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Motivation

↓

During the previous TD, we studied a simplified statistical method for infer ring from data
a power spectral density function for road/rail roughness.
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Motivation

↓
→

During this TD, we will study a simplified MDOF vehicle model for obtaini ng FRFs,
which will ultimately allow us to predict vibration.
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Remember...

■ As part of the first TD, we obtained the following result:
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■ Subresonant regime ω ≪
√

k/m, where limω→0 ĥ(ω) = 1, that is, û(ω) → ûc(ω).

Resonant regime ω ≃
√

k/m.

Postresonant regime ω ≫
√

k/m, where limω→+∞ ĥ(ω) = 0, that is, û(ω) → 0.

■ Vibration transmission : if the contact point oscillates at a frequency much lower than the
eigenfrequency, the mass moves along with it.

Vibration isolation : if the contact point oscillates at a frequency much higher than the
eigenfrequency, the mass is isolated from it.
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Suspensions

■ The suspension must address the following two opposing needs:

◆ vibration transmission : the wheels must be able to follow bumps,

◆ vibration isolation : the vehicle body must be isolated from vibration for passenger comfort.

■ To address these needs, the suspension is designed two exhibit two principal modes of vibration:

sprung mass
(vehicle body)
blancprimary suspension
blancunsprung mass

(wheels, bearings, arms,...)
blanctires

Wheel hop mode at about 15 Hz provides bump following ability: this mode is a mode of vibration
in which the unsprung mass oscillates on the tires.

Primary suspension mode at about 1.5 Hz provides vibration isolation: this mode is a mode of
vibration in which the sprung mass oscillates on the primary suspension.



ULg, Liège, Belgium April 24, 2013 – p. 6/14

Stochastic processes

At least a 2-DOF model is required to represent the vibration transmission and isolati on
provided by the suspension.

We need to extend our theory from scalar-valued stochastic processes
to vector-valued stochastic processes...
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Stochastic processes

■ A second-order stochastic process {X(t), t ∈ R} defined on a probability triple (Θ,F , P )

indexed by R with values in Rd is a function that associates to any index t in R a second-order
random variable X(t) defined on (Θ,F , P ) with values in Rd, that is,

√∫

Θ

‖X(t)‖2dP < +∞, where ‖X(t)‖2 =

d∑

j=1

Xj(t)
2, ∀t ∈ R.

The second-order statistical descriptors of {X(t), t ∈ R} are defined as follows:

◆ mean function mX(t) =
∫
Θ
X(t)dP, t ∈ R,

◆ autocorrelation function [RX(t, t′)] =
∫
Θ
X(t)X(t′)TdP, t, t′ ∈ R,

◆ covariance function [CX(t, t′)] =
∫
Θ

(
X(t)−mX(t)

)(
X(t′)−mX(t′)

)T
dP, t, t′ ∈ R.

■ Properties of the autocorrelation and covariance functions:

◆ [RX(t, t′)] = [RX(t′, t)]T and [CX(t, t′)] = [CX(t′, t)]T, ∀t, t′ ∈ R,

◆ [RX(t, t)] and [CX(t, t)] are positive-definite symmetric matrices, ∀t ∈ R.

■ The second-order stochastic process {X(t), t ∈ R} is mean-square stationary if

mX(t) = mX , independent of t,

[RX(t, t′)] = [RX(t− t′)], dependent only on lag t− t′.
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Stochastic processes

■ The mean-square stationary second-order stochastic process {X(t), t ∈ R} has a power
spectral density function if there exists an integrable function [SX ] : R → Md(C) such that

[RX(t− t′)] =
1

2π

∫

R

exp
(
iω(t− t′)

)
[SX(ω)]dω, ∀(t− t′) ∈ R.

■ Properties of the power spectral density function:

◆ [SX(−ω)] = [SX(ω)]T, ∀ω ∈ R,

◆ [SX(ω)] is a positive-definite Hermitian matrix, ∀ω ∈ R,

◆ the [SX ]jj are positive real-valued, integrable, and even functions,

◆ the [SX ]jk are complex-valued, integrable functions with even real and odd complex parts.



ULg, Liège, Belgium April 24, 2013 – p. 9/14

Stochastic processes

■ Stochastic Differential Equation (SDE) :
We consider the linear filtering of a mean-square stationary zero-mean second-order stochastic
process {F (t), t ∈ R} that we assume to admit a power spectral density function [SF ]:

[M ]
d2UF

dt2
(t) + [D]

dUF

dt
(t) + [K]UF = F (t), t ∈ R.

We assume that [M ], [D], and [K] are positive-definite, symmetric real matrices. Then, the FRF

ω 7→ [Ĥ(ω)] = [P (iω)]−1 = [−ω2M + iωD +K]−1 is such that [P ]−1 has no poles on the

imaginary axis. We denote by [H] = F−1([Ĥ]) the impulse response function.

■ Generalized solution :

UF = [H] ⋆ F , that is, UF (t) =

∫

R

[H(s)]F (t− s)ds.

The assumptions allow this convolution to be defined as a mean-square integral. Hence, {UF (t),

t ∈ R} is a second-order stochastic process. Its second-order descriptors are obtained as follows:

◆ mean function mUF
(t) =

∫
R
[H(s)]

∫
Θ
F (t− s)dPds = 0.

◆ autocorrelation function [RUF
(t, t′)] =

∫
R

∫
R
[H(s)][RF (t− t′ + s′ − s)][H(s′)]Tdsds′.

Hence, {UF (t), t ∈ R} is a mean-square stationary zero-mean second-order stochastic process.

■ Thus, the linear filtering of a mean-square stationary zero-mean second-order stochastic process
provides in turn a mean-square stationary zero-mean second-order stochastic process.
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Stochastic processes

■ Substituting [RF (t− t′)] = 1

2π

∫
R
exp

(
iω(t− t′)

)
[SX(ω)]dω in the expression for [RUF

], we obtain:

[RUF
(t−t′)] =

1

2π

∫

R

exp
(
iω(t−t′)

)(∫

R

exp(−iωs)[H(s)]ds

)
[SF (ω)]

(∫

R

exp(iωs′)[H(s′)]Tds′
)
dω.

Hence, we obtain the power spectral density function of {UF (t), t ∈ R} as follows:

[SUF
(ω)] = [Ĥ(ω)][SF (ω)][Ĥ(ω)]∗, ∀ω ∈ R.

■ Stochastic Initial-Value Problem (Stochastic IVP) :




[M ]
d2UF

dt2
(t) + [D]

dUF

dt
(t) + [K]UF = F (t), t > 0,

U(0) = U0 and
dU

dt
(0) = U1,

.

If [M ], [D], and [K] are positive-definite, symmetric, and real matrices, all the poles of [P ]−1 are
located left of the imaginary axis, and we have

U(t) = Uh(t)︸ ︷︷ ︸
transient response

+ UF (t)
︸ ︷︷ ︸

forced response

with lim
t→+∞

√∫

Θ

‖U(t)−UF (t)‖2dP = 0,

that is, the response U converges to the forced response UF as time advances.
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Exercise

6Uc(t)
6
W(x)-6x

y

6Uu(t)

duku

mu

6Us(t)

dsks

ms

■ We consider a 2-DOF model of a vehicle that moves over an uneven support at a constant
horizontal velocity of v.

■ Let the support unevenness be modeled by a mean-square stationary zero-mean second-order
stochastic process {W (x), x ∈ R} with power spectral density function sW .

■ Let {Uc(t), t ∈ R} be the vertical displacement of the contact point caused by the support
unevenness.

■ Let {Us(t), t ∈ R} and {Uu(t), t ∈ R} be the vertical displacement of the sprung mass and the
unsprung mass, respectively, with respect to the static equilibrium configuration on a flat support.
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Exercise

1. Express dynamical equilibrium and deduce the system of two stochastic differential equations
that governs the displacements {Us(t), t ∈ R} and {Uu(t), t ∈ R} of the sprung mass and the
unsprung mass.

2. Consider the system of two stochastic differential equations that you obtained under 1 as a
convolution transformation whose input is the stochastic process {Uc(t), t ∈ R} and whose
output is the pair of stochastic processes {Us(t), t ∈ R} and {Uu(t), t ∈ R}. Write the
expression for the FRF ĥ = (ĥs, ĥu) associated with this convolution filter.

3. Write the equations that relate the mean function and the power spectral density function of
{Us(t), t ∈ R} and {Uu(t), t ∈ R} to those of {W (x), x ∈ R}.

4. Consider sW (ξ) = s0/
(
1 +

|ξ|
ξ0

)α and the numerical values of ξ0 = 0.5m−1, ms = 470 kg,

ks = 36× 103 N/m, ds = 0.10× 2×
√
msks, mu = 39 kg, ku = 160× 103 N/m,

du = 0.05× 2×
√
muku. Plot sW and |ĥ|, first on a linear scale and then on a loglog scale. First

using the values of s0 and α that you obtained under TD 2 question 1(d) for the deteriorated
jointed plain concrete pavement (w1.mat), and then using the values of s0 and α that you
obtained under TD 2 question 1(d) for the concrete block pavement (w2.mat), plot sUs and sUu

for v = 40m/s, first on a linear scale and then on a loglog scale. Interpret your results.
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Exercise

5. The ISO 2631-1 guide indicates that the comfort passengers perceive can be predicted on the
basis of the root-mean-square value of the acceleration of the vehicle body, that is,

√∫

Θ

|Üs(t)|2dP =

√
1

2π

∫

R

s
Üs

(ω)dω =

√
1

2π

∫

R

ω4sUs (ω)dω.

Specifically, the ISO 2631-1 guide suggests that passengers perceive comfort as follows:

root-mean-square acceleration [m/s2] comfort perception

Less than 0.315 not uncomfortable
0.315 to 0.63 a little uncomfortable

0.5 to 1 fairly uncomfortable
0.8 to 1.6 uncomfortable

1.25 to 2.5 very uncomfortable
greater than 2 extremely uncomfortable

Use the power spectral density function you obtained under question 4 to predict comfort
perception, first when driving over the deteriorated jointed plain concrete pavement (w1.mat) and
then when driving over the concrete block pavement (w2.mat).

(Note that for the sake of simplicity, we neglected here the frequency weighing suggested by the
ISO 2631-1 guide to account for the fact that not all frequencies are perceived equally.)
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