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Abstract. Conformally equivariant quantization is a peculiar map between symbols of
real weight δ and differential operators acting on tensor densities, whose real weights are
designed by λ and λ + δ. The existence and uniqueness of such a map has been proved
by Duval, Lecomte and Ovsienko for a generic weight δ. Later, Silhan has determined the
critical values of δ for which unique existence is lost, and conjectured that for those values
of δ existence is lost for a generic weight λ. We fully determine the cases of existence and
uniqueness of the conformally equivariant quantization in terms of the values of δ and λ.
Namely, (i) unique existence is lost if and only if there is a nontrivial conformally invariant
differential operator on the space of symbols of weight δ, and (ii) in that case the conformally
equivariant quantization exists only for a finite number of λ, corresponding to nontrivial
conformally invariant differential operators on λ-densities. The assertion (i) is proved in the
more general context of IFFT (or AHS) equivariant quantization.

Key words: quantization; (bi-)differential operators; conformal invariance; Lie algebra co-
homology
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1 Introduction

Quantization originates from physics, and lies at the correspondence between classical and quan-
tum formalisms. It has given the impetus for the development of numerous mathematical theo-
ries, and admits as many different definitions. In this paper, by quantization we mean the
inverse of a certain symbol map, i.e. a linear map from functions on a cotangent bundle T ∗M ,
which are polynomial in the fiber variables, to the space of differential operators on M . No
such quantization can be canonically defined from the differential geometry of M . The idea
of equivariant quantization is to build one from a richer geometric structure on M : the local
action of a Lie group G, or equivalently, of its Lie algebra g. This imposes the condition that
the manifold M possesses a locally flat G-structure.

Equivariant quantization was first developed for projective and conformal structures by Du-
val, Lecomte and Ovsienko [7, 17]. There, the condition of equivariance singles out a unique
quantization up to normalization. Generalizations to the curved case have been proposed re-
cently in terms of Cartan connections [19, 20] or tractors [6, 23], but we restrict ourselves here to
the locally flat case, or equivalently to Rn. In [4], Boniver and Mathonet exhibit the correct class
of Lie algebras to be considered for equivariant quantization. It is provided by maximal Lie sub-
algebras g among those of finite dimension in Vectpol(Rn), the Lie algebra of polynomial vector
fields. They prove in [5] that these Lie algebras are precisely the irreducible filtered Lie algebras
of finite type (with no complex structure) classified by Kobayashi and Nagano [13], referred to as
IFFT-algebras. Particular examples are the Lie algebra sln+1 ' sl(n+ 1,R) of projective vector
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fields, and the Lie algebra cf ' o(p+1, q+1) of conformal Killing vector fields on (Rn, η), where
n = p + q and η is the flat metric of signature (p, q). Generalizing [4], Cap and Silhan prove
in [6] the existence and uniqueness of the g-equivariant quantization with values in differential
operators acting on irreducible homogeneous bundles, barring certain exceptional bundles. The
determination of these exceptional cases and their geometric interpretation is an open problem,
since they appear in the seminal work [7] dealing with bundles of tensor densities |ΛnT ∗Rn|⊗λ
of arbitrary weight λ ∈ R. Our paper is devoted to a step towards its solution. We give a com-
plete resolution in the original case of conformally equivariant quantization Qλ,µ : Sδ → Dλ,µ
with values in the space Dλ,µ of differential operators from λ- to µ-tensor densities, the symbols
being here of weight δ = µ− λ.

This work can be regarded in the broader perspective of invariant bidifferential operators,
whose equivariant quantization is an example. Another example is provided by generalized
transvectants (or Rankin–Cohen bracket), whose arguments are spaces of weighted densities.
There the same phenomenon occurs: they exist and are unique except for certain exceptional
weights [22]. In fact, this is general, as proved by Kroeske in his thesis [14], where he stu-
dies invariant bidifferential operators for parabolic geometries. From a number of examples
and a proof in the projective case [15], Kroeske proposes a paradigm which can be roughly
phrased as follows: every exceptional case of existence or uniqueness of an invariant bidifferential
operator originates from the existence of a nontrivial invariant differential operator on one of
the factors. We show that this is particularly illuminating in the case of equivariant quan-
tization. Namely, resorting to the interpretation in terms of cohomology of g-modules deve-
loped by Lecomte in [16], we prove our first main result: unique existence of g-equivariant
quantization is lost if and only if there exists a g-invariant operator on the space of sym-
bols. Remarkably, this correspondence is proved directly rather than obtained à posteriori,
like in the work of Kroeske. The theory of invariant operators being well-developed, we get
an efficient way to determine the exceptional bundles for equivariant quantization. Retur-
ning to the aforementioned conformally equivariant quantization Qλ,µ : Sδ → Dλ,µ, we recover
the set of critical values of δ for which unique existence is lost, already determined by Sil-
han [23].

The next natural question is to determine for which resonant pairs of irreducible homoge-
neous bundles the g-equivariant quantization exists but is not unique. This turns to be an
harder question, and we address it only for pairs of line bundles of tensor densities. By our
first main theorem, we can obtain the critical shift δ = µ − λ of their weights for which there
is not existence and uniqueness of the g-equivariant quantization. We have then to determine
the resonant values (λ, µ) for which the g-equivariant quantization still exists. In the projec-
tive case, an explicit formula for the quantization provides the answer [9, 17]. Moreover, the
situation has been fully understood in terms of cohomology of sln+1-modules, the existence of
the projectively equivariant quantization being characterized by the triviality of a 1-cocycle,
which depends on δ and λ [16]. Using a similar approach, we obtain our second main result: for
each critical value δ of the conformally equivariant quantization Qλ,µ, there is a finite number
of resonances (λ, λ + δ) that we determine. This completes the known results on symbols of
degree at most 3, and proves a conjecture of Silhan: the conformally equivariant quantization
does generically not exist for δ critical. In addition, we provide an interpretation along the
lines of the Kroeske’s paradigm: the resonances correspond to conformally invariant operators
on the source space of densities, e.g. the conformal powers of the Laplacian. This allows us to
construct conformally equivariant quantization in the resonant cases. Together with Silhan’s
work [23], this provides construction for the conformally equivariant quantization whenever it
exists.

Let us outline the contents of this paper. Section 2 is devoted to the proof of Theo-
rem 2.5: for g an IFFT-algebra, the g-equivariant quantization exists and is unique if and
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only if there is no g-invariant differential operator on the space of symbols which strictly lo-
wers the degree. It relies on the fact that equivariant quantization exists if a certain 1-cocycle
is a coboundary. We know from [4] that this is the case for generic δ′, and this property is
stable in the limit δ′ → δ if the space of 1-coboundaries is of constant dimension. That con-
dition happens to be equivalent to the absence of g-invariant operators on δ-weighted sym-
bols. In Sections 3 and 4 we illustrate and complete Theorem 2.5 for, respectively, g the
projective and the conformal Lie algebras, the quantization being valued in differential ope-
rators acting on tensor densities. First, we determine the critical values via the classification
of invariant operators on the space of symbols. Then we prove that those invariant opera-
tors give rise to nontrivial 1-cocycles. They obstruct existence of the equivariant quantization
except when there is an invariant differential operator from λ-densities to a certain homoge-
neous bundle. Finally, the latter operator allows us to construct an equivariant quantization,
proving thus its existence for exactly those values of λ. That leads to the complete list of
resonances (λ, λ + δ), together with their interpretation in terms of invariant operators on the
space of λ-densities. We end Section 4 with a detailed treatment of the symbols of degree less
than 3, thus interpreting the results of Loubon Djounga [18] along the line of the Kroeske’s
paradigm. The last section gives us the opportunity to propose some natural extensions of our
results.

Throughout this paper, the space of linear maps between two real vector spaces V and W is
denoted by Hom(V,W ), and its elements are called operators. We work on Rn and the Einstein
summation convention is understood.

2 On the existence and uniqueness of equivariant quantization

2.1 Definition of equivariant quantization

We start with the definitions of the algebra D(Rn) of differential operators on Rn, and its algebra
of symbols S(Rn). The former is filtered by the subspaces Dk(Rn) of differential operators of
order k, defined as the spaces of operators A on C∞(Rn) satisfying [. . . [A, f0], . . . ], fk] = 0 for all
functions f0, . . . , fk ∈ C∞(Rn), considered here as (zero order) operators on C∞(Rn). The latter
is the canonically associated graded algebra, defined by S(Rn) =

⊕∞
k=0Dk(Rn)/Dk−1(Rn). This

may be identified with the algebra of functions on T ∗Rn that are polynomial in the fibers, the
grading corresponding to the polynomial degree. The canonical projection σk : Dk(Rn) →
Dk(Rn)/Dk−1(Rn) is called the principal symbol map. It admits a section, the normal ordering,
given by

N : P i1...ik(x)pi1 · · · pik 7→ P i1...ik(x)∂i1 · · · ∂ik , (2.1)

where (xi, pi) are coordinates on T ∗Rn. This defines a linear isomorphism S(Rn) ' D(Rn).

We are interested in the action of vector fields on these both algebras. First of all, we intro-
duce the Vect(Rn)-module of λ-densities Fλ = (C∞(Rn), `λ) as a one parameter deformation of
the module C∞(Rn), the Vect(Rn)-action being given by X 7→ `λX = X + λDiv(X), with Div
the divergence and λ ∈ R the weight of the densities. This module corresponds geometrically to
the space of sections of the trivial line bundle |ΛnT ∗Rn|⊗λ. It gives rise to the Vect(Rn)-module
Dλ,µ = (D(Rn),Lλ,µ) of differential operators from λ- to µ-densities, endowed with the adjoint
action

Lλ,µX A = `µXA−A`
λ
X ,

for all X ∈ Vect(Rn) and A ∈ D(Rn). This action preserves the filtration of D(Rn), and so
the algebra of symbols inherits a Vect(Rn)-module structure compatible with the grading. We
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denote this structure by Sδ = (S(Rn), Lδ), where δ = µ− λ is the shift. The action of Vect(Rn)
is given in coordinates by

LδX = Xi∂i − pj(∂iXj)∂pi + δDiv(X), (2.2)

and coincides with the canonical action on functions on T ∗M tensored with δ-densities. We
denote by Sδk the submodule of homogeneous symbols of degree k.

Definition 2.1. Let g be a Lie subalgebra of Vect(Rn). A g-equivariant quantization is a g-
module morphism

Qλ,µ : Sδ → Dλ,µ,

such that Qλ,µ is a right inverse of the principal symbol map on homogeneous symbols.

Using the normal ordering (2.1), we freely identify Dλ,µ with (S(Rn),Lλ,µ), where we keep the
same notation for Lλ,µ and its pull-back on symbols by N . It is then a matter of computation
to prove that Lλ,µX = LδX if X is an affine vector field and δ = µ − λ. In other words, N is an
aff(n,R)-equivariant quantization [7].

2.2 IFFT-algebras and equivariant quantization

An IFFT-algebra g is a simple Lie subalgebra of the polynomial vector fields on Rn. As
such, it admits a gradation by the degree of the vector field components g = g−1 ⊕ g0 ⊕ g1

which is compatible with the bracket: [gi, gj ] = gi+j , where gi = {0} if i /∈ {−1, 0, 1}. The
Lie subalgebra g−1 consists of translations, g1 consists of so-called g-inversions, and g0 con-
tains the dilation and acts irreducibly on both g−1 and g1. Consequently, g-invariance is
equivalent to g−1 ⊕ g0-invariance plus the invariance with respect to one non-zero element
in g1.

Let us introduce some notation. For h a Lie subalgebra of Vect(Rn), the space of h-invariant
operators between two h-submodules F ⊂ Sδ and F ′ ⊂ Sδ′ is defined as

Homh(F, F
′) = {A ∈ Hom(F, F ′) | ∀X ∈ h, [L∗X , A] = 0}, (2.3)

where the commutator [L∗X , A] is a symbolic notation for Lδ
′
XA − ALδX . Note that the vector

fields which preserve F and F ′ clearly act on Homh(F, F
′). We define similarly the space of

h-invariant differential operators Dh(F, F
′) and its module structure.

Lemma 2.2 ([17]). Let g be an IFFT-algebra, and fix l < k. The vector space Homg−1⊕g0(Sδk ,Sδl )
is finite-dimensional, independent of δ, and equal to the space Dg−1⊕g0(Sδk ,Sδl ) of invariant
differential operators.

Proof. We only need the fact that g−1⊕ g0 contains the translations and the dilation. Indeed,
an operator A ∈ Hom(Sδk ,Sδl ) invariant with respect to those transformations was proved in [17]
to be a differential operator if l < k. Hence it is generated by the coordinates pi and the
derivatives ∂i, ∂pi . Now the dilation invariance ensures that the degree in ∂i is equal to the degree
in ∂pi minus the degree in pi. The degree in ∂pi being k at most, the space Homg−1⊕g0(Sδk ,Sδl )
is finite-dimensional. Since the divergence of affine vector fields is a constant, the action of
g−1 ⊕ g0 on Hom(Sδk ,Sδl ) is independent of δ and hence the subspace of g−1 ⊕ g0-invariant
operators is also. �
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We turn now to the study of the g-equivariance condition for a quantization Qλ,µ. We can
always factor the latter through the normal ordering, defining the linear automorphism Qλ,µ

of Sδ by Qλ,µ = N ◦Qλ,µ. Restricting to Sδk , we then get

Qλ,µ =

k∑
l=0

φl, (2.4)

where φ0 = Id and φl ∈ Hom(Sδk ,Sδk−l). Since the normal ordering is aff(n,R)-equivariant, we

deduce from Lemma 2.2 that more precisely φl ∈ Dg−1⊕g0(Sδk ,Sδk−l) for all l = 1, . . . , k. The full

equivariance condition for Qλ,µ reads then on Sδk as[
φl, L

δ
X

]
=
(
Lλ,µX − LδX

)
φl−1, (2.5)

for all l = 1, . . . , k, where X is a non-zero element of g1. To solve it directly is too intricate
except for g = sln+1. Nevertheless, the following theorem has been proven in [4], resorting to
simultaneous diagonalization of the Casimir operators on the modules of symbols and differential
operators. We also refer to [6], where the additional hypothesis of simplicity of the semi-simple
part of g0 is dropped.

Theorem 2.3 ([4, 6]). Let g be an IFFT-algebra and fix k ∈ N. The g-equivariant quantization

Qλ,µ : Sδk → D
λ,µ
k exists and is unique if µ− λ = δ /∈ Ik, with Ik a finite subset of Q.

2.3 Equivariant quantization and Lie algebra cohomology

We give here a cohomological interpretation of the equations (2.5) encoding the equivariance
of Qλ,µ. Let us first give a brief review of the cohomology of g-modules and its link with the
splitting of exact sequences of g-modules (see [12] for more details). The cohomology of the
g-module (M,LM ) is defined in terms of the k-cochains, which are the linear maps Λkg → M ,
and the differential d which reads, on 0- and 1-cochains φ and γ,

dφ(X) = LMX φ, dγ(X,Y ) = LMX γ(Y )− LMY γ(X)− γ([X,Y ]), (2.6)

where X, Y are in g. Let now (A,LA), (B,LB), (C,LC) be three g-modules, and suppose that
we have an exact sequence of g-modules,

0 // (A,LA)
ι // (B,LB)

σ // (C,LC)

τ
ii

// 0,

with τ a linear section. This defines a 1-cocycle γ = ι−1(LB ◦ τ − τ ◦ LC) with values in
Hom(C,A). Its cohomolgical class does not depend on the choice of linear section τ , and the
sequence of g-modules is split if and only if γ = dφ is a coboundary. The splitting morphism is
then τ + ι ◦ φ. Moreover, if γ vanishes on a Lie subalgebra h then φ is h-invariant.

The existence and uniqueness of a g-equivariant quantization can be rephrased in terms of
cohomology of g-modules [16]. Indeed, such a quantization exists if for every k ∈ N the exact
sequence

0→ Dλ,µk−1 → D
λ,µ
k → Sδk → 0

is split in the category of g-modules. Using the normal ordering as a linear splitting, this
means that the 1-cocycle γ = Lλ,µ − Lδ admits a trivial cohomology class [γ]. By vanishing
of γ on the affine part of g, the latter pertains to the following relative cohomology space
H1(g, g−1⊕ g0; Hom(Sδk ,D

λ,µ
k−1)). The modules Hom(Sδk ,D

λ,µ
k−1) are quite complex to handle, but
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modding out by Dλ,µk−l for increasing l, we are reduced by induction to the simpler modules

Hom(Sδk ,Sδk−l). Thus, a g-equivariant quantization on F δ, a submodule of Sδk , is a section of

g-modules ψk : F δ → Dλ,µk defined inductively by ψ0 = Id and the commutative triangle in the
following diagram of g-modules

0 // Sδk−l // Dλ,µk /Dλ,µk−l−1
// Dλ,µk /Dλ,µk−l // 0

F δ
?�

ψl−1

OO

T4

∃?ψl

gg
(2.7)

for successively all l = 1, . . . , k. With notation as in (2.4), we have ψl =
∑l

i=0 φi. In the next
lemma we recover the equivariance condition (2.5) using this cohomological approach.

Lemma 2.4. The partial quantization ψl defined in (2.7) exists if and only if ψl−1 exists and
the 1-cocycle γl = (Lλ,µ − Lδ)φl−1, whose class belongs to H1(g, g−1 ⊕ g0; Hom(F δ,Sδk−l)), is
trivial. In this case, we have ψl = ψl−1 + φl, where φl satisfies[

φl, L
δ
X

]
= γl(X) (2.8)

for some non-zero X in g1 and φl ∈ Dg−1⊕g0(F δ,Sδk−l).

Proof. Via the normal ordering, ψl−1 lifts linearly to Dλ,µk /Dλ,µk−l−1. The existence of the mor-

phism ψl relies then on the triviality of the 1-cocycle (Lλ,µ−Lδ)ψl−1. As it takes values in Sδk−l,
and as Lλ,µX −LδX lowers the degree by one, the previous 1-cocycle is equal to γl. Thus ψl exists
if and only if γl = dφl, and ψl = ψl−1 + φl is the splitting morphism. From the definition of γl,
we get the g−1⊕ g0-invariance of φl. Finally, the irreducibility of the action of g0 on g1 together
with definition of 1-cocycles shows that (2.8) is equivalent to the triviality of γl. �

2.4 Main result

We can now give a characterization of the critical values δ of the g-equivariant quantization in
terms of g-invariant operators.

Theorem 2.5. Let g be an IFFT-algebra and let F δ = (F,Lδ) be a g-submodule of Sδk for
every δ ∈ R. The g-equivariant quantization exists and is unique on F δ if and only if there
exists no non-zero g-invariant differential operator from F δ to Sδk−l, for l = 1, . . . , k.

Proof. Let δ ∈ Ik, defined in Theorem 2.3. Clearly, if there exists a g-equivariant quantization
on F δ, its uniqueness is equivalent to the absence of g-invariant operator from F δ to Sδk−l for
l = 1, . . . , k. We only have to prove that such an absence implies existence of the g-equivariant
quantization on F δ. By induction on l, this amounts to obtaining the partial quantization ψl
out of ψl−1. By the preceding lemma, this means to prove that the 1-cocycle γδl is trivial:
γδl (X) ∈ [Eδ0 , L

δ
X ] for a non-zero X in g1 and Eδ0 := Dg−1⊕g0(Sδk ,Sδk−l).

By Theorem 2.3, we know that g-equivariant quantization exists for shifts δ′ 6= δ in a small
enough neighborhood U of δ. In particular this implies that γδ

′
l (X) is a coboundary, hence it

pertains to the space [Eδ
′

0 , L
δ′
X ]. We have to show that this remains true in the limit δ′ → δ. The

Lemma 2.2 ensures that the domains Eδ
′

0 are finite-dimensional and independent of δ′, so we
denote them all by E0. We also introduce E1, the subspace of D((S(Rn),S(Rn)) generated by
the family of spaces [E0, L

δ′
X ] for δ′ ∈ R. As X is quadratic, we deduce from (2.2) that the space

generated by the operators Lδ
′
X is finite-dimensional, and hence E1 is also. Consequently, we get

a continuous family of linear maps, indexed by δ′ ∈ R, between finite-dimensional spaces:[
·, Lδ′X

]
: E0 −→ E1.
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Since there is no g-invariant differential operator from F δ
′

to Sδ′k−l for δ′ ∈ U , the kernel of

[·, Lδ′X ] is reduced to zero for δ′ ∈ U . Consequently, the spaces im([·, Lδ′X ]) are of constant rank
on U and the relation γδ

′
l (X) ∈ im([·, Lδ′X ]) is preserved in the limit δ′ → δ. �

The latter proof does not give a direct construction of the g-equivariant quantization, but it
completes its usual construction in terms of Casimir operators [4]. Indeed, if the latter method
fails for a shift δ whereas the g-equivariant quantization Qλ,λ+δ exists and is unique, we have
just shown that it is recovered from Qλ,λ+δ′ in the limit δ′ → δ.

Let V and W be irreducible representations of g0 of finite dimensions, and let V = Rn × V ,
W = Rn×W the corresponding trivial bundles over Rn. A natural generalization of g-equivariant
quantization is to consider differential operators from Γ(V) to Γ(W)⊗Fδ, the space of symbols
being then Sδ ⊗ Γ(V∗) ⊗ Γ(W) := Sδ(V,W). Theorem 2.3 has been generalized in [6] to this
context, and all the results of this section generalize straightforwardly to that situation also (for
Lemma 2.2, note that the dilation acts diagonally on V and W ). This leads to the following
theorem.

Theorem 2.6. Let g be an IFFT-algebra and let F δ = (F,Lδ) be a g-submodule of Sδk(V,W)
for any δ ∈ R. The g-equivariant quantization exists and is unique on F δ if and only if there
exists no non-zero g-invariant differential operator from F δ to Sδk−l(V,W), for l = 1, . . . , k.

Let us mention that we obtain a necessary and sufficient condition for δ to be a critical value,
contrary to the previous works relying on the diagonalization of the Casimir operator on the
space of symbols. The sufficient condition obtained there was that specified eigenvalues of this
operator are equal. This is clearly a stronger condition on δ than ours.

3 Projectively equivariant quantization

We turn now to the case g = sln+1 and restrict our consideration to differential operators
acting on densities. First, we recall the construction of an explicit formula for the projectively
equivariant quantization, using freely results of the original works [9, 17]. Then we study in
detail the critical and resonant values, in particular their link with existence of projectively
invariant differential operators. This can be seen as a warm up for the conformal case.

3.1 Explicit formula

The projective action of SL(n + 1,R) on the projective space RPn induces an embedding of
sl(n+1,R) into the polynomial vector fields on Rn. The resulting Lie algebra sln+1 of projective
vector fields is generated by the affine vector fields and the projective inversions

Xi = xixj∂j ,

for i = 1, . . . , n. This shows that sln+1 is an IFFT-algebra. Recall that for affine vector fields X,
we have Lλ,µX = LδX , so the lack of projective equivariance for the normal ordering is described
on Sδk by

Lλ,µ
Xi − LδXi = `k−1(λ)∂pi , (3.1)

where `k(λ) = −(k+ λ(n+ 1)). Resorting to the preceding section, the projectively equivariant
quantization on Sδk decomposes as N ◦ (Id + φ1 + · · ·+ φk), where φm is an aff(n,R)-invariant
operator lowering the degree by m and satisfying[

φm, L
δ
Xi

]
= γm

(
Xi
)
, (3.2)
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with γm = (Lλ,µ − Lδ)φm−1. Weyl’s theory of invariants [24], together with Lemma 2.2, shows
that the aff(n,R)-invariant differential operators acting on symbols are generated by the Euler
operator E = pi∂pi and the divergence operator D = ∂i∂pi . Hence, restricted to Sδk , the map φm
is of the form ckmD

m, with ckm ∈ R. This coefficient is determined by substitution into the
equation (3.2) and using[

Dm, LδXi

]
|Sδk = dkm(δ)∂piD

m−1, (3.3)

where dkm(δ) = m(−2k +m+ 1 + (δ − 1)(n+ 1)).

Theorem 3.1 ([9, 17]). Let 1 ≤ l ≤ k. If δ 6= 1 + 2k−l−1
n+1 , there exists a unique projectively

equivariant quantization on Sδk, given by N ◦
(∑k

m=0 c
k
mD

m
)

, with ck0 = 1 and

ckm =
`k−m(λ)

dkm(δ)
ckm−1.

If δ = 1 + 2k−l−1
n+1 (a critical value), there exists a projectively equivariant quantization on Sδk if

and only if λ = 1−h
n+1 with k− l < h ≤ k (resonance), and it is given by N ◦

(∑k
m=0 c

k
mD

m
)

, the

coefficients ckm being defined as above, except ckl which is free.

3.2 Critical values and cohomology

In light of Theorem 2.5, the projectively equivariant quantization exists and is unique on Sδk if
and only if there is no projectively invariant differential operator acting on this space. From
preceding considerations, the only candidates are powers of the divergence D, and equation (3.3)
shows that Dl is projectively invariant on Sδk if and only if δ = 1 + 2k−l−1

n+1 . Thus, we recover
exactly the statement of Theorem 3.1, and are able to interpret the critical values of δ in terms
of existence of projectively invariant operators on Sδk . Following Lecomte [16], this can be stated
in cohomological terms. Let us introduce the 1-cocycle

γ(X) =
1

n+ 1
∂i(DivX)∂piD

l−1,

whose class lies in H1(sln+1,Hom(Sδk ,Sδk−l)). It satisfies the equality γl =
(
`k−l(λ)ckk−l+1

)
γ.

Since γ vanishes on aff(n,R) and Homaff(Sδk ,Sδk−l) is generated by Dl, we deduce from (3.3) that

γ defines a nontrivial 1-cocycle if and only if Dl is projectively invariant, i.e. δ = 1 + 2k−l−1
n+1 .

Consequently, for this critical value of δ, we get an obstruction to the existence of a projectively
equivariant quantization except when γl vanishes. This occurs when

∀X ∈ sln+1,
(
Lλ,µX − LδX

)
|Sδh = 0, (3.4)

or equivalently when `h−1(λ) = 0 for some k − l < h ≤ k, giving the resonant values (λ, λ+ δ).

3.3 Resonances and projectively invariant operators

Here we provide an interpretation of the resonant values of λ in terms of projectively invariant
operators acting on the space of densities Fλ.

Theorem 3.2. The projectively equivariant quantization Qλ,µ : Sδk ⊗ Fλ → Fµ exists and is
unique except when there is a non-zero projectively invariant differential operator: Sδk → Sδk−l.
In that case, Qλ,µ exists if and only if there is a projectively invariant differential operator of
order h from Fλ to sections of a homogeneous bundle, with k − l < h ≤ k.
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Proof. The first statement has just been proven. The second one relies on the characterization
by equation (3.4) of the resonant values (λ, λ + δ). Indeed, this relation provides a way to
generate projectively invariant operators.

Lemma 3.3. Let (Lλ,µX − LδX)|Sδk = 0 for all X ∈ g, a Lie subalgebra of Vect(Rn), and let B be

the space of sections of a homogeneous bundle. If there exists a g-invariant element in Sδk ⊗ B,
then its image by normal ordering is a g-invariant differential operator: Fλ → Fµ⊗B of order k.

Proof. The expression Lλ,µX −LδX is the same if, on the one hand, Lδ is the action on Sδk and Lλ,µ

is the one on Dλ,µk , and if, on the other hand, Lδ is the action on Sδk ⊗ B and Lλ,µ is the action
on the differential operators from Fλ to Fµ ⊗ B of order k. �

Consequently, we want to obtain sln+1-invariant elements. Using Weyl’s theory of invariants
of gln(R) (⊂ sln+1), we have no choice but to take B = S̄−δ = (S̄(Rn), L̄−δ), the module of
functions on TM polynomial in the fiber variables tensored with (−δ)-densities. Denoting the
fiber coordinates by p̄i, the gln(R)-invariant elements are (p̄ipi)

h ∈ Sδh ⊗ S̄
−δ
h for k ∈ N. They are

obviously sln+1-invariant, and by Lemma 3.3 and equation (3.1), they gives rise for `h−1(λ) = 0
to a projectively invariant differential operator

Ḡh : Fλ → S̄λh , (3.5)

with Ḡ = p̄i∂i. As shown by straightforward computations, this is the only projectively inva-
riant differential operator with principal symbol (p̄ipi)

h. Thus, there is a projectively invariant
differential operator of order h on Fλ if and only if λ = 1−h

n+1 , and the theorem is proved. �

Now we make concrete the existence of projectively equivariant quantization for resonances,
by constructing it from the projectively invariant operators (3.5). Let us denote by D(S̄λk ,Fµ)
the space of differential operators from S̄λk to Fµ, which is isomorphic to Dλ,µ⊗S0

k as Vect(Rn)-
module. The Vect(Rn)-invariant 1-form α = dxi∂p̄i acts by interior product on Vect(Rn) and
vanishes on Sδk . Thus, it extends as a derivation, denoted by ια, on the algebra underlying
Dλ,µ ⊗ S0 and gives rise for any integer j ≤ k to the following morphism of Vect(Rn)-modules,

(ια)j : Dλ,µk → Dk−j
(
S̄λj ,Fµ

)
, (3.6)

with kernel Dλ,µj−1. From projective invariance of the operators given in (3.5), we deduce the
following proposition.

Proposition 3.4. Let δ = 1 + 2k−l−1
n+1 and λ = 1−h

n+1 , where k − l < h ≤ k. Then, the partial

projectively equivariant quantization Qλ,µk,h = N ◦(Id+ · · ·+φh−1) exists and induces the following
commutative diagram of sln+1-modules,

Sδk ⊗Fλ

++

Qλ,µk,h⊗Id
// Dλ,µk /Dλ,µh−1 ⊗F

λ (ια)h⊗Ḡh // Dh−1(S̄λh ,Fµ)⊗ S̄λh

��
Fµ

This defines a projectively equivariant quantization on Sδk.
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4 Conformally equivariant quantization and invariant operators

The aim of this section is to obtain a full characterization of existence of the conformally equiv-
ariant quantization in the spirit of Theorem 3.2. The task is harder in this case since the spaces
Dg−1⊕g0(Sδk,s,Sδl,t) are generically multi-dimensional (see (4.4) for notation Sδ∗,∗).

4.1 The conformal Lie algebra

Let (xi) denote the cartesian coordinates on Rn and η be the canonical flat metric of signa-
ture (p, q). The Lie algebra of conformal Killing vector fields on (Rn, η), denoted by cf for
short, is isomorphic to o(p + 1, q + 1). As a subalgebra of polynomial vector fields it admits
a gradation cf = cf−1⊕ cf0⊕ cf1 by the degree of the vector field components, this is a particular
case of IFFT-algebra. The Lie subalgebra cf−1 consists of the translations and cf0 consists of
the linear conformal transformations. Thus, cf is generated by their sum ce = cf−1⊕ cf0, and by
the following conformal inversions in cf1,

Xi = xjx
j∂i − 2xix

j∂j , (4.1)

where xi = ηijx
j and i = 1, . . . , n. As ce ⊂ aff(n,R), we have Lλ,µX = LδX for every X ∈ ce, and

the lack of conformal equivariance for the normal ordering is described by, see [7],

Lλ,µXi − L
δ
Xi = −piT + 2(E + nλ)∂pi , (4.2)

where Xi is the conformal inversion (4.1) and T = ηij∂pi∂pj , E = pi∂pi .

4.2 Similarity invariant differential operators

The first step is to describe the space of ce-invariant operators Dce(Sδk ,Sδk′) for arbitrary k
and k′. Weyl’s theory of invariants [24] insures that the algebra of isometry-invariant differential
operators acting on Sδ is generated by

R = ηijpipj , E = pi∂pi , T = ηij∂pi∂pj ,

corresponding respectively to the metric (or kinetic energy), the Euler operator, the trace oper-
ator, and by

G = ηijpi∂j , D = ∂i∂pi , L = ηij∂i∂j ,

corresponding respectively to the gradient, the divergence and the Laplacian. They all become
ce-invariant operators if we consider them as operators from Sδ to Sδ′ with a certain shift of
weight δ′ − δ given in the following table,

values of n(δ′ − δ) −2 0 2

ce-invariant operators T E , D R, G, L
(4.3)

The computation of the action of Xi ∈ cf1 on those operators proves that E , R and T are
conformally invariant, and the table (4.3) ensures that E and RT preserve the shift. The joint
eigenspaces of these two operators define a decomposition of Sδ into cf-submodules, which
corresponds to the spherical harmonic decomposition in the p variables,

Sδ =
⊕

k,s∈N, 2s≤k
Sδk,s. (4.4)
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More precisely, Sδk,s is the space of homogeneous symbols of degree k of the form P = RsQ with

TQ = 0. Let 2s′ ≤ k′ be two integers. Then, each ce- or cf-invariant operator Sδk,s → Sδk′,s′ gives
rise to the following commutative diagram of ce- or cf-modules,

Sδk,s //

T s
��

Sδk′,s′

Sδ−
2s
n

k−2s,0
// Sδ−

2s′
n

k′−2s′,0

Rs
′

OO

(4.5)

We write G0, D0, L0 for the restriction and corestriction of the operators G, D, L to kerT .
Using the relation [D,G] = L, we obtain from (4.3) and (4.5) that Dce(Sδk,s,Sδk′,s′) is linearly

generated by the monomials Rs
′
Gg0L

`
0D

d
0T

s, such that g + ` = s − s′ and d + g + 2` = k − k′.
An explicit description for possibly different weights and s′ = s = 0 follows.

Proposition 4.1. Let k, k′ be integers, δ, δ′ ∈ R, and define ` = n
2 (δ′− δ)−max(k′−k, 0). The

space Dce(Sδk,0,Sδ
′
k′,0) is nontrivial only if ` is a non-negative integer, and then

Dce

(
Sδk,0,Sδ

′
k′,0

)
=

{
(G0)k

′−k〈L`0, G0L
`−1
0 D0, . . . , G

`
0D

`
0

〉
for k′ − k ≥ 0,〈

L`0, G0L
`−1
0 D0, . . . , G

`
0D

`
0

〉
(D0)k−k

′
otherwise.

From this we get a diagrammatic representation of the spaces Dce(Sδk,0,Sδ
′
k′,0), one path be-

tween two spaces corresponding to a one-dimensional subspace of ce-invariant operators,

Sδk,0
G0

||
D0

""
Sδ+

2
n

k+1,0

G0

��

D0

!!

Sδk−1,0

G0

}}

D0

��Sδ+
2
n

k,0

(4.6)

Since [D0, G0] = L0, two paths give rise to independent subspaces if they reach different furthest
right column.

4.3 Classif ication of conformally invariant differential operators
acting on symbols

Resorting to the decomposition (4.4) of Sδ into cf-submodules, the classification of conformally
invariant differential operators on Sδ amounts to the determination of the cf-invariant differential
operators between submodules Sδk,s and Sδk′,s′ . The commutative diagram (4.5) of cf-modules

further reduces the quest to the space Dcf(Sδk,0,Sδ
′
k′,0). The two involved submodules of symbols

are modules of sections of irreducible homogeneous bundles associated to the principal fiber
bundle over (Rn, η) of conformal linear frames. Consequently, conformally invariant operators
correspond to morphisms of generalized Verma modules. Their classification has been performed
by Boe and Collingwood [2, 3], see also [10] for a clear summary. This has been translated
as a classification of conformally invariant differential operators by Eastwood and Rice for
n = 4 [11]. Instead applying such an heavy machinery to our peculiar case, we prefer to proceed
in a direct and elementary way.
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We compute the space Dcf(Sδk,0,Sδ
′
k′,0) of conformally invariant operators by searching the

elements of Dce(Sδk,0,Sδ
′
k′,0) which are invariant under the action of a certain X ∈ cf1. Concerning

the ce-invariant operators Dd
0 , Gg0 and L`0, with source space Sδk,0, the action of the conformal

inversion Xi follows from [7],[
Dd

0 , L
δ
Xi

]
= 2d(2k − d− 1 + n(1− δ))∂piDd−1

0 , (4.7)[
Gg0, L

∗
Xi

]
= −2g(nδ + g − 1)π0piG

g−1
0 , (4.8)[

L`0, L
∗
Xi

]
= 2`

[
(2(k − `) + n(1− 2δ))∂i + 2(G0∂pi − π0piD0)

]
L`−1

0 , (4.9)

where L∗Xi is defined in (2.3) and π0 is the conformally invariant projection π0 : Sδ → kerT .

Since the latter operators generate the spacesDce(Sδk,0,Sδ
′
k′,0) with arbitrary k′, δ′, we deduce that,

[Dce(Sδk,0,Sδ
′
k′,0), L∗Xi ] ⊂ ED∂pi ⊕ π0piEG ⊕ ∂iEL, (4.10)

with EG, ED, EL the maximal vector spaces generated by the three operators G0, D0, L0, and
such that G0EG, EDD0, L0EL ⊂ Dce(Sδk,0,Sδ

′
k′,0). The independence of the monomials Gg0D

d
0L

`
0

for different exponents ` and the commutative diagram (4.5) lead to the next two results.

Lemma 4.2. Let k, k′ be non-negative integers, δ, δ′ ∈ R, and let us define j = n
2 (δ′ − δ).

The space of conformally invariant operators Dcf(Sδk,0,Sδ
′
k′,0) is either trivial or of dimension 1,

generated by

• Dd
0 if k − k′ = d, j = 0 and δ = 1 + 2k−d−1

n ,

• Gg0 if k′ − k = g, j = g and δ = 1−g
n ,

• L` if k′ = k, j = ` and δ = 1
2 + k−`

n ,

where the operator L` is of the form L`0 + a1G0L
`−1
0 D0 + · · · + a`G

`
0D

`
0 for ai ∈ R. Moreover,

the operator L` is not the `th power of L1.

Proof. Let A ∈ Dcf(Sδk,0,Sδ
′
k′,0). Resorting to Proposition 4.1, up to a constant we have A =

Gg0BD
d
0 where B = L`0+a1G0L

`−1
0 D0+· · ·+a`G`0D`

0, for some integers g, d, ` and reals a1, . . . , a`.
As the component in ED∂pi of the higher degree term in L0 of [A,L∗Xi ] vanishes, we get

[Dd
0 , L

∗
Xi ] = 0.

From the relation (4.7) we deduce that necessarily δ = 1 + 2k−d−1
n if d 6= 0. As the component

in π0piEG of the higher degree term in L0 of [A,L∗Xi ] vanishes, we obtain

[Gg0, L
∗
Xi ] = 0.

From the relation (4.8) we deduce that necessarily δ + 2`
n = 1−g

n if g 6= 0. As a consequence B
must be conformally invariant, and since the component in ∂iEL of the higher degree term in L0

of [B,L∗Xi ] vanishes, we are lead to

[L`0, L
∗
Xi ] ∈ π0piEG ⊕ ED∂pi .

From the relation (4.9) we deduce that necessarily δ = 1
2 + k−`

n if ` 6= 0. Then, straightforward but

lengthy computations show that there exist unique reals a1, . . . , a` such that L`0 +a1G0L
`−1
0 D0 +

· · ·+a`G`0D`
0 is conformally invariant, and the expression of a1 ensures that L` 6= (L1)`. The three

values found for δ are incompatible two by two, hence we get that among the exponents g, d, `
one at most is non-vanishing. The result follows. �
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Theorem 4.3. Let k ≥ 2s and k′ ≥ 2s′ be integers, and δ, δ′ ∈ R. The space of conformally
invariant differential operators Dcf(Sδk,s,Sδ

′
k′,s′) is either trivial or of dimension 1. In the latter

case j = n
2 (δ′ − δ) is an integer and the space is generated by

• Rs′DdT s, if s′ − s = j, k − k′ = d− 2j and δ = 1 + 2(k−s)−d−1
n ,

• Rs′Gg0T s, if g + s′ − s = j, k − k′ = s− s′ − j and δ = 2s+1−g
n ,

• Rs′L`T s, if `+ s′ − s = j, k − k′ = 2(`− j) and δ = 1
2 + k−`

n .

Remark 4.4. If n = 2, 3, there is also isometric invariants in D(S,S) built from the volume
form, but the only conformally invariant one is the algebraic operator p1∂p2 − p2∂p1 for n = 2.

Remark 4.5. The conformally invariant operator Gg0 is the g-generalized conformal Killing ope-
rator, whose kernel is the space of g-generalized conformal Killing tensors [21]. The conformally
invariant operator L` is the generalization of `th power of the Laplacian to trace free symbols,
its curved analog, for ` = 1, has been obtained in [25].

4.4 Critical values and cohomology

From Theorem 4.3, classifying the conformally invariant differential operators on Sδ, and Theo-
rem 2.5, characterizing the critical values of the shift δ in terms of invariant differential operators,
we recover the following theorem of Silhan.

Theorem 4.6 ([23]). Let k ≥ 2s and l be three integers and δ ∈ R. The conformally equiv-
ariant quantization exists and is unique on Sδk,s if and only if there is no conformally invariant

differential operator Sδk,s → Sδk−l. This means δ /∈ Ik,s, where the set of critical values is of the

following form: Ik,s = IDk,s q
(
IGk,s ∪ ILk,s

)
and

IDk,s =

{
1 +

2(k − s)− d− 1

n
| d ∈ J1, k − 2sK

}
,

IGk,s =

{
2s+ 1− g

n
| g ∈ J1, sK

}
, ILk,s =

{
1

2
+
k − `
n
| ` ∈ J1, sK

}
. (4.11)

We provide now an alternative characterization of the critical values δ ∈ Ik,s in cohomolo-
gical terms. The Proposition 4.1 and the commutative diagram (4.5) allow to decompose the
conformally equivariant quantization N ◦Qλ,µ on Sδk,s as

Qλ,µ =
∑
g≤s

 ∑
d≤k−2s+g

φd,g

 ,

with φd,g ∈ Dce(Sδk,s,Sδk−d−g,s−g) by ce-invariance of the normal ordering. Analogously to (4.10),

we introduce the spaces Ed,g = Rs
′ (
ED∂pi ⊕ π0piEG ⊕ ∂iEL

)
T s, which are the sum of three

maximal subspaces of invariant operators such that Rs
′
EDD0T

s, . . . ⊂ Dce(Sδk,s,Sδk−d−g,s−g).
From Proposition 4.1, we easily get that dimEd,0 = dimE0,g = 1, and denoting min(d, g) by `,
we also obtain that dimEd,g = 3`+ 1 if g 6= d and dimE`,` = 3`.

Lemma 4.7. Let Xi ∈ cf1. The map γ 7→ γ(Xi) establishes a linear isomorphism between Ed,g
and the space of 1-cocycles vanishing on ce and with values in Hom(Sδk,s,Sδk−d−g,s−g).

Proof. Let Xi and Xj be inversions given by (4.1). From the cocycle relation (2.6) and the
vanishing of γ on ce, we get that ηijγ(Xj)∂i is ce-invariant. This proves that the image of the
considered map lies in Ed,g. Let A ∈ Ed,g and Xji = xj∂i − xi∂j ∈ cf0. The latter satisfies
[Xji, Xi] = Xj , and allows to define a linear map on cf by: γ(X) = 0 if X ∈ ce, γ(Xi) = A and
γ(Xj) = [LδXji , A] if j 6= i. This map is a 1-cocycle satisfying the required properties. �
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Proposition 4.8. The relative cohomology space H1(cf, ce; Hom(Sδk,s,Sδ)) changes of dimension

exactly for the critical values δ ∈ Ik,s. Then it rises by one, or two if δ ∈ IGk,s∩ILk,s. In particular,
the 1-cocycles

γd : X 7→ ∂i(DivX)∂piD
d−1, γg : X 7→ ηij∂i(DivX)Rs−gπ0pjG

g−1
0 T s,

are nontrivial if and only if the operators Dd and Rs−gGg0T
s are cf-invariant.

Proof. According to the proof of the previous Lemma, if [γ] ∈ H1(cf, ce; Hom(Sδk,s,Sδ)), then

ηij∂iγ(Xj) is ce-invariant. Consequently, the space H1(cf, ce; Hom(Sδk,s,Sδ)) is the direct sum

of the spaces H1(cf, ce; Hom(Sδk,s,Sδk−d−g,s−g)) for g ≤ s and d ≤ k − 2s + g. The spaces of
corresponding 1-cocycles have just been identified to the spaces Ed,g, whose dimension is known
and independent of δ. The spaces of corresponding 1-coboundaries have a dimension equal to
that of Dce(Sδk,s,Sδk−d−g,s−g) minus the one of the subspaces of cf-invariant elements. The latter
is zero generically, except for the critical values δ ∈ Ik,s, hence the result.

For generic δ, the two given maps γd and γg are 1-coboundaries, proportional to the differen-
tial of the operators Dd and, respectively, Rs−gGg0T

s. Consequently, they define 1-cocycles for
every δ ∈ R. Since they vanish on ce, they are trivial only if they are of the form X 7→ [A,LδX ],
with A ∈ Dce(Sδk,s,Sδk′,s′) for the adapted values of k′ and s′. This space reduces to 0 if Dd and

Rs−gGg0T
s are cf-invariant, leading to the announced result. �

4.5 Resonances and conformally invariant differential operators

The pairs of weights (λ, µ) for which the conformally equivariant quantization exists are com-
pletely known only on symbols of degrees 2 and 3 in the momenta [8, 18]. Such a pair is called
a resonance and in the known cases there are a finite number of resonances for a given critical
value of the shift δ = µ−λ. We extend those results to the general case and provide a complete
classification for existence of the conformally equivariant quantization.

Theorem 4.9. Let k ≥ 2s be two integers and δ ∈ Ik,s. Restricted to the submodule Sδk,s, the
existence of the conformally equivariant quantization is equivalent to

(i) λ =
1− h
n

, k − s− d < h ≤ k − s if δ = 1 +
2(k − s)− d− 1

n
∈ IDk,s,

(ii) λ =
n− 2t

2n
, s− g < t ≤ s if δ =

2s+ 1− g
n

∈ IGk,s \ ILk,s,

(iii) λ =
1− h
n

, k − s− ` < h ≤ k − s if δ =
1

2
+
k − `
n
∈ ILk,s \ IGk,s,

(iii)′ λ =
n− 2t

2n
, s− ` < t ≤ s if δ =

1

2
+
k − `
n
∈ ILk,s \ IGk,s,

(iv) λ =
n− 2t

2n
, s−min(`, g) < t ≤ s if δ =

1

2
+
k − `
n

=
2g

n
∈ ILk,s ∩ IGk,s. (4.12)

Proof. Let us sketch the proof. First, existence of the conformally equivariant quantization
translates as the triviality of 1-cocycles, that we write down in Lemma 4.10. Then, we charac-
terize precisely the conditions for those 1-cocycles to be trivial in Lemma 4.11 and finally prove
that, indeed, they are equivalent to (4.12).

Lemma 4.10. The conformally equivariant quantization exists on Sδk,s if and only if, for all

g ≤ s and d ≤ k − 2s+ g, there is a map φd,g ∈ Dce(Sδk,s,Sδk−d−g,s−g) such that[
φd,g, L

δ
Xi

]
= γd,g(Xi), (4.13)
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where the right hand side is the corestriction of (Lλ,µXi − L
δ
Xi

) ◦ (φd,g−1 + φd−1,g) to the subspace

Sδk−d−g,s−g. It is given by

γd,g(Xi) = Gk+1−d−g
s+1−g (λ)φd,g−1 + Dk+1−d−g

s−g (λ)φd−1,g, (4.14)

and for any 2s′ ≤ k′ the operators Gk′
s′ (λ) : Sδk′,s′ → Sδk′−1,s′−1 and Dk′s′ (λ) : Sδk′,s′ → Sδk′−1,s′

vanish if and only if λ = n−2s′

2n and λ = 1−(k′−s′)
n respectively.

Proof. The equation (4.13) is simply the projection of equation (2.8) on the space Sδk−d−g,s−g.
Hence, we just have to get the explicit expression of γd,g(Xi). For that, we need to decompose

the operator Lλ,µXi − L
δ
Xi

given in (4.2). Let RsQ ∈ Sδk,s, so that Q is in the kernel of T . Using

the decomposition piQ = π0(piQ) + 2
ρk−2s+1,1

R∂piQ, where ρk,s = 2s(n + 2(k − s − 1)) is the

eigenvalue of RT and π0 denotes the projection on kerT , we obtain(
Lλ,µXi − L

δ
Xi

)
(RsQ) = 2s(2nλ+ 2s− n)Rs−1π0(piQ)

+

(
2nλ+ 2(k − 1) + 2s

2nλ− 2s− n
n+ 2(k − 2s− 1)

)
Rs∂piQ.

Both coefficients are affine functions in λ vanishing for the announced values of λ, and we have
Rs−1π0(piQ) ∈ Sδk−1,s−1 and Rs∂piQ ∈ Sδk−1,s. Hence, we get the announced expression (4.14)
for γd,g(Xi). �

Lemma 4.11. Existence of the conformally equivariant quantization on Sδk,s is equivalent to:

γd,0 = 0, γ0,g = 0 or γ`,`(Xi) has no component in ∂iR
s−`L`−1

0 T s if, respectively, Dd, Rs−gGg0T
s

or Rs−`L`T s is conformally invariant.

Proof. Using the preceding lemma, we know that the conformally equivariant quantization
exists if and only if the 1-cocycles γd,g are trivial. But resorting to the proof of Theorem 2.5,
this is the case except when there is a conformally invariant operator in Homce(Sδk,s,Sδk−d−g,s−g).
Hence, the previous classification of such operators shows that the only nontrivial 1-cocycle is
γd,0, γ0,g or γ`,` if respectively Dd, Rs−gGg0T

s or Rs−`L`T s is conformally invariant. Since the
previously introduced spaces of 1-cocycles Ed,0 and E0,g are unidimensional, Proposition 4.8
implies that γd,0 and γ0,g are trivial if and only if they vanish. It remains to handle the case
of γ`,`. We suppose that Rs−`L`T s is conformally invariant for the shift δ. Let us denote by Cδ

′

the space of 1-coboundaries [Homce(Sδ
′
k,s,Sδ

′
k−`,s−`), L

δ′ ]. Generically, γ`,` is a 1-coboundary, so it

pertains to the space lim
δ′→δ

Cδ
′

= Cδ⊕R. The linear form giving the component in ∂iR
s−`L`−1

0 T s

vanishes precisely on the subspace of 1-coboundaries Cδ, and thus γ`,` is trivial if and only if it
pertains to its kernel. �

We are ready now to prove the theorem. In each of the four cases in (4.12), i.e. for each
critical value δ, we determine the operators Gk′

s′ (λ) and Dk′′s′′ (λ) which should vanish, so that the
previous constraints on the 1-cocycles γd,0, γ0,g, γ`,` are satisfied.

The instances δ ∈ IDk,s and δ ∈ IGk,s are treated like in the projective case, the concerned space

Homce being unidimensional. In the first case, it exists d ≤ k − 2s such that Dd is conformally
invariant, and Lemma 4.11 implies that γd,0 = 0. Using equation (4.14), we obtain by induction
that Dh+s

s (λ) = 0 for some k− s− d < h ≤ k− s, hence the result (i) of (4.12). If δ ∈ IGk,s, then

it exists g ≤ s such that Rs−gGg0T
s is conformally invariant. Similarly we must have γ0,g = 0

and then, by induction, Gk−s+t
t (λ) = 0 for some s− g < t ≤ s. The result (ii) of (4.12) follows.

The instance δ ∈ ILk,s is more involved, and relies, as Lemma 4.2, on independence of mono-

mials Gg0D
d
0L

`
0 for different exponents `. In that case, there exists ` ≤ s such that Rs−`L`T s
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is conformally invariant and Lemma 4.11 implies that γ`,` must have no component along
∂iR

s−`L`−1
0 T s. We deduce from the formula (4.14) that either Dk+1−2`

s−` = 0 or φ`−1,` has no

component in Rs−`G0L
`−1
0 T s. Then, a straightforward induction proves that all the paths in

the following diagram (4.15) from Id to L`0 have a vanishing label on at least one of its arrows.
For simplicity we do not write the appropriate powers of R and T .

Id
Gks (λ)

yy
G0

Gk−1
s−1 (λ)

yy

Dk−1
s−1 (λ)

$$
G2

0

{{

Dk−2
s−2 (λ)

%%

L0
Gk−2
s−1 (λ)

zz
· · ·

Gk−`+1
s−`+1 (λ)

~~

G0L0

yy $$
G`0

Dk−`s−` (λ)
��

· · ·

%%

· · ·

{{
· · ·

""

G0L
`−2
0

Gk−2l+3
s−`+1 (λ)

zz

Dk−2`+3
s−`+1 (λ)

##
G2

0L
`−2
0

Dk−2`−2
s−` (λ) $$

L`−1
0

Gk−2l−2
s−`+1 (λ)

{{
G0L

`−1
0

Dk−2`+1
s−` (λ) ##

L`0

(4.15)

Since Dk−ls−l (λ) and Dks(λ) vanish for the same value of λ, as well as Gk
s(λ) and Gk′

s (λ), we

finally get that, necessarily, Gk−s+t
t (λ) = 0 or Dh+s

s (λ) = 0 for respectively s − ` < t ≤ s and
k − s− ` < h ≤ k − s. Hence, we end with the results (iii) and (iii)′ of (4.12) for δ ∈ ILk,s \ IGk,s.

At least, we suppose that δ ∈ ILk,s ∩ IGk,s. Then, it exists g, ` ≤ s satisfying the relation

δ = 1
2 + k−`

n = 2g
n . We deduce that λ must satisfy simultaneously the conditions (ii) and

(iii)/(iii)′ in (4.12) and that leads precisely to (iv). �

The last part of the proof of Theorem 4.9 shows that each λ given in (4.12) corresponds to the
vanishing of an operator G or D, i.e. to the vanishing of a certain restriction of Lλ,µ − Lδ. The
Lemma 3.3 allows then to deduce existence of conformally invariant differential operators on λ-
densities, for each resonance λ in (4.12). They organize in two families: the powers of Laplacian

∆t : F
n−2t
2n → F

n+2t
2n and the operators π0Ḡ

h : F
1−h
n → S̄

1−h
n

h,0 which are built from the operator

Ḡ = p̄i∂i, introduced in (3.5). The latter is dual to the conformal Killing operator G arising in
Lemma 4.2. By Weyl’s theory of invariants or by the general classification in [2, 3], these are all
the conformally invariant differential operators on λ-densities. Hence, we can reformulate the
Theorem 4.9 along the lines of Kroeske’s paradigm. Notice that it is done à posteriori, contrary
to the Theorem 2.5.
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Theorem 4.12. The conformally equivariant quantization Qλ,µ : Sδk,s ⊗Fλ → Fµ exists and is

unique except when there is a conformally invariant differential operator: Sδk,s → Sδk−l,s−r. Then,

Qλ,µ exists if and only if there is a conformally invariant differential operator from Fλ to sections
of a homogeneous bundle V, whose principal symbol lies in S−λh,t ⊗Γ(V) with Dce(Sδk,s,Sδh,t) 6= {0}
and Dce(Sδk−l,s−r,Sδh,t) = {0}.

Silhan provides in [23] an explicit construction for the conformally equivariant quantization
when the shift δ is not one of the critical values (4.11), and also two alternative constructions
in the critical cases. In the next two propositions, we prove that they allow to handle all the
remaining cases of existence, when (λ, λ+ δ) is a resonance (4.12).

Proposition 4.13. In the three cases (ii), (iii), (iv) of (4.12), the operator ∆t : Fλ → Fλ+ 2t
n

is conformally invariant. The commutative diagram

Sδk,s ⊗Fλ

''

aT t⊗∆t
// Sδ−

2t
n

k−2t,s−t ⊗F
λ+ 2t

n

Qλ+
2t
n , µ

��
Fµ

defines then a conformally equivariant quantization on Sδk,s for a well-chosen constant a ∈ R.

Proof. The operator a T t above is conformally invariant, and a can be chosen such that the
equality aRtT t = Id holds on Sδk,s, ensuring the good normalization. Moreover, the conformally

equivariant quantization Qλ+ 2t
n
, µ is well defined on Sδ−

2t
n

k−2t,s−t by Theorem 4.6. �

Let us introduce a refinement of the filtration of Dλ,µ, which already appears in [7]. Namely,

we denote by Dλ,µk,s the subspace of Dλ,µk given by the image of
⊕

0≤s−r≤k−l Sδl,r under the normal

ordering. The expression (4.2) of the action of cf shows thatDλ,µk,s is in fact a cf-submodule ofDλ,µk .

The subspaces Sδl,r arising in its definition are characterized equivalently by Dce(Sδk,s,Sδl,r) 6= 0 or,
with the notation of Lemma 4.10, by their presence in the following tree, analogous to previous
ones (4.6) and (4.15),

Sδk,s
Gks (λ)

{{ Dks (λ) ""
Sδk−1,s−1

Gk−1
s−1 (λ)

zz Dk−1
s−1 (λ) $$

Sδk−1,s
Gk−1
s (λ)

{{ Dk−1
s (λ) ##

· · · · · · · · ·

We can restrict the differential operators obtained by morphism (ια)j , defined in (3.6), to

traceless tensors. The resulting morphism of cf-modules (ια)j0 : Dλ,µk,s → D
λ,µ
k−h(S̄λh,0,Fµ) has

clearly a nontrivial kernel, which is equal to Dλ,µj−1+r,r ⊃ D
λ,µ
j−1 if r = min(s, j − 1). This leads to

the following result, similar to Proposition 3.4 dealing with the projective case.
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Proposition 4.14. In the two cases (i) and (iii)′ of (4.12), the operator π0Ḡ
h : Fλ → S̄λh,0 is

conformally invariant. The commutative diagram

Sδk,s ⊗Fλ

++

Qλ,µk,h⊗Id
// Dλ,µk,s /D

λ,µ
k−h,s ⊗F

λ
(ια)h0⊗π0Ḡh // Dλ,µk−h(S̄λh,0,Fµ)⊗ S̄λh,0

��
Fµ

defines then a conformally equivariant quantization on Sδk,s.

Proof. In view of the definition of h, there is no obstruction to the existence of the partial
conformally equivariant quantization Qλ,µk,h . Using the conformal invariance of π0Ḡ

h and of (ια)h0 ,
we get the result. �

4.6 Example: conformally equivariant quantization of symbols of degree 3

The conformally equivariant quantization as been explicitly determined up to order 3 in the
momenta by Loubon Djounga in [18]. We give here for each submodule Sδk,s, with k ≤ 3, the
conformally invariant operators acting on it, the corresponding critical values of the shift δ, the
resonances (λ, λ+ δ) and the associated conformally invariant operators on Fλ.

Space Op. Inv. on Sδk,s δ λ Op. Inv. on Fλ

Sδ1 D 1 0 Ḡ

Sδ2,0 D n+2
n − 1

n Ḡ2

D2 n+1
n − 1

n , 0 Ḡ2, Ḡ

Sδ2,1 G0T
2
n

n−2
2n ∆

L0T
n+2
2n

n−2
2n , 0 ∆, Ḡ

Sδ3,0 D n+4
n − 2

n Ḡ3

D2 n+3
n − 2

n ,−
1
n Ḡ3, Ḡ2

D3 n+2
n − 2

n ,−
1
n , 0 Ḡ3, Ḡ2, Ḡ

Sδ3,1 RDT n+2
n − 1

n Ḡ2

G0T
2
n

n−2
2n ∆

L1T
n+2
n

n−2
2n ,−

1
n , 0 ∆, Ḡ2, Ḡ

Let δ be one of the above critical values. If we consider the conformally equivariant quantization
on the whole space Sδ3⊕Sδ2⊕Sδ1⊕Sδ0 , as in [18], then it will exist only for the values of λ appearing
in each row where δ is present. Thus, we recover precisely the result of [18].

5 Prospects

We have proven in the setting of IFFT-equivariant quantization, introduced in [4], that unique
existence of the quantization map is lost if and only if there is an invariant differential operator
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on the space of symbols. The work of Cap and Silhan [6] allows to trivially extend this result
to IFFT-equivariant quantization with values in differential operators acting on homogeneous
irreducible bundles. It remains then to characterize when equivariant quantization exists but is
not unique. We have done it only for projectively and conformally equivariant quantizations,
with values in Dλ,µ, in terms of existence of an invariant differential operator on the module Fλ
of λ-densities. In the light of these both examples we propose the following method to link
resonances with invariant operators on the source space (e.g. Fλ).

• To each invariant differential operator acting on the space of symbols corresponds a non-
trivial 1-cocycle γ.

• The latter obstructs the existence of the equivariant quantization except for a finite number
of values of λ.

• For those values, a certain restriction of the operator Lλ,µ − Lδ vanishes.

• An invariant differential operator on the source space can then be built, and we obtain all
of them in this way.

• An equivariant quantization can be design from those invariant operators.

We hope that this will lead to the proof of the point (2) in the following conjecture, the point (1)
being Theorem 2.6.

Conjecture 5.1. Let g be an IFFT-algebra, V, W be irreducible homogeneous bundles and B
a submodule of Sδk(V,W). The g-equivariant quantization B⊗(Γ(V)⊗Fλ) −→ Γ(W)⊗Fµsatisfies
the following properties:

1) it does not exist or is not unique if and only if, for 1 ≤ l ≤ k, there is a g-invariant
differential operator: B → C, with C a submodule of Sδk−l(V,W),

2) for such δ, the g-equivariant quantization exists if and only if there is a g-invariant dif-
ferential operator on Γ(V) ⊗ Fλ, whose principal symbol lies in A and satisfies the both
conditions Dg−1⊕g0(B,A) 6= 0 and Dg−1⊕g0(C,A) = 0.

The next step will be to generalize such a result for g-invariant bidifferential pairings, which
are bidifferential operators Γ(V)⊗ Γ(W)→ Γ(T ), where V, W, T are irreducible homogeneous
bundles. Let us discuss the peculiar case of the generalized transvectants or Rankin–Cohen
brackets. It has been proved in [22] that there exists a unique conformally invariant bidifferential

operator of order 2k acting on λ- and µ-densities, Bλ,µ
2k : Fλ⊗Fµ → Fλ+µ+ 2k

n , if and only if the
weights λ and µ do not pertain to the set of exceptional values {n−2k

2n , . . . , n−2
2n }∪ {

2−2k
n , . . . , 0}.

Remarkably they precisely coincide with the resonances of the conformally equivariant quanti-
zation. For those exceptional values, we can construct new generalized transvectants from the

conformally invariant operators ∆` and Gg0. Explicitly, they are given by B
λ+ 2`

n
,µ

2(k−`) ◦ (∆` ⊗ Id)

if ` ≤ k and λ ∈ {n−2k
2n , . . . , n−2

2n }, and by Qλ,µ ◦ (Gg0 ⊗ Id) if g ≤ 2k − 1, µ is generic and

λ ∈ {2−2k
n , . . . , 0}. A tight link between bidifferential and differential invariant operators shows

up one more time. The same kind of idea is used in [1], where new conformally invariant tri-
linear forms on tensor densities are built from the invariant operators ∆`. To conclude, Kroeske’s
paradigm definitely asks for deeper investigations.
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