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Motivation
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Vibrations and noise are generated as rough wheels roll over rough supports .
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Motivation

During this TD, we will study the main principles using a 1-DOF model.
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Remember...

Remember MATH0062 Eléments du calcul des probabilités...

We wish to extend these ideas from random variables to stochastic processes...
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Remember...

■ blanc

Let X be a random variable defined on a probability triple (Θ,F , P ) with values in R.
Let Y = φ(X) be the random variable obtained by the transformation of X under the mapping φ.

■ The mean and the variance of the random variables X and Y = φ(X) are given by

µX =

∫

Θ

X(θ)dP (θ), µY =

∫

Θ

Y (θ)dP (θ) =

∫

Θ

φ
(
X(θ)

)
dP (θ),

σ2
X =

∫

Θ

(
X(θ)− µX

)2
dP (θ), σ2

Y =

∫

Θ

(
Y (θ)− µY

)2
dP (θ) =

∫

Θ

(
φ
(
X(θ)

)
− µY

)2
dP (θ).

■ If the mapping φ is linear , that is, Y = φ(X) = aX + b, we obtain

µY =

∫

Θ

(
aX(θ) + b

)
dP (θ) = a

∫

Θ

X(θ)dP (θ) + b

∫

Θ

dP (θ) = aµX + b,

σ2
Y =

∫

Θ

((
aX(θ) + b

)
− (aµX + b)

)2
dP (θ) = a2

∫

Θ

(
X(θ)− µX

)2
dP (θ) = a2σ2

X .

(Θ,F , P ) R R
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These are the main ideas!

■ The mean function plays for a stochastic process the role the mean plays for a random variable.

■ The covariance function and the power spectral density function play for a stochastic process the
role the variance plays for a random variable.

■ If one stochastic process is the transformation of another stochastic process under a linear
mapping, the covariance function and the power spectral density function of the former can be
deduced from those of the latter by using the properties of that linear mapping.
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System of notation

■ A lowercase letter, for example, x, is a real deterministic variable.

■ A boldface lowercase letter, for example, x = [x1, . . . , xm]T, is a real deterministic column vector.

■ An uppercase letter, for example, X, is a real random variable.
Exceptions: Θ (sample space), P (probability), and Γ (gamma function).

■ A boldface uppercase letter, for example, X = [X1, . . . , Xm]T, is a real random column vector.

■ An uppercase letter between square brackets, for example, [A], is a real deterministic matrix.

■ A boldface uppercase letter between square brackets, for example, [A], is a real random matrix.
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Analysis

Let’s take a step back!

Remember MATH0007 Analyse Mathématique II...
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Analysis

■ Let f : R → R be a nonconstant periodic function that has period a and is square-integrable

on [−a/2, a/2], that is,
∫ a/2
−a/2

|f(t)|2dt < +∞. Then, the Fourier series of f reads as follows:





f(t) =

+∞∑

k=−∞

fk exp

(
ik

2π

a
t

)
,

fk =
1

a

∫ a/2

−a/2

f(t) exp

(
−ik

2π

a
t

)
dt.

■ It has the approximation property that limn→+∞

∫ a/2
−a/2

∣∣∣∣f(t)−
∑n

k=−n fk exp
(
ik 2π

a
t
) ∣∣∣∣

2

dt = 0.

n = 1. n = 3. n = 5.

■ The more regular the function f , the faster the coefficients fk tend to zero:

regularity of f on [−a/2, a/2] decay of fk proof

integrable fk → 0 Riemann-Lebesque
square-integrable

∑+∞
k=−∞ |fk|2 < +∞ Parseval

continuously differentiable
∑+∞

k=−∞ |fk| < +∞ integration by parts
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Analysis

■ Let f : R → R be an integrable function , that is,
∫
R
|f(t)|dt < +∞. Then, the Fourier

transform (FT) f̂ of f is the bounded, continuous function f̂ from R into C such that

f̂(ω) = Ff(ω) =

∫

R

exp(−iωt)f(t)dt.

The Fourier transform of an integrable function is not necessarily integrable itself.
■ Let f : R → R be a square-integrable function , that is,

∫
R
|f(t)|2dt < +∞. Then, the Fourier

transform f̂ of f is the square-integrable function f̂ from R into C such that





f̂(ω) = Ff(ω) =

∫

R

exp(−iωt)f(t)dt,

f(t) = F−1f̂(t) =
1

2π

∫

R

exp(iωt)f̂(ω)dω.

■ We have the derivation property that dk f̂/dωk = (̂−it)kf and d̂kf/dtk = (iω)k f̂ .
■ Convolution and Fourier transform:

regularity of f regularity of g implied regularity of f ⋆ g implied Fourier property

integrable integrable integrable f̂ ⋆ g(ω) = f̂(ω)ĝ(ω)

integrable bounded bounded and continuous

square-integrable square-integrable bounded and continuous






f ⋆ g(t) = F−1(f̂ ĝ)(t)

f̂g(ω) =
1

2π
(f̂ ⋆ ĝ)(ω)

square-integrable integrable square-integrable f̂ ⋆ g(ω) = f̂(ω)ĝ(ω)
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System theory

And... remember SYST0002 Modélisation et analyse des systèmes...
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System theory

■ Ordinary Differential Equation (ODE) :
q∑

k=0

bk
dkuf

dtk
(t) = f(t), t ∈ R, bq 6= 0, q ≥ 1.

■ Algebraic equation obtained by FT (if it exists):
q∑

k=0

bk(iω)
kûf (ω) = f̂(ω), ω ∈ R.

■ Frequency Response Function (FRF) :

ûf (ω) = ĥ(ω)f̂(ω) where ĥ(ω) =
1

p(iω)
=

1∑q
k=0 bk(iω)

k
.

If 1/p has no poles on the imaginary axis, ĥ : R → C is a bounded, square-integrable function.

■ Impulse response function :

h = F−1(ĥ).

If 1/p has no poles on the imaginary axis, h : R → R is an integrable, square-integrable, and
bounded function that decays rapidly at infinity and is continuous (except perhaps at the origin).

■ Generalized solution :

uf = h ⋆ f, that is, uf (t) =

∫

R

h(s)f(t− s)ds, (using convolution that makes sense).
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System theory

■ In summary, we associated to the ordinary differential equation a convolution filter, thus allowing it
to be studied using the combined tools of “analysis” and “system theory:”

input f system h⋆ output uf .
■ System theory :

h⋆ : X → Y is stable ⇔ ∃c > 0, ∀f ∈ X with ess.sup|f | < +∞ : ⇐ 1/p has no poles

ess.sup|h ⋆ f | ≤ c ess.sup|f | on the imaginary axis

h⋆ : X → Y is causal ⇔ supp(h) ⊂ [0,+∞[ ⇐ poles of 1/p are located

left of the imaginary axis
■ Initial-Value Problem (IVP) :






q∑

k=0

bk
dku

dtk
(t) = f(t), t > 0, bq 6= 0, q ≥ 0,

u(0) = u0, . . . ,
dq−1u

dtq−1
(0) = uq−1,

.

If poles of 1/p are located left of imaginary axis, we have

u(t) = uh(t)︸ ︷︷ ︸
transient response

+ uf (t)︸ ︷︷ ︸
forced response

with lim
t→+∞

|u(t)− uf (t)| = 0,

that is, the response u converges to the forced response uf as time advances.
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System theory

■ ODE m
d2uf

dt2
(t) + d

duf

dt
(t) + kuf (t) = f(t), t ∈ R, m, d, k > 0.

■ FRF ĥ(ω) = 1
p(iω)

= 1
−ω2m+iωd+k

.

ω

|ĥ
(ω

)|

Underdamped: d < 2
√
km.

ω

|ĥ
(ω

)|

Critically damped: d = 2
√
km.

ω

|ĥ
(ω

)|

Overdamped: d > 2
√
km.

■ Impulse response function h = F−1(ĥ).

t

h
(t

)

Underdamped: d < 2
√
km.

t

h
(t

)

Critically damped: d = 2
√
km.

t

h
(t

)

Overdamped: d > 2
√
km.

■ Generalized solution uf = h ⋆ f , that is, uf (t) =
∫
R
h(s)f(t− s)ds.

■ IVP m d2u
dt2

(t) + d du
dt

(t) + ku(t) = f(t), t > 0, m, d, k > 0, u(0) = u0,
du
dt

(0) = u1.
We have limt→+∞ |u(t)− uf (t)| = 0, that is, u converges to uf as time advances.
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Stochastic processes

Now... let’s apply this to our stochastic processes!
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Stochastic processes

■ A second-order stochastic process {X(t), t ∈ R} defined on a probability triple (Θ,F , P )

indexed by R with values in R is a function that associates to any index t in R a second-order
random variable X(t) defined on (Θ,F , P ) with values in R, that is,√∫

Θ

|X(t)|2dP < +∞, ∀t ∈ R.

The second-order statistical descriptors of {X(t), t ∈ R} are defined as follows:
◆ mean function mX(t) =

∫
Θ
X(t)dP, t ∈ R,

◆ autocorrelation function rX(t, t′) =
∫
Θ
X(t)X(t′)dP, t, t′ ∈ R,

◆ covariance function cX(t, t′) =
∫
Θ

(
X(t)−mX(t)

)(
X(t′)−mX(t′)

)
dP, t, t′ ∈ R,

■ The second-order stochastic process {X(t), t ∈ R} is mean-square stationary if

mX(t) = mX independent of t,

rX(t, t′) = rX(t− t′) dependent only on lag t− t′.

■ Trajectory of a nonstationary and mean-square stationary second-order stochastic process:

t

x
(t

)

Nonstationary.
t

x
(t

)

Mean-square stationary.
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Stochastic processes

t − t
′

r
X

(t
−

t
′
)

·
t

x
(1

) (
t
)

t

x
(2

) (
t
)

. . .

t

x
(ν

) (
t
)

t − t
′

r
X

(t
−

t
′
)

·
t

x
(1

) (
t
)

t

x
(2

) (
t
)

. . .

t

x
(ν

) (
t
)

t − t
′

r
X

(t
−

t
′
)

·
t

x
(1

) (
t
)

t

x
(2

) (
t
)

. . .

t

x
(ν

) (
t
)

· autocorrelation
function

· · · trajectories ·

autocorrelation function and a few trajectories
of a mean-square stationary zero-mean second-order stochastic process
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Stochastic processes

■ We defined the Fourier transform only for integrable and for square-integrable functions. The
trajectories of a mean-square stationary second-order stochastic process are not in general
integrable or square-integrable. Thus, we cannot in general take their Fourier transform.

■ To circumvent this difficulty, the frequency-domain analysis of stochastic processes involves the
Fourier transform of the autocorrelation function, which often admits a Fourier transform.

■ The mean-square stationary second-order stochastic process {X(t), t ∈ R} has a power
spectral density function if there exists an integrable function sX : R → R such that

rX(t− t′) =
1

2π

∫

R

exp
(
iω(t− t′)

)
sX(ω)dω, ∀(t− t′) ∈ R.

In fact, sX must be even because of the evenness of rX , positive owing to Bochner’s theorem,
and integrable because

∫
Θ
|X(t)|2dP = rX(0) = 1

2π

∫
R
sX(ω)dω < +∞, ∀t ∈ R.

t − t
′

r
X

(t
−

t
′
)

Autocorrelation function.

F−1

ω

s
X

(ω
)

Power spectral density function.
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Stochastic processes

t − t
′

r
X

(t
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t
′
)
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)
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)
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x
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) (
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)

. . .

t

x
(ν

) (
t
)

t − t
′

r
X

(t
−

t
′
)

ω

s
X

(ω
)

t

x
(1

) (
t
)

t

x
(2

) (
t
)

. . .

t

x
(ν

) (
t
)

t − t
′

r
X

(t
−

t
′
)

ω

s
X

(ω
)

t

x
(1

) (
t
)

t
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t
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t

x
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) (
t
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· autocorrelation
function

· power spectral
density function

· · trajectories ·

autocorrelation function, power spectral density function, and a few trajectories
of a mean-square stationary zero-mean second-order stochastic process
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Stochastic processes

■ Stochastic Differential Equation (SDE) :
q∑

k=0

bk
dkUF

dtk
(t) = F (t), t ∈ R, bq 6= 0, q ≥ 1.

What is meant by the derivative (and the integral) of a second-order stochastic process?

■ Mean-square derivative and integral :
The derivative and the integral of a second-order stochastic process are defined in a manner that
is consistent with its definition as a function that associates to any time instant a second-order r.v.,

Ẋ(t) = lim
τ→0

X(t+ τ)−X(t)

τ
, Z =

∫

R

g
(
X(t), t

)
dt, (provided that they exist),

that is, the limits involved in the definition of the derivative and integral are defined in the sense of
the mean-square convergence of second-order random variables (here, g is a function from R× R

into R; refer to the next slide for an example).

■ This is quite technical. You may find detailed information in:
◆ E. Hille and R. Phillips. Functional analysis and semi-groups. AMS, 1957.
◆ C. Soize. The Fokker-Planck equation for stochastic dynamical systems and its explicit steady

state solutions. World Scientific, 1994.
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Stochastic processes

■ Stochastic Differential Equation (SDE) :
We consider the linear filtering of a mean-square stationary zero-mean second-order stochastic
process {F (t), t ∈ R} that we assume to admit a power spectral density function sF :

q∑

k=0

bk
dkUF

dtk
(t) = F (t), t ∈ R, bq 6= 0, q ≥ 1.

Further, we assume that the FRF ω 7→ ĥ(ω) = 1/p(iω) = 1/
∑q

k=0 bk(iω)
k is such that 1/p has no

poles on the imaginary axis. We denote by h = F−1(ĥ) the impulse response function.

■ Generalized solution :

UF = h ⋆ F, that is, UF (t) =

∫

R

h(s)F (t− s)ds.

The assumptions allow this convolution to be defined as a mean-square integral. Hence, {UF (t),

t ∈ R} is a second-order stochastic process. Its second-order descriptors are obtained as follows:

◆ mean function mUF
(t) =

∫
Θ
UF (t)dP =

∫
R
h(s)

∫
Θ
F (t− s)dPds = 0.

◆ autocorrelation function rUF
(t,t′)=

∫
Θ
UF (t)UF (t′)dP=

∫
R

∫
R
h(s)rF (t−t′+s′−s)h(s′)dsds′.

Hence, {UF (t), t ∈ R} is a mean-square stationary zero-mean second-order stochastic process.

■ Thus, the linear filtering of a mean-square stationary zero-mean second-order stochastic process
provides in turn a mean-square stationary zero-mean second-order stochastic process.
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Stochastic processes

■ Substituting rF (t− t′) = 1
2π

∫
R
exp

(
iω(t− t′)

)
sF (ω)dω in the expression for rUF

, we obtain:

rUF
(t− t′) =

1

2π

∫

R

exp
(
iω(t− t′)

)(∫

R

exp(−iωs)h(s)ds

)
sF (ω)

(∫

R

exp(iωs′)h(s′)ds′
)
dω.

Hence, we obtain the power spectral density function of {UF (t), t ∈ R} as follows:

sUF
(ω) =

∣∣ĥ(ω)
∣∣2sF (ω), ∀ω ∈ R.

■ Stochastic Initial-Value Problem (Stochastic IVP) :





q∑

k=0

bk
dkU

dtk
(t) = F (t), t > 0, bq 6= 0, q ≥ 0,

U(0) = U0, . . . ,
dq−1U

dtq−1
(0) = Uq−1,

.

If poles of 1/p are located left of imaginary axis, we have

U(t) = Uh(t)︸ ︷︷ ︸
transient response

+ UF (t)
︸ ︷︷ ︸

forced response

with lim
t→+∞

√∫

Θ

|U(t)− UF (t)|2dP = 0,

that is, the response U converges to the forced response UF as time advances.
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Stochastic processes

t

F
(t

)

input F system h⋆ output UF

t

U
F
(t

)

t

m
F
(t

) ·

t

m
U

F
(t

)

ω

s
F
(ω

)

ω

|ĥ
(ω

)|

ω

s
U

F
(ω

)

Linear filtering of a mean-square stationary zero-mean second-order stochastic process.
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Vocabulary

time space

frequency f

circular frequency ω = 2πf wavenumber ξ
period 1

f
= 2π

ω
wavelength 2π

ξ
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Exercise

6Uc(t)

6
W(x)-6 x

y

6U(t)

dk

m

■ We consider a highly simplified model of a vehicle that moves over an uneven support at a
constant horizontal velocity of v.

■ Let the vehicle body be represented by a mass, and let the vehicle suspension be represented by
a spring and dashpot that link the vehicle body to the contact point with the support.

■ Let the support unevenness be modeled by a mean-square stationary zero-mean second-order
stochastic process {W (x), x ∈ R} with power spectral density function sW .

■ Let {Uc(t), t ∈ R} be the vertical displacement of the contact point caused by the support
unevenness.

■ Let {U(t), t ∈ R} be the resulting vertical displacement of the vehicle body with respect to the
static equilibrium configuration on a flat support.
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Exercise

1. Using the fact that the vehicle rolls at a horizontal velocity of v, write the equation that relates
the vertical displacement of the contact point {Uc(t), t ∈ R} to the support
unevenness {W (x), x ∈ R}.

2. Write the equations that relate the mean function, the autocorrelation function, and the power
spectral density function of {Uc(t), t ∈ R} to those of {W (x), x ∈ R}.

3. Express dynamical equilibrium and deduce the stochastic differential equation that governs the
displacement {U(t), t ∈ R} of the vehicle body.

4. Consider the stochastic differential equation that you obtained under 3 as a convolution
transformation whose input is the stochastic process {Uc(t), t ∈ R} and whose output is the
stochastic process {U(t), t ∈ R}. Write the expression for the FRF ĥ associated with this
convolution filter. Interpret your result: indicate frequency regions wherein the vehicle body
follows the motion of the contact point (vibration transmission) and wherein the vehicle body is
isolated from the motion of the contact point (vibration isolation).

5. Write the equations that relate the mean function and the power spectral density function of
{U(t), t ∈ R} to those of {W (x), x ∈ R}.

6. Consider sW (ξ) = s0/
(
1 +

|ξ|
ξ0

)α and the numerical values of s0 = 5× 10−5 m3, α = 2,

ξ0 = 0.5m−1, m = 470 kg, k = 36× 10+3 N/m, and d = 0.10× 2×
√
mk. Plot sW and |ĥ|, first on

a linear scale and then on a loglog scale. Subsequently, plot sU for v = 20m/s and v = 40m/s,
first on a linear scale and then on a loglog scale. Interpret your results.
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