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Abstract. In the literature, many bijections between (labeled) Motzkin
paths and various other combinatorial objects are studied. We consider
abelian (un)bordered words and show the connection with irreducible
symmetric Motzkin paths and paths in Z not returning to the origin. This
study can be extended to abelian unbordered words over an arbitrary
alphabet and we derive expressions to compute the number of these
words. In particular, over a 3-letter alphabet, the connection with paths
in the triangular lattice is made. Finally, we study the lengths of the
abelian unbordered factors occurring in the Thue—Morse word.

1 Introduction

A finite word is bordered if it has a proper prefix that is also a suffix of the whole
word. Otherwise, the word is said to be unbordered. Such properties have been
investigated for a long time in combinatorics on words. For instance, the famous
Duval’s conjecture about the relationship between the length of a word and the
maximum length of its unbordered factors has been solved in [8]. A classic result
by Ehrenfeucht and Silberger [5] states that if an infinite word has only finitely
many unbordered factors, then it is ultimately periodic.

Let us denote the Parikh vector of the word u over A by ¥(u): i.e., ¥(u) is the
element of N4 representing the number of occurrences of each letter in u. Two
words u and v are abelian equivalent, if ¥(u) = ¥(v). The notions of (un)bordered
words are naturally extended to their abelian analogues by replacing equality
with abelian equivalence. Such an extension is considered, for example, in [9].

This paper is organized as follows. Below, we make precise the basic defini-
tions. In Section 2, we show that abelian unbordered words over a two letter
alphabet are in one-to-one correspondence with particular Motzkin paths, i.e.,
lattice paths of N? that begin at the origin, never pass below the z-axis, and
use only up diagonal, down diagonal and horizontal steps. In Section 3, abelian
unbordered words over a two letter alphabet are shown to be in one-to-one cor-
respondence with n-step walks in Z starting from the origin but not returning
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to it. In particular, the number of these n-step walks is well-known and is given
by the sequence A063886 in Sloane’s Encyclopedia [12]. In Section 4, we extend
the size of the alphabet and are still able to relate abelian unbordered words
with specific paths and then derive a recursion formula to get the number of
such words of length n. Interestingly, for a three letter alphabet, the connection
is made with paths in the so-called triangular lattice. Finally, in Section 5, we
consider the abelian unbordered factors occurring in abelian periodic automatic
sequences (such as the Thue-Morse word). In this last section, we make use of
Biichi’s theorem and the formalism of first order logic as it was recently used in
combinatorics on words, see for instance [3, 6].

Definition 1. A word u € A* is abelian bordered if there ewist v,v',x,y € AT
such that u = vx = yv’ and ¥(v) = ¥(v'). In that case v is an abelian border of
u. Otherwise, u is said to be abelian unbordered.

It is easy to see that if u is abelian bordered, it has an abelian border of
length at most |u|/2.

Note that a word u over {a,b} is abelian unbordered if and only if its com-
plement wu, where all a’s are replaced with b’s and all b’s with a’s, is also abelian
unbordered. If a word is bordered, then it is trivially abelian bordered. But, in
general, the converse does not hold. For instance, aabbabab is abelian bordered
but not bordered.

Ezample 1. We consider the first few abelian unbordered words over {a, b} that
start with a: a, ab, aab, abb, aaab, aabb, abbb, aaaab, aaabb, aabbb, abbbb, aabab,
ababb. The first few values for the number of abelian unbordered words of length
n > 0 over {a,b} are: 2, 2, 4, 6, 12, 20, 40, 70, 140, 252, 504, 924, 1848, 3432,
6864,. .. These values match Sloane’s sequence A063886.

Remark 1. The language of abelian bordered words is not context-free. Indeed, if
we intersect the language of abelian bordered words over {a, b} with the regular
language atbtatbt, then we get the language {a’t’a*b’ : k > i and j > (}.
Using the pumping lemma, it is easy to show that this language is not context-
free.

2 Connection with Motzkin Words

The following is an immediate consequence of the definition “abelian unbor-
dered”.

Lemma 1. Let n > 1. A word uy - - uncvy, - --v1, where for all i € {1,...,n},
u; € A, v; € A, and ¢ € {e} U A, is abelian unbordered if and only if, for all
ie{l,...onh, Ulur - wg) # (v v1).

Let us fix the alphabet A = {a,b}. If x = 21---2,, and y = y; -+ -y, are
words of length n over A, we define (;) € (A x A)* by

()= () ()



We also define the projection map
. x
m (A X A) %A,<y)»—>:c.

We write 2 to denote the reversal of x; that is, z* =

the map

Ty - x1. We now define
m:A* = (Ax A" u— (u%)

Let P C (Ax A)* be the context-free language P = m(A*) = { (u%) |ue A*}.
Lemma 1 can be restated as follows.

Lemma 2. A word u € AT is abelian bordered if and only if there exists a non-

empty proper prefix p of m(u) such that the numbers of occurrences of <Z> and

<2> in p are the same.

Definition 2. A Grand Motzkin path of length n is a lattice path of N? running
from (0,0) to (n,0), whose permitted steps are the up diagonal step (1,1), the
down diagonal step (1,—1) and the horizontal step (1,0), called rise, fall and
level step, respectively.

A Motzkin path is a Grand Motzkin path that never passes below the x-axis.

An irreducible (or elevated) Motzkin path is a Motzkin path that does not
touch the x-axis except for the origin and the final destination [1].

If the level steps are labeled by k colors (here colors will be letters from the al-
phabet A) we obtain a k-colored Motzkin path [11]. A k-colored Motzkin path is
described by a word over the alphabet {R, F, L1,..., Ly} and the context-free lan-
guage of the k-colored Motzkin paths is denoted by My. In particular, a Motzkin
path described by a word over {R, F} is a Dyck path.

Let h: (A x A)* - {R,F, L, Ly }* be the coding

() () or (e ()

Note that if p belongs to P, then h(p) is a symmetric Grand Motzkin path
having a symmetry axis @ = n/2. Let ¢ : {R,F, Lo, Ly}* — {R,F,Lq, Lp}*
defined by «(R) = F, «(F) = R, «(Ly) = L, and ¢(Ly) = Lp. If w is a word over
{R,F,L,, Ly}, then w = t(w’). A symmetric Grand Motzkin path is described
by a word of the kind w c@ where ¢ € {¢, Ly, Lp}.

Ezample 2. Two Motzkin paths colored with the letters a and b are repre-
sented in Figure 1. The left one is described by the word RL,RFRL,FFRF
and the right one is symmetric and irreducible. It corresponds to the word
h(m(aaaababababb)) = RRL,RFRFRFL,FF.



Fig. 1. Two Motzkin paths.

Lemma 3. A word u starting with a is abelian unbordered if and only if h(m(u))
18 a symmetric and irreducible Motzkin path.

Proof. This is a reformulation of Lemma 2. O

Proposition 1. The set of abelian unbordered words over {a,b} starting with a
and of length at least 2 is am (P N h™1(My))b.

Proof. Note that h(P Nh~'(My3)) is the set of all symmetric 2-colored Motzkin
paths. Now observe that if u belongs to am (P N h=1(Ms))b, then h(m(u))
starts with R and ends with F. So the corresponding 2-colored Motzkin path
is irreducible. Conversely, if u is abelian unbordered and starts with a, then by
Lemma 3, h(m(u)) = RMF, where M is a symmetric 2-colored Motzkin path.
Thus, u € am (PN A=Y (My))b. 0

Remark 2. Any symmetric 2-colored Motzkin path can be built by reflecting a
prefix of a 2-colored Motzkin path. Let w € {R, F, Lo, Ly }* be a prefix of length
k—1 of a word in Ms. By the previous proposition, we get that am[h=!(w w)]b,
am [hY(w L, w)]b and am1[h~1(w Ly w)]b are respectively an abelian unbordered
word of length 2k, of length 2k + 1 having a as central letter, of length 2k 4 1
having b as central letter.

— The set of abelian unbordered words of length 2k starting with a is in one-
to-one correspondence with the set of prefixes of length k£ — 1 of words in
M. Equivalently, the set of abelian unbordered words of length 2k starting
with a is in one-to-one correspondence with the set of prefixes of length k of
irreducible 2-colored Motzkin paths.

— The set of abelian unbordered words of length 2k 4 1 starting with a and
having a central letter equal to a (resp. b) is in one-to-one correspondence
with the set of prefixes of length k — 1 of words in M. Equivalently, the set
of abelian unbordered words of length 2k + 1 starting with a is in one-to-one
correspondence with the set of prefixes of length k of irreducible 2-colored
Motzkin paths.

3 Connection with the Sequence A063886

The sequence A063886 gives the number s(n) of n-step walks in Z starting from
the origin but not returning to it. Such walks can be described by words over
{r, £} for right and left steps. The aim of this section is to show that the set of



abelian unbordered words over a binary alphabet is in one-to-one correspondence
with the n-step walks in Z starting from the origin but not returning to it. Let us

1422
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Consider a word w = uy -+ upvy - -1 € {a,b}* of length 2n. We consider
the map ¢ by

c: (a) — T, (b> — L, (a) — L, (b) — rd.
b a a b

Applying ¢ to the prefix of length n of m(w) provides a unique path of length
2n in Z. This path is denoted by p(w). It is clear that p is a one-to-one corre-
spondence between the words of length 2n over {a, b} and the paths of length
2n in 7Z starting from the origin. The following proposition follows immediately
from Lemma 2.

first collect some well-known facts. The generating function for s(n) is

Proposition 2. A word w over {a,b} of even length is abelian unbordered if
and only if the path p(w) does not return to the origin.

We extend the definition of p to words of odd length by

Y £ (TR VP
p(uq UnQUp, v) = {p(m CUpUp v T, if e =b.

With this definition, p is a one-to-one correspondence between the abelian un-
bordered words of length 2n + 1 over {a,b} and the paths of length 2n + 1 in
Z starting from the origin and not returning to it. It is therefore easy to get a
result similar to the above proposition for words of odd length.

Proposition 3. A word w over {a,b} of odd length is abelian unbordered if and
only if the path p(w) does not return to the origin.

The number of prefixes of Motzkin paths is well-known [10, Theorem 1]. Here,
we have obtained the following.

Corollary 1. The number of prefizes of length k of 2-colored Motzkin paths is
equal to half the number of paths in Z of length 2k + 2 starting from the origin
but not returning to it. In particular, this number is equal to

1/2k+2
2 < k+1 >
4 Larger Alphabets

Let k > 2. Consider the alphabet A = {ay,...,ax}, or simply {1,...,k}, and Z*
equipped with the usual unit vectors ey, ..., e, whose coordinates are all equal
to zero except one which is equal to 1. To be able to define k-colored paths, we
assume that at each point in ZF, there are exactly k loops colored with the k
different letters.



We first consider a word u; - - - un,vy, - - - v1 Of even length 2n. Take the prefix
of length n of m(uy - - - upvy, - - -v1) and apply to it the morphism hy, : (Ax A)* —
{e;—e; | 1<i,j <k}*C(ZF)* defined by

hy, <Z> —e,—e;, Vije{l,... k}

J

Therefore, to the word w = uy - - - U, v, - - - v1 there corresponds the sequence of
n + 1 points in Z*

— - u1 _ Uy Uz _ - Uy
pO_Oa pl_hk(vl)ap2_hk(v1>+hk(v2)a"'apn_zlhk(vj)a
j=

where 0 denotes the origin (0,0,...,0). By the definition of hj, note that all
these points lie in the subspace Hy, of Z* satisfying the equation

z1+ - +xp=0.

Definition 3. A path of length n in Hy is a sequence pg,...,pn of points in
H;;, such that, for all j > 1, pj — pj—1 belongs to {e; —e; |1 <1i,j <k,i# j}.

A k-colored path of length n in Hy, is a sequence pg, o, P1,Cly - -+ s Pr—15Cn—1,
pn alternating points in Hy, and elements belonging to AU {e} in such a way
that, if pj # pj+1, then pj1 — p; belongs to {e; —e; |1 <i,j <k,i# j} and
cj = €, otherwise c; belongs to A and can be interpreted as the color assigned to
a loop on p;. Note that paths are special cases of k-colored paths.

For the rest of this paper we will only consider paths that start at the origin.

Remark 3. For k = 3, Hs corresponds to the so-called triangular lattice (some-
times called hexagonal lattice) because a point x has exactly six neighbors. The
set of neighbors of x is denoted by

N(x):=x+ {e1 —ez,e1 —e3,es —e1,62 —e3,e3 —€1,e3 — €2}

Consider the word w = 23321211 over the alphabet {1,2, 3}. The prefix of length

4 of m(w) is
2332
1121

and corresponds to the sequence of moves p; —0 = ez — e, po — p1 = €3 — eq,
ps —p2 = €3 — ez and py — p3s = ez — e; and the path represented in Fig. 2.
The second path in Fig. 2 is colored and has four loops with labels 2,1, 3 and
1 respectively. It corresponds to w’ = 2321323113121211. The prefix of length 8

of m(w') is

23213231

11212131)/)°
Observe that in this prefix we have an occurrence of a repeated symbol in posi-
tions 3,4 and 7,8 corresponding to the four loops in the path.
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Fig. 2. In the triangular lattice, a path and a 3-colored path.

The word w = uy - - - upvy, - - - v1 is said to be simple if, for all 7 € {1,...,n},
u; # v;. In this case, in the sequence of points pg = 0, p1, ..., p, corresponding
to w, for all j < n, we have p; # p;j4+1. Therefore simple words w of length 2n
correspond to paths of length n in H. Such paths are denoted by p(w). For a
non-simple word w of length 2n there is a corresponding k-colored path p(w)
of length n in Hj (where at least one loop p; = p;y1 occurs along the path).
Conversely, for each k-colored path of length n in Hy, there is a corresponding
word of length 2n.

Proposition 4. A word w over {ay,...,a;} of even length 2n is abelian unbor-
dered if and only if the k-colored path p(w) in Hy of length n does not return
to the origin. Moreover, a simple word w over {a1,...,ar} of even length 2n is
abelian unbordered if and only if p(w) is a path in Hy of length n without loops
that does not return to the origin.

Proof. The proof is similar to the one of Proposition 2. a

Ifw=wy---upav,---v; is a word of odd length, we can first consider the prefix
of length n of m(w) and then add an extra loop of color a to the end of the
corresponding path p(w). As for Proposition 3, we get the following.

Proposition 5. A word w over {ai,...,ar} of odd length 2n + 1 is abelian
unbordered if and only if the k-colored path p(w) of length n+ 1 in Hy, does not
return to the origin. In particular, such a path ends with a loop whose color is
the one corresponding to the central letter of w.

Remark 4. The numbers of abelian unbordered words of length n over a 3-letter
alphabet, for 1 < n < 10, are: 3, 6, 18, 48, 144, 402, 1206, 3438, 10314, 29754
and for simple abelian unbordered words, we get 3, 6, 18, 30, 90, 168, 504, 954,
2862, 5508. As we can observe, over a 3-letter alphabet, the number of abelian
unbordered words (resp. simple abelian unbordered words) of length 2n + 1
is three times the number of abelian unbordered words (resp. simple abelian
unbordered words) of length 2n because there are three available choices for the
central letter. This observation extends trivially to an arbitrary alphabet.

From the discussion above and taking only entries of even index in the previ-
ous table, we also get the number of paths (resp. paths without loops) of length
n in the triangular lattice Hs that do not return to the origin. We denote this



quantity by ps(n) (resp. s3(n)). The first few values of p3(n), n > 1, are 6, 48,
402, 3438, 29754, 259464, 2274462 and the first few values of s3(n) are 6, 30,
168, 954, 5508, 32016, 187200. The next statement means that one only needs
to compute the sequence (si(n))n>1 to get (pr(n))n>1 and thus the number of
abelian unbordered words of length n.

Lemma 4. We have

pr(n) = isk(i) kK (Z_ 1) :

i=1

Proof. By a (k-colored) path, we mean a path in Hj, that does not return to
the origin. Each such k-colored path of length n has a unique underlying path
of length 4, for some i € {1,...,n}. To get a k-colored path of length n, n — i
loops are added to this underlying path. Each loop can be placed independently
at any point of the path, except the origin, and can be colored independently in
one of k colors. So, the total number of ways to extend such a path of length i
to a k-colored path of length n is kz"_"(”fl). a

n—u

4.1 Computation of (s3(n))n>o and then (sx(n))n>0

We show how to get a recurrence relation to compute the number s3(n), i.e., the
number of paths in the triangular lattice Hs = (V, E) that do not return to the
origin; here V (resp. E) is the set of vertices (resp. edges) of Hs. Consider the
map

1 ifx=0,

e:VoN xo {0 otherwise.

If f:V — Nis a map, we denote by Sf : V — N the map defined by
SHE = D f(y)
YEN(x)

where N (x) is the set of neighbors of x. In particular, if f,g:V — N are maps,
then S(f+g¢g) = Sf+Sg. A simple induction argument gives the following result.

Lemma 5. With the above notation, (S™e)(x) is equal to the number of paths
of length n that end at x.

The values of the maps e, Se and S?e around 0 are given in Figure 3. Let
r3n © V — N be defined as follows: r3,,(x) is the number of paths of length n
that end at x and never return to the origin. Then

s3(n) = Z r3,n(X)

xeV

where the sum is finite, since 73, (x) # 0 implies that x is at distance at most
n from the origin. If a map f : V — N is constant on N(0) (as is the case for
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Fig. 3. values of e, Se and S%e around 0.

S™e), then v(f) is a shorthand for f(y) for any y € N(0). By the symmetry of
Hj, we see that r3, is constant on N(0). Note that

ss(n+1)=6s3(n) — Y ran(x) =6s3(n) — 6y(rsn)
XEN(0)

because all paths except the ones that end in vertices adjacent to 0 have 6
prolongations, and the excluded ones have 5 possible prolongations. The same
argument can be applied to maps: r3,11 = Sr3., — 67(rs,)e and, applied
inductively, this leads to the following relation for r3 ,41:

3n+1 = SnJrle - Z 6’}/(7’311') Sniie . (1)
=0

The sequence ((8™¢)(0)),>0 counting the paths of length n starting and ending
at 0 is well-known (A002898 gives the number of n-step closed paths on the
hexagonal lattice). For instance, we have

st => -2~ (}) i @ 2)

=0 J

and its first values are 1, 0, 6, 12, 90, 360, 2040, 10080, 54810, 290640,. . . Due to
the 6-fold symmetry of the maps around the origin, note that

(s = EAO ®)

Taking into account both (1) and (3), for all n > 0, we have

1) = E XD S im0 0)

=0

and v(r3,0) = 0. As a conclusion, using the sequence ((§"¢)(0)),>0, we can com-
pute inductively (y(73,n))n>0 and therefore (s3(n)),>0. Using the above formula,
the first values of (7(r3.n))ns0 are 0, 1, 2, 9, 36, 172, 816, 4101, 20840, 108558,
572028,. .. Knowing that s3(0) = 1 is enough to compute

83(1) = 6(83(0) — ’y(?“g,o)) = 6, 83(2) = 6(83(1) — ’7(7‘371)) = 6(6 — 1) = 30, e



Let k > 3. We now turn to the general case to compute (sg(n))n>0. Con-
sider the homomorphism of groups x between (Hy, +) and (Z((z1, ..., 2k-1)),")
defined by the images of a basis of Hy

X:€ —€ept— 21, €3 —€ep > 22,..., €_1 — €L > Zk_1.

In particular, x(—v) = 1/x(v) and x(v + v') = x(v).x(v'). Any element of
Hjy can be decomposed as a linear combination with integer coefficients of e; —
er,e2 — €y, ...,ey_1 — e and corresponds by x to a unique Laurent polynomial
in z1,...,2,-1. Bach vertex x in Hy, has exactly k(k — 1) neighbors:

X+{ei_ej|1§iaj§k:a 27&.7}

and these k(k — 1) translations of x are coded through x by the terms

1 i o o,
Zi 2j

Now consider the Laurent polynomial corresponding to these elementary trans-
lations:

—1 1 2 k—1 k—1 1
TZ<Zi+Z>+Zj <1+Zzi> <1+Zz—i> — k.
1=1 1=1

i=1 it J

Let x € Hy and (ji,...,jxk—1) € Z"! be such that x(x) = zJ'---z)"7'. The
number of paths of length n from the origin to x in the lattice Hy, is given by the
coefficient of z{' ---2/*7' in T". In particular, the constant term gives exactly
the number of paths of length n returning to the origin. Furthermore, for k = 3

one can derive (2).

Ezample 3. For k = 4, the number of paths of length n in Hy starting and
ending at the origin is Sloane’s sequence A002899 and is given by

()50 (D))

The first values are 1,0,12,48, 540, 4320, 42240, 403200, 4038300, . ... For k =
5, we get 1,0,20, 120, 1860, 23280, 342200, 5115600, 79922500, . . . and for k = 6:
1,0, 30, 240, 4770, 82080, 1650900, 34524000, 758894850, . . ..

Being able to compute (§™e)(0) for the lattice Hy, we can proceed exactly as
for the computation of s3(n) and get, for all n > 0,

(8" %)

V(Tkn+1) = k(kil()()) - ZV(Tk,i)(Sn_iH@)(O)
=0

with v(r,0) = 0 and finally, si(n + 1) = k(k — 1)(sx(n) — v(Tk,n))-



5 About the Thue—Morse Word

Currie and Saari [4] proved that if n # 1 (mod 6), then the Thue-Morse word t
has an unbordered factor of length n, but they left it open to decide for which
lengths congruent to 1 modulo 6 does this property hold. Then Go¢, Henshall
and Shallit [6] showed that t has an unbordered factor of length n if and only if
(n)2 ¢ 1(01*0)*10*1, where (n)2 denotes the base 2 expansion of n.

If we are interested in abelian unbordered factors of length n occurring in
t, we obtain a strict subset of the set described by the above theorem. For
instance, for n =9, (n)2 = 1001 does not belong to 1(01*0)*10*1, so t contains
an unbordered factor of length 9 but a direct inspection shows that all factors of
length 9 occurring in t are abelian bordered. For instance, the factor 001100101
is unbordered but is abelian bordered. Obtained by a computer search, the first
few values of n € {0,...,2000} such that t has an abelian unbordered factor of
length n are 0, 1, 2, 3, 5, 8, 10, 12, 14, 16, 22, 50, 54, 66, 70, 194, 198, 258, 262,
770, 774, 1026, 1030. We conjecture that the set of integers n > 50 such that
t has an abelian unbordered factor of length n consists of those integers whose
base 2 expansion belongs to 110(00)*{01,11}0U 10(00)*{01, 11}0.

Generally, abelian properties of k-automatic sequences are not suited to be
expressed in the extended Presburger arithmetic (N, +, V). Nevertheless, we
can take advantage of the fact that the Thue-Morse word is abelian periodic
of period 2 and apply Biichi’s theorem [2] with a technique similar to [3,6].
We take verbatim the statement of Biichi’s theorem as formulated by Charlier,
Rampersad and Shallit in [3], which states that the k-automatic sequences are
exactly the sequences definable in the first order structure (N, +, V).

Theorem 1. [3] If we can express a property of a k-automatic sequence X us-
ing quantifiers, logical operations, integer variables, the operations of addition,
subtraction, indexing into X, and comparison of integers or elements of x, then
this property is decidable.

The technique we are now describing can obviously be adapted to any k-
automatic abelian periodic word. We will give in (4) below a first order formula
@w(n) in (N, +,V3) that is satisfied if and only if an abelian unbordered factor
of length n occurs in the Thue-Morse word t. General procedures to obtain a
finite automaton recognizing the base 2 expansions of the integers belonging to
the set {n € N | (N,+,V2) = ¢(n)} do exist (see for instance [2]). Hence a
certified regular expression for the base 2 expansion of the elements in the above
set will follow. Note that, since t is 2-automatic, we can define in (N, +,V5) a
unary function that maps ¢ to t(i). Such a formula is again described in [2].
Predicates e(n) and o(n) are simply shorthands to characterize even and odd
integers, e(n) = (Jz)(n = x + ), o(n) = —e(n). We define a predicate B(i,n, k)
which is true if and only if the Thue-Morse word has an abelian bordered factor
of length n occurring at ¢ with a border of length k. Since the Thue-Morse word
t is a concatenation of ab and ba, discussing only the parity of the position i, the
length n of the factor and the length k of the border, the predicate B(i,n, k) is



defined by the disjunction of the following terms (e(i) Ae(n) Ae(k)), (e(i) Ae(n) A
oR)At(i+k—1)=t(i+n—k)), (e(i) No(n)Ne(k)At(i+n—k)#t(i+n—1)),
(e(i)No(n)No(k)At(i+k—1) = t(i+n—1)), (o(i)Ae(n)Ao(k)At(i) = t(i+n—1)),
(o(i) No(n) Ne(k) At(i) At(i+k—1)), (o(i) ANo(n) ANo(k) ANt(i) =t(i+n—k))
and (o(i) Ae(n) Ae(E) A[(t(1) = tli+n—k)Atli+k—1) =tli +n—1))
V@) =t(i+n—1)At(i+k—1) =t(i+n—k))]). As an example, if ¢ is even,
n and k are odd, we have the situation depicted in Figure 4. In that case, since
all blocks ab and ba are abelian equivalent, one has just to check equality of two
symbols in adequate positions corresponding to the parameters.

i i+n

Fig. 4. A factor occurring in the Thue-Morse word.

Now the Thue-Morse word has an abelian unbordered factor of length n if
and only if the following formula holds true

o(n) = (Fi)(VE)(k > 1 A2k <n) = -B(i,n, k). (4)
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