaces in room acoustics problems. In this
paper, the scattering coefficient of random rough surfaces is calculated from the complete scattered sound pressure distribution.
This distribution is evaluated using a Kirchhoff Approximation method. The results obtained for several rough surfaces are
compared with theoretical expressions of the scattering coefficient. These expressions show the influence of the angle of
incidence, the sound frequency and the geometrical parameters of the surface profile on the scattering coefficient. It is shown
that these theoretical expressions give reliable results as long as the Kirchhoff Approximation conditions hold.

INTRODUCTION

In room acoustics, the scattering coefficient of a
diffusing surface is defined as the ratio of non-
specularly reflected power to the total power reflected
by the surface. The value of this coefficient (and its
dependence on frequency) is essential for the users of
any modern room acoustics software, because most of
them can now account for the effects of surface
diffusion. However, rather few data have already been
collected on surface scattering properties and only a
small part of these data have been published.
Therefore, a great amount of work must still be done
in order to better understand the mechanisms of
surface scattering and to measure diffusion parameters.

The random-incidence scattering coefficient of
diffusing surfaces can be measured in a reverberant
room, using a method developed by Vorlaender and
Mommertz [1]. This method is presently under
investigation by an ISO working group. However, this
communication addresses the problem of finding the
value of the scattering coefficient, not by
measurements, but rather by theoretical developments.

METHOD SUMMARY

We consider finite size rough surfaces described by
their elevation ),( yxz ξ=  relative to a reference

plane. Assuming an incident plane wave, the
distribution of the scattered pressure can be calculated
with the Kirchhoff Approximation method [2]. The

development of this method leads to the following
expression for the complex pressure 1p  in the

scattering direction sk  :
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In this equation, K  is a constant complex number
(depending on the strength of the incident wave and
the distance of the receiver), S is the area of the rough
surface projected onto the reference plane,

si kkv −= where ik is the incident vector (the

magnitude of both vectors k  is λπ /2 ), r  is the
position vector of the surface element at ),,( ξyx and
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yx ξξγ −−=  is a vector perpendicular to the rough

surface at this surface element. rC is the local

reflection factor.

With this expression, it is possible to calculate (within
the assumptions of the Kirchhoff Approximation
which are not discussed here) the complete distribution
of the complex scattered pressure. The scattering
coefficient of the diffusing surface defined by

),( yxz ξ=  can then be obtained with a formula

proposed by Mommertz [3]. This scattering coefficient
is called in the following ..AKδ  , since it is computed

using the more general formulation of the Kirchhoff
Approximation method.



RESULTS FOR GAUSSIAN ROUGH
SURFACES

To solve (1), we of course need to define the profile of
a given rough surface. In this study, the analysis has
been focused on a typical class of random rough
surfaces, namely the gaussian surfaces.

For these particular surfaces, it is possible to derive
fairly good approximations of the scattering coefficient

..AKδ . As will be seen in the following, these

approximations can be obtained without calculating
the complete distribution of the scattered pressure.
They are therefore more easily computed and they also
better illustrate the influences of sound frequency and
geometrical parameters on the scattering coefficient.
The first approximation is :
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where C.F. means characteristic function, which is the

mathematical name for the average of ξzjve if ξ  is a

random variable. The second approximation is :
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In this expression, iθ  is the angle of incidence of the

plane wave and s is the r.m.s. height of the random
rough surface.

Both approximations have been compared with the
theoretically exact value of the scattering coefficient

..AKδ  derived from equation (1). The characteristic

function model (2) always leads to a very good
correlation with ..AKδ , as long as the conditions of

validity of the Kirchhoff Approximation are satisfied.

The rms height model (3) states that the scattering
coefficient of gaussian rough surfaces only depends on
the r.m.s. height of the surface (relative to the
wavelength) and on the angle of incidence. The
correlation with ..AKδ is not as good as in the previous

model, but the deviations are not really significant
unless the scattering coefficient reaches high values
(δ>0.8). This is illustrated for a particular class of
gaussian surfaces in figure 1.

On the other hand, the rms height model is much
easier to calculate, and it gives a very clear

interpretation of the influence of all parameters
affecting the scattering coefficient.

FIGURE 1.  Scattering coefficients ..AKδ  and RMSδ
computed from expression (1) and by the rms height model
(3) respectively, for 200 rigid ( 1=rC ) gaussian rough

surfaces characterized by a correlation length of 5λ. The
angle of incidence is 20°.

Figure 1 gives only some examples of the many
gaussian surfaces which have been considered in this
study. After analysing all these results, it has been
found that the approximations (2) and (3) are in fact
valid in many situations, including many angles of
incidence ( °≤ 60iθ ), surface dimensions, correlation

lengths ( λ≥T ) and r.m.s. heights. We even found that
the approximations also hold for non-rigid surfaces.

It turns out that, at least for gaussian rough surfaces,
the key parameters (concerning sound diffusion) seem
to be the ratio of r.m.s. height to the wavelength and
the angle of incidence. Further similar studies on other
surfaces with deterministic profiles will certainly bring
new information to this theory.
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