
ULg, Liège, Belgium March 26, 2013 – p. 1/29

MATH0074 Elements of Stochastic Processes, March 26, 2013

Traffic-induced Vibration

TD 2

Maarten Arnst and Lamberto Dell’Elce

Dept. of Aerospace and Mech. Eng., University of Liège, Belgium.



ULg, Liège, Belgium March 26, 2013 – p. 2/29

Motivation

↓

↓

Road model.

→

↓

↓

Vehicle model.

→

Response prediction.

Modeling of traffic-induced vibration.
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Motivation

Modeling is very useful for engineering!
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Motivation

Let’s simplify this a little bit!
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Motivation

↓

During this TD, we will study a simplified statistical method for inferring from data

a power spectral density function for road/rail roughness.
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Motivation

↓

→

During the next TD, we will study a simplified MDOF vehicle model for obtaining FRFs,

which will ultimately allow us to predict vibration.
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Remember...

Remember MATH0487 Elements of statistics...

We wish to extend these ideas from random variables to stochastic processes...
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Remember...

n Let X be a second-order random variable defined on (Θ,F , P ) with values in R, whose mean mX

and variance σ2
X are given by

mX =

∫

Θ

XdP,

σ2
X =

∫

Θ

(X −mX)2dP.

n Let x(1), . . . , x(ν) be ν independent samples of X, whose sample mean xν and sample

variance (sνX)2 are given by

xν =
1

ν

ν∑

j=1

x(j),

(sνX)2 =
1

ν − 1

ν∑

j=1

(
x(j) − xν

)2
.

n Bias and variance of the estimator X:
∫

Θ

XνdP = mX ,

∫

Θ

(Xν −mX)2dP =
σ2
X

ν
.

n Bias and variance of the estimator (Sν
X)2:

∫

Θ

(Sν
X)2dP = σ2

X ,

∫

Θ

(
(Sν

X)2 − σ2
X

)2
dP ≈

∫
Θ
(X −mX)4dP − σ4

X

ν
.
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These are the main ideas!

n We will describe a statistical method for inferring from data an estimate of a power spectral density

function.

n To show the effectiveness of this statistical method, we will study the bias and variance of the

corresponding estimator.
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Sampling

But first... Let’s take a step back!

Remember SYST0002 Modélisation et analyse des systèmes...



ULg, Liège, Belgium March 26, 2013 – p. 11/29

Sampling

n For any a in R, let δa be the Dirac distribution located at a, which has the property that for any

smooth function f : R → R, we have

δa such that

∫

R

f(t)δa(t)dt = f(a).

t

δ a

n For any a > 0, let ∆a be the Dirac comb defined by

∆a =

+∞∑

k=−∞

δka.

t

∆
a

n Let f : R → R be a smooth function. The product of f and the Dirac comb ∆a provides a

representation of the sampling of f with period a, that is,

f∆a =

+∞∑

k=−∞

f(ka)δka.

t

f
∆

a

n Let f have a closed and bounded support. The convolution of f and the Dirac comb ∆a leads to

the repetition of f with period a, that is,

(f ⋆∆a)(t) =

+∞∑

k=−∞

f(t− ka).

t

f
⋆

∆
a

n The Fourier transform of the Dirac distribution and Dirac comb are as follows:

δ̂a(ω) = exp(−iωa) and ∆̂a(ω) =
2π

a
∆ 2π

a

(ω).
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Sampling

t

f

ω

f̂

t

f
∆

a

ω

f̂
∆

a

Sampling at a rate lower than the Nyquist rate: 1
a
< ωL

π
.

t

f
∆

a

ω

f̂
∆

a

Sampling at a rate higher than the Nyquist rate: 1
a
≥ ωL

π
.

Sampling in time domain results in repetition in the frequency domain.

−ωL ωL
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Sampling

n Poisson formula:

Let f : R → R be a smooth function whose Fourier transform f̂ has a closed and bounded
support. Then, we have:

(
f̂ ⋆∆ 2π

a

)
=

+∞∑

k=−∞

f̂
(
ω − k

2π

a

)
= a

+∞∑

k=−∞

f(ka) exp(−ikaω),

↓F−1 ↑F

F−1
(
f̂ ⋆∆ 2π

a

)
= fF−1

(
∆ 2π

a

)
= fa∆a = a

+∞∑

k=−∞

f(ka)δka

n Shannon theorem:

Let f : R → R be a smooth function whose Fourier transform f̂ is a square-integrable function,

that is,
∫
R
|f̂(ω)|2dω < +∞, and has a bounded support supp(f̂) = [−ωL, ωL]. If we sample at a

rate that is higher than the Nyquist rate, that is, 1
a
≥ ωL

π
, then we have:

f(t) =

+∞∑

k=−∞

f(ka)
sin

(
ωL(t− ka)

)

ωL(t− ka)
,

where convergence is such that limn→+∞

∫
R

∣∣∣∣f(t)−
∑n

k=−n
f(ka)

sin
(
ωL(t−ka)

)

ωL(t−ka)

∣∣∣∣
2

dt = 0.

Sampling is useful only if the signal is band limited

and the sampling rate is higher than the Nyquist rate.
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Discrete Fourier transform (DFT)

n Let f = (f1, , . . . , fm) be a vector in Cm. Then, the discrete Fourier transform (DFT) of f is the

vector f̂ = (f̂1, . . . , f̂m) in Cm such that:





fk =
1

m

m∑

k=1

f̂ℓ exp

(
i(k − 1)

2π

m
(ℓ− 1)

)
,

f̂ℓ =

m∑

ℓ=1

fk exp

(
− i(k − 1)

2π

m
(ℓ− 1)

)
.

n It has the Parseval property that ‖f‖2 = 1
m
‖f̂‖2.

n It has the convolution property that for f ∈ Cm, g ∈ Cm, and h ∈ Cm with hk =
∑m

ℓ=1 fℓgk−ℓ,

k = 1, . . . ,m, we have ĥ ∈ Cm such that ĥℓ = f̂ℓĝℓ, ℓ = 1, . . . ,m.

n The fast Fourier transform algorithm (FFT) facilitates an efficient recursive computation of the

discrete Fourier transform if m is a power of two.
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Computation of FT by using DFT

n We begin by expressing the Fourier transform using Poisson’s formula

f̂(ω) = 1[−ωL,ωL](ω)a

+∞∑

k′=−∞

f(k′a) exp(−ik′aω),

which, under the conditions of Shannon’s theorem, we can approximate by

f̂n(ω) = 1[−ωL,ωL](ω)a

n−1∑

k′=−n

f(k′a) exp(−ik′aω),

where convergence is such that limn→+∞

∫
R
|f̂(ω)− f̂n(ω)|2dω = 0.

n Using ωℓ = −ωL + (ℓ− 1)∆ω, ℓ = 1, . . . , 2n, where ∆ω = ωL/n, we obtain

f̂n(ωℓ) = a

n−1∑

k′=−n

f(k′a) exp
(
− ik′a

(
− ωL + (ℓ− 1)∆ω

))
.

n Assuming that the sampling rate is equal to the Nyquist rate, that is, 1
a
= ωL

π
, we obtain

f̂n(ωℓ) =

n−1∑

k′=−n

(
af(k′a) exp(ik′π)

)
exp

(
− ik′

π

n
(ℓ− 1)

)
.

n Finally, setting k = k′ + n+ 1, we recover the discrete Fourier transform

exp
(
− iπ(ℓ− 1)

)
f̂n(ωℓ) =

2n∑

k=1

(
af

(
(k− n− 1)a

)
exp

(
i(k− n− 1)π

))
exp

(
− i(k− 1)

2π

2n
(ℓ− 1)

)
.

time step:
a = π

ωL
.

time discretization:
tk = (k − n− 1)a,

k = 1, . . . , 2n.

freq. resolution:

∆ω = ωL

n

freq. discretization:

ωℓ = −ωL+(ℓ−1)∆ω,
ℓ = 1, . . . , 2n.
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Computation of FT by using DFT
f

tk = (k − n− 1)a, k = 1, . . . , 2n.

blanc
Timestep a = π

ωL
.

|f̂
|

ωℓ = −ωL + (ℓ− 1)∆ω, ℓ = 1, . . . , 2n.

blanc
Frequency step ∆ω = ωL

n
.

t1 t2 t2n−1 t2n ω1 ω2 ω2n−1 ω2n

exp
(
− iπ(ℓ− 1)

)
f̂n(ωℓ) =

2n∑

k=1

(
af

(
(k − n− 1)a

)
exp

(
i(k − n− 1)π

))
exp

(
− i(k − 1)

2π

2n
(ℓ− 1)

)
.
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Shannon’s theorem for stochastic processes

Now... let’s see how this extends to our stochastic processes!



ULg, Liège, Belgium March 26, 2013 – p. 18/29

Shannon’s theorem for stochastic processes

n blanc

t

x
(1

) (
t)

t

x
(2

) (
t)

. . .

t

x
(ν

) (
t)

ω

s X
(ω

)

n Let {X(t), t ∈ R} be a mean-square stationary zero-mean second-order stochastic process

defined on (Θ,F , P ) indexed by R with values in R. Let {X(t), t ∈ R} admit a power spectral

density function sX : R → R that is bounded and has a bounded support supp(sX) = [−ωL, ωL].

If we sample at a rate that is higher than the Nyquist rate, that is, 1
a
≥ ωL

π
, then we have:

X(t) =

+∞∑

k=−∞

X(ka)
sin

(
ωL(t− ka)

)

ωL(t− ka)
,

where convergence is such that

limn→+∞

∫
Θ

∣∣∣∣X(t)−
∑n

k=−n
X(ka)

sin
(
ωL(t−ka)

)

ωL(t−ka)

∣∣∣∣
2

dP =0, ∀t ∈ R.

As in the deterministic case, sampling is useful only if the stochastic process

is band limited and the sampling rate is higher than the Nyquist rate.

−ωL ωL
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Estimation

Well... OK... but what does all of this have to do with our estimation?
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Estimation

n Context:
Let {X(t), t ∈ R} be a mean-square stationary zero-mean second-order stochastic process

defined on (Θ,F , P ) indexed by R with values in R. Let {X(t), t ∈ R} admit a power spectral

density function sX : R → R that is continuous and has a bounded support supp(sX) = [−ωL, ωL].

n Available information:
Let the available information consist of ν trajectories {x(j)(t), 0 ≤ t ≤ τ}, each of signal length τ :

t

x
(1

) (
t)

{x(1)(t), 0 ≤ t ≤ τ}.

t
x

(2
) (

t)

{x(2)(t), 0 ≤ t ≤ τ}.

. . .

t

x
(ν

) (
t)

{x(ν)(t), 0 ≤ t ≤ τ}.

n Objective of the estimation:

We will consider the inference of an estimate sτ,ν
X

of the power spectral density function sX from

the available information
{
{x(j)(t), 0 ≤ t ≤ τ}, 1 ≤ j ≤ ν

}
.

n Available estimation methods:
u Indirect method: estimate first the autocorrelation and then the p.s.d. function therefrom.
u Direct method: let’s look at this method in more detail!
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Estimation

n Step 1: Transform each trajectory into the frequency domain using the FT, assuming the signal

vanishes outside of the interval [0, τ ]:

t

x
(1

) (
t)

↓FT

ω

|x̂
(1

) (
ω

)|
2

t

x
(2

) (
t)

↓FT

ω

|x̂
(2

) (
ω

)|
2

. . .

t

x
(ν

) (
t)

↓FT

ω

|x̂
(ν

) (
ω

)|
2

n Step 2: Compute the estimate sτ,ν
X

of sX as follows:

sX(ω) ≈ sτ,ν
X

(ω) =
1

τ

1

ν

ν∑

j=1

|x̂(j)(ω)|2, ∀ω ∈ R,

ω

sτ
,ν

X
(ω

)

n Here, the FT can be approximated by DFT after sampling at a rate higher than the Nyquist rate.
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Estimation

Why does this work?

Let’s look at convergence with respect to the signal length τ (bias)

and number of trajectories ν (variance)!
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Estimation

n The mean of the estimator of the power spectral density function reads as follows:∫

Θ

Sτ,ν
X

(ω)dP =
1

τ

∫

Θ

|X̂(ω)|2dP, where X̂(ω) =

∫

R

1[0,τ ](t)X(t) exp(−iωt)dt.

n Elaborating and then using the expression for the autocorrelation function, we obtain
∫

Θ

Sτ,ν
X

dP =
1

τ

∫

R

∫

R

1[0,τ ](t)1[0,τ ](t
′)rX(t− t′) exp

(
− iω(t− t′)

)
dtdt′,

=
1

τ

∫

R

∫

R

1[0,τ ](t)1[−τ,0]

(
(t− t′)− t

)
rX(t− t′) exp

(
− iω(t− t′)

)
dtd(t− t′).

n Using the relationships between the convolution, product, and Fourier transform, we obtain
∫

Θ

Sτ,ν
X

(ω)dP =
1

τ

(
1

2π
|1̂[0,τ ]|

2 ⋆ sX

)
(ω).

n In the limit as the signal length τ of the trajectories increases to infinity, we obtain

ω

|1̂
[0

,τ
](
ω

)|
2
/
(2

π
)

ω

|1̂
[0

,τ
](
ω

)|
2
/
(2

π
)

ω

|1̂
[0

,τ
](
ω

)|
2
/
(2

π
)

lim
τ→+∞

1

τ

1

2π
|1̂[0,τ ]|

2=δ0, lim
τ→+∞

∫

Θ

Sτ,ν
X

(ω)dP =sX(ω).

For finite signal length τ , there is leakage, that is, local averaging of frequency components. As

the signal length τ increases, leakage decreases. The estimator is asymptotically unbiased.

Frequency resolution improves with increasing signal length τ .
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Estimation

n The variance of the estimator of the power spectral density function reads as follows:

∫

Θ

(
Sτ,ν
X

(ω)−

∫

Θ

Sτ,ν
X

(ω)dP

)2

dP =

∫

Θ

|Sτ,ν
X

(ω)|2dP −

(∫

Θ

Sτ,ν
X

(ω)dP

)2

.

n Using Sτ,ν
X

(ω) = 1
τ

1
ν

∑ν
j=1 |X̂

(j)(ω)|2 where X̂(j)(ω) =
∫
R
1[0,τ ](t)X

(j)(t) exp(−iωt)dt, we obtain

∫

Θ

(
Sτ,ν
X

(ω)−

∫

Θ

Sτ,ν
X

(ω)dP

)2

dP =
1

τ2
1

ν

(∫

Θ

|X̂(ω)|4dP −
∣∣∣
∫

Θ

|X̂(ω)|2dP
∣∣∣
2
)
.

Provided that the additional condition that
∫
Θ
|X̂(ω)|4dP < +∞ is fulfilled, the error introduced by

the use of only a finite number of trajectories decreases with increasing number of trajectories ν.

Error introduced by the use of only a finite number of trajectories

decreases with increasing number of trajectories ν.
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Estimation

n What if the available information consists of only a single trajectory?

n Step 0: Split the trajectory into ν subtrajectories of equal signal length τ :

t

x
(t

)

n Step 1: Transform each subtrajectory into the frequency domain using the FT:

t

x
(1

) (
t)

↓FT

ω

|x̂
(1

) (
ω

)|
2

t

x
(2

) (
t)

↓FT

ω

|x̂
(2

) (
ω

)|
2

. . .
t

x
(ν

) (
t)

↓FT

ω

|x̂
(ν

) (
ω

)|
2

n Step 2: Compute the estimate sτ,ν
X

of sX as follows:

sX(ω) ≈ sτ,ν
X

(ω) =
1

τ

1

ν

ν∑

j=1

|x̂(j)(ω)|2, ∀ω ∈ R,

ω
s

τ
,ν

X
(ω

)

n Determine ν and τ in such a way that a suitable tradeoff between bias and variance is achieved.
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Vocabulary

time space

frequency f

circular frequency ω = 2πf wavenumber ξ

period 1
f
= 2π

ω
wavelength 2π

ξ
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Exercise

n Record w1.mat (deteriorated jointed plain concrete pavement):

0 50 100 150 200
−0.02

−0.01

0

0.01

0.02

Position [m]

U
n
e
v
e
n
n
e
ss

 [
m

]

n Record w2.mat (concrete block pavement):

0 50 100 150 200
−0.02

−0.01

0

0.01

0.02

Position [m]

U
n
e
v
e
n
n
e
ss

 [
m

]
n Record w3.mat (high speed train track):

0 50 100 150 200
−0.02

−0.01

0

0.01

0.02

Position [m]

U
n
e
v
e
n
n
e
ss

 [
m

]
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Exercise

n The records w1.mat, w2.mat, and w3.mat each contain a vector w of length m = 4096. The

components w1, w2, w3, . . . , wm of w are the values taken by the unevenness at a sequence of

equally spaced points 0, a, 2a, . . . , (m− 1)a, where the sampling interval is equal to a = 0.05m.

1. For each record, please complete the following steps:

(a) Plot the unevenness as a function of the position.

(b) Split the record into ν = 8 subrecords of equal length and transform each subrecord into

the wavenumber domain by using the discrete Fourier transform. For one of the

subrecords, plot the amplitude of the transformed unevenness as a function of the

wavenumber, first on a linear scale and then on a loglog scale.

(c) Estimate the power spectral density function. Plot this estimate as a function of the

wavenumber, first on a linear scale and then on a loglog scale.

(d) Consider the approximation of the power spectral density function using an expression of

the form sW (ξ) = s0/
(
1 +

|ξ|
ξ0

)α
, in which ξ0 = 0.5m−1. For each record, use a linear

regression on a loglog scale to deduce values for s0 and α from the estimate you obtained

under (c).

2. Interpret your results.
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