

Photogrammetry for forest inventory.

Marc Pierrot Deseilligny. IGN/ENSG, France.

Jonathan Lisein. Ulg Gembloux Agro-Bio Tech, Belgium.

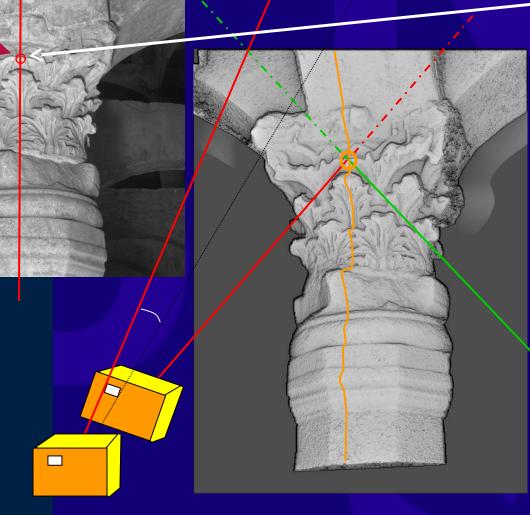
1- Photogrammetry

2- Application to forestry

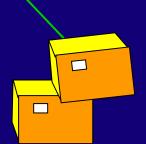
3- Tools and proposed actions

1- Photogrammetry

Photogrammetry vs lidar

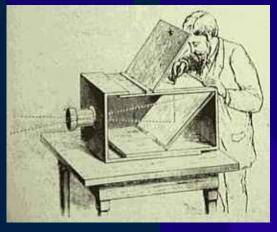


LIDAR 3D modeling



18/12/08 IGN /DT

Photogrammetry 3D modeling



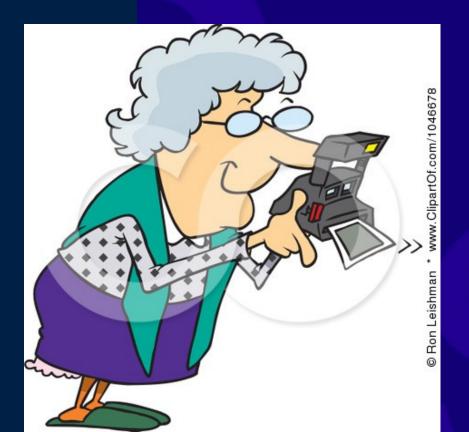
18/12/08 IGN /DT

Untill recently, when one heard « photogrammetry » what does came to mind ?

INSTITUT GEOGRAPHIQUI NATIONAL

An old technique

Requiring specialized material and people


But not fullly automatic, precise and complete as lidar

GEOGRAPHIQUE

At the begining of year 2000, most people thought that photogammetry was :

A respectable, old lady of the scientific word

That should profit of her well deserved retirement

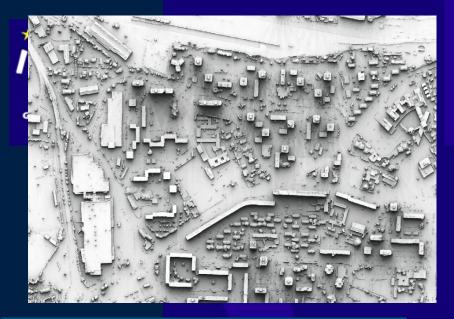
An make room for « modern young people » (LIDAR, RADAR...)

But since, two major issues have change the story :

Digital photography :

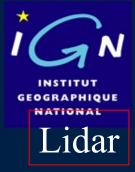
Progress in image processing :


Result of sift algorithm


Digital photography : taking photo is free => take as many photo as you need :

High quality of images, high redundancy of information :
(Potential) robustness :
(Potential) accuracy
(Potential) automation

* 3D model for environmental survey:


Example a 3D model of natural ground. Computed from 150 images acquired by a very light UAV.

Is the old lady photogrammetry back ? Ready to take her revenge and throw away the insolent young lidar ...

Of course, that's not so simple

Lidar VS photogrammetry

More robust Constant precision Few processing (direct measurement) Photogrammetry

Cheap material Precision adaptable Light weigth and instantaneous -Put it on UAV or a bone, Submarine application, - quick acquisition, Get the photo as an « extra »

Both are useful. Research on fusion is required.

For forestry application photogrammetry cannot replace LIDAR in all topics:

Aerial acquisition : photogrammetry wont give the DTM model under canopy as LIDAR can do;

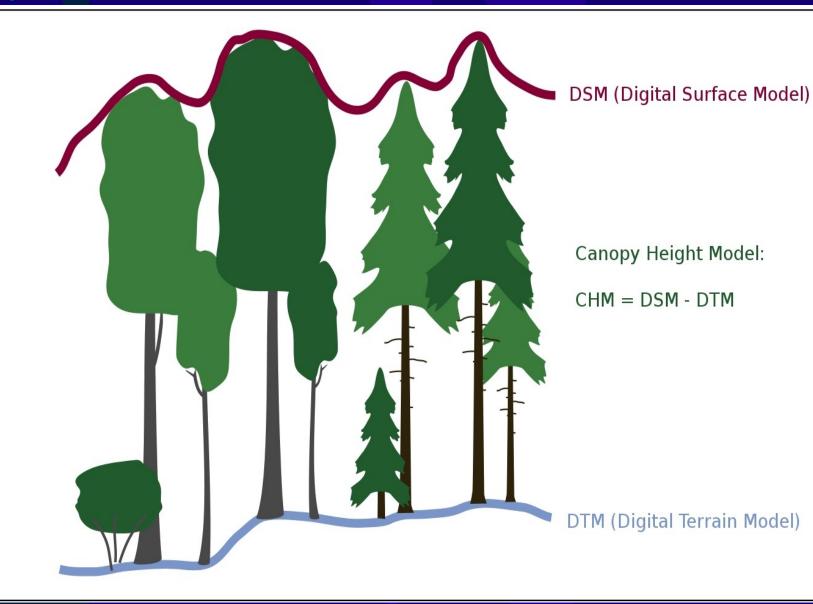
Terrestrial acquisition : photogrammetry wont give Photorealsitic 3D model of tree, as LIDAR can do.

But, it can still do a lot of thing for much lower cost:

Aerial photogrammetry can provide model of canopy

Terrestrial photogrammetry can provide main measurements :height, diameters of trees

2- Application to forestry


GEOGRAPHIQUE NATIONAL A few forestry domains in which photogrammetry may be utilized

National scale : two stages sampling inventory using aerial/satellite imagery Local scale : Aerial photogrammetry for Precision forestry

Stand and tree levels : Terrestrial photogrammetry

Forest canopy modelization

N

Use of canopy height model

 Information in term of vertical and horizontal structure (maturity, recruitement, irregularity)

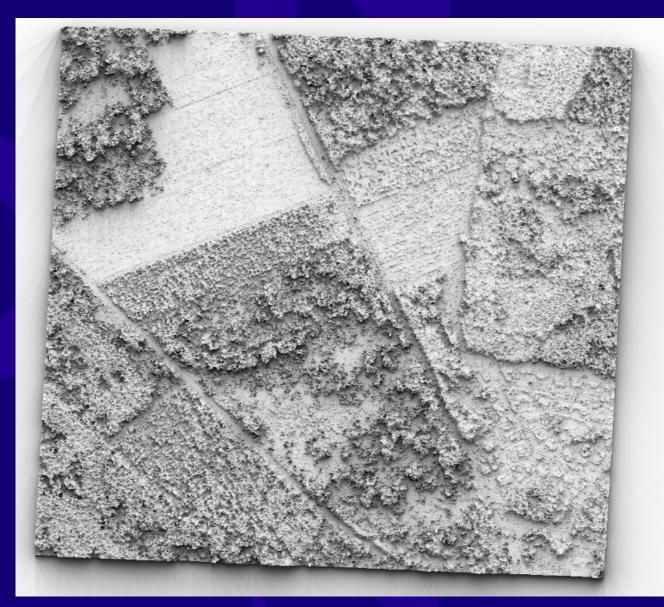
- Dominant height and Site Index determination for even-aged stands

- Time serie of CHMs : height increment modelization

Survey: IGN France

Spatial resolution : 25cm

Creation of a forest canopy <u>surface</u> model from <u>aerial</u> imagery



Sattelite: Pleiade

Spatial resolution: 70cm

Creation of a forest canopy <u>surface</u> model from satellite imagery

Difficulties in forest canopy photogrammetric restitution

(Baltsavias et al., 2008. High-quality image matching and automated generation of 3D tree)

- (1) little or not texture
- (2) object discontinuities
- (3) repetitive objects
- (4) moving objects (such as shadows)
- (5) occlusions
- (6) multi-layered or transparent objects
- (7) radiometric artifacts

Additionaly, when constructing CHM with a lidar DTM :

(8) co-registration of photo-DSM and lidar-DTM

These problems are even more present in leave-off situation.

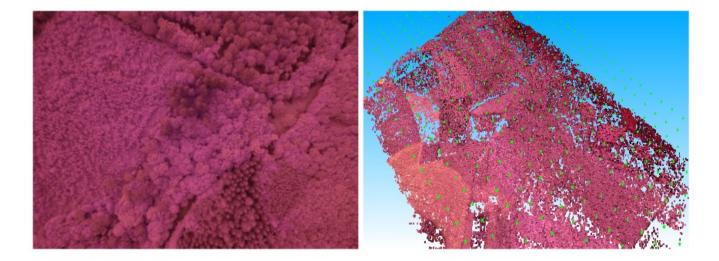
Case study : Creation of a forest canopy height model from mini-unmanned aerial system imagery

Traditional terrestrial surveying

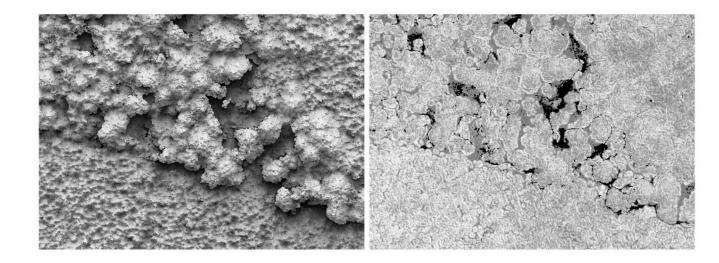
Where: Felenne (Belgium)

UAS : Gatewing X100

Flight altitude: 225 m


Camera : Ricoh GRIII

Spatial resolution : 8cm


Overlap: 75 %

Surface : 200 ha

Figure 2. Elements of orientation of individual areal images are computed by automatic aerotriangulation. Left: one of the 439 images. Right: the aerotriangulated model.

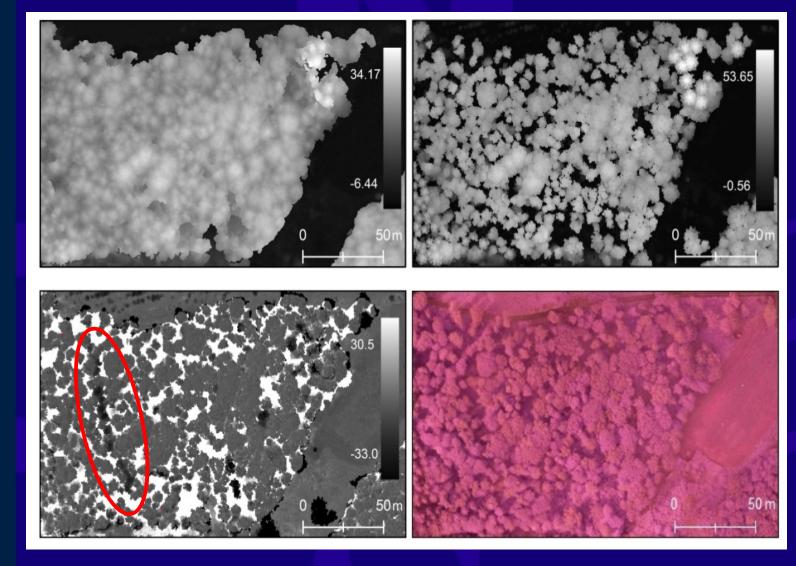


Figure 3. Close-up on the canopy surface model. Left: a shaded view of the surface model. Right: Map of normalized cross-correlation score.

Evaluation of lidar and photo Canopy Height Models difference: Top left: photo-CHM (Ground Sampling Distance of 15cm). Top right: lidar-CHM. Bottom left: elevation difference between photo-CHM and lidar-CHM. Bottom right: false color orthophotomosaic.

Comparison of photo-CHM with lidar-CHM:

Cloud to cloud distance shows that planimetric standard deviation is about 0.46 m. Altimetric distance reveals the presence of a negative bias of 2.4 cm, attributable to the vegetation growth. Standard deviation in Z distance, for its part, is 0.48 cm.

Correlation of metrics computed on a 20x20m windows:

		photo-CHM metrics										
		mean	p0	p25	p50	p75	p90	p95	p99	p100		
lidar-CHM metrics	mean	0.95	0.75	0.90	0.92	0.89	0.85	0.83	0.80	0.79		
	p0	0.14	0.19	0.16	0.12	0.09	0.07	0.06	0.05	0.04		
	p25	0.82	0.75	0.86	0.78	0.69	0.62	0.60	0.57	0.55		
	p50	0.93	0.72	0.89	0.93	0.87	0.81	0.79	0.76	0.75		
	p75	0.93	0.62	0.81	0.92	0.97	0.95	0.93	0.91	0.90		
	p90	0.89	0.56	0.74	0.85	0.95	0.98	0.98	0.97	0.96		
	p95	0.86	0.54	0.71	0.83	0.93	0.98	0.98	0.98	0.97		
	p99	0.84	0.51	0.69	0.80	0.90	0.96	0.97	0.98	0.98		
	p100	0.80	0.49	0.66	0.76	0.87	0.92	0.94	0.95	0.96		

Table 2. Correlation between photo-CHM and lidar-CHM window metrics.

Comparison of photo-CHM metrics with forest variables (Dominant height in decidious stand):

Hdom = a + b * p100 + c * p95 + d * p90

Residual standard error: 1.531 m, (7.8%) Multiple R-squared: 0.8599

Case study : Creation of a forest canopy height model from mini-unmanned aerial system imagery

Take home messages:

Photogrammetric canopy height model equivalent in Smoothed lidar-CHM (mainly due to occlusion)

Photogrammetry in vegetation area require specific Tuning of dense-matching algorithm

Dominant height may be predicted with an mean Residual of 1.5 m in decidious stand.

3-Tools and proposed actions

	Numerous existing softwares :					
GEOGRAPHIQUE NATIONAL		Bundler PMVS				
Open (ar	nd free)	Visual SFM				
		MicMac-Apero				
low-	cost	Agisoft Photoscan				
Upl		Solution Arc3D				
(free	e)	Solution 123DCatch				
Comme	ercial	Solution acute3D				
		Solution pix4D				

IGN photogrammetry suite characteristics :

Intended for professionnals (GIS experts, archaeologists, architects, geomorphologists ...)

More complex use , no « one bottom press » solution ;

Provide fine tuning opportunity for each steps ;

Handle large amount of data ;

Generate intermediate (and final) results in open format (can be used in separate pieces);

Background :

2003 : developpement of self-calibrating bundle block adjutment and urban DEM dense matching script

2005 : setting up XML user interface, software is called MicMac;

2007 : open source repository;

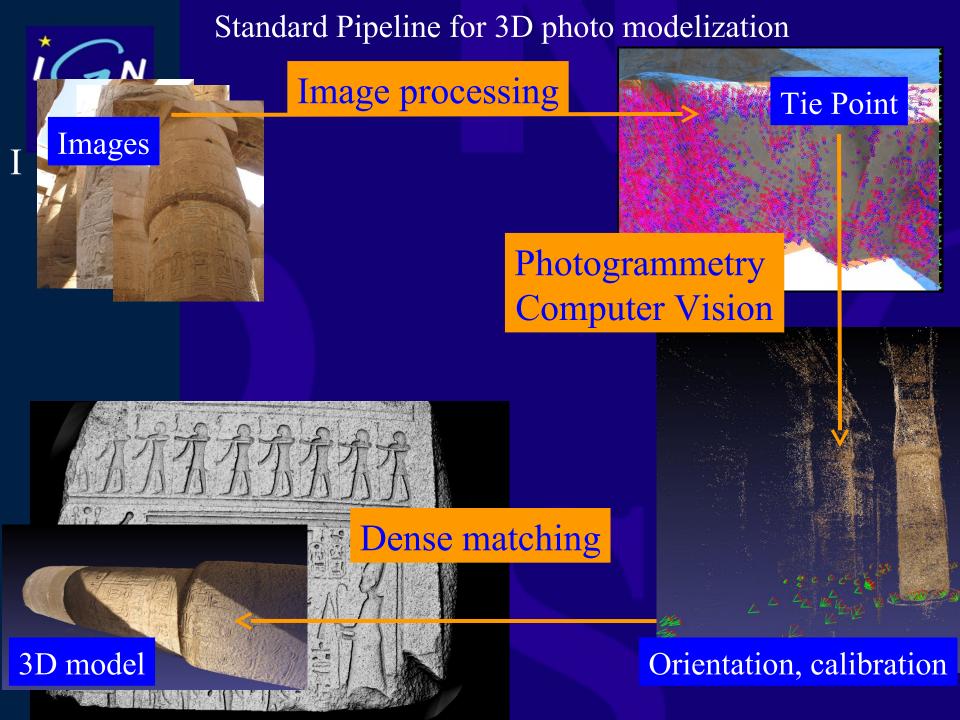
2008 : developpement of Apero (tool for orientation) ;

2010 : training sessions and developpement of simplified interfaces (without XML);

2012 : "culture 3d" project : Windows port, binaries distribution.

Why a summer school ?

GEOGRAPHIQUE NATIONAL


Importance of photo acquisition :

Once you know the process, key stage is acquisition time :

Take "good photo" (contrast, noise, no blur)

Take enough photo

Take the good angles

Proposed summer school :

- 3 to 4 days, week of 19 to 23 August 2013

- In Forcalquiers, south of France (pré Alpes)

- Topics :

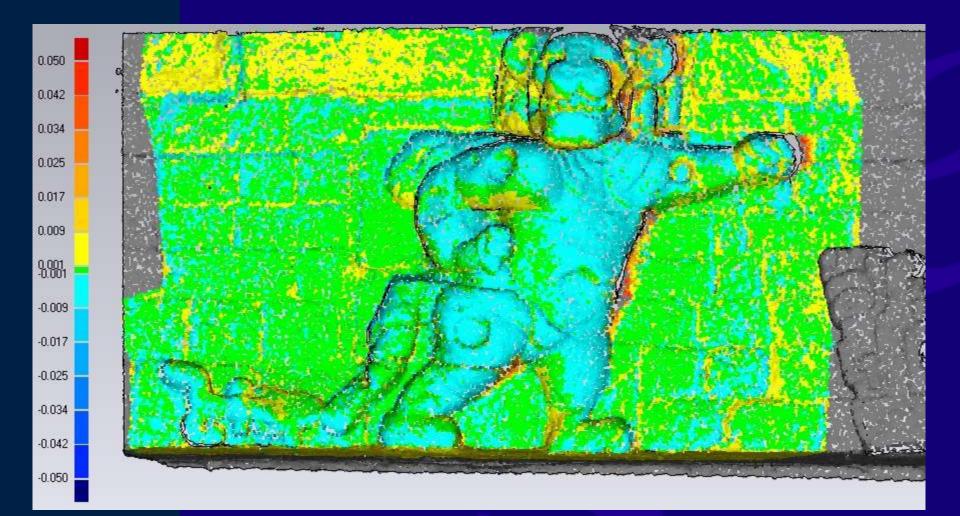
- Fundamental of photogrammetry

-Learning the IGN's open source suite on simple case;

-Test cases on forestry (aerial and satellite, UAV, terrestrial);

-Table ronde and discussion for research and development

Thank you for your attention.


Slides avalaible on : http://orbi.ulg.ac.be/handle/2268/144562

Questions ?

Précision ?

"Autour du pixel "

