
 

 

Robust and Adaptive Observer-Based Partial Stabilization 
for a Class of Nonlinear Systems1 

Denis V. Efimov, Member, IEEE, Alexander L. Fradkov, Fellow, IEEE 

Abstract— The problem of adaptive stabilization with respect to a set for a class of  nonlinear sys-

tems in the presence of external disturbances is considered. A novel adaptive observer-based solution 

for the case of noisy measurements is proposed. The efficiency of proposed solution is demonstrated 

via example of swinging a pendulum with unknown parameters. 

I. INTRODUCTION 

The problem of nonlinear adaptive control got a number of solutions during the last decade [2], [11], [14], 

[17], [22], [24]. Most of the existing solutions are tailored to achieve such goals as regulation or tracking, 

where the system trajectory converges to a point or to a curve. In these cases the goal functionals possess 

radial unboundedness  with respect to the whole state vector of the controlled system. However, in a number 

of applications the plant stabilization with respect to a part of variables (i.e. with respect to a set) is needed. 

For example, such problems arise when stabilizing the desired energy level for physical or mechanical sys-

tems, synchronization, etc. [10], [11], [23]. 

  An additional requirement may consist in boundedness of control signal [3], [11]. In the presence of pa-

rametric uncertainty the dependence of bounded control law on adjusted parameters leads to the problem of 

adaptation with nonlinear parameterization of the controller. This fact prevents from applying previously 

mentioned results. The problem is to design an output feedback control for an unknown plant, providing sta-

bilization of the given set or its vicinity in the presence of disturbances and measurement errors. An impor-

tant additional requirement to theoretic results is that the guaranteed bound for limit set of the closed loop 

system should approach the given set as the level of disturbances and errors approach zero. Such a statement 

of the problem looks natural when the level of disturbances is unknown, though bounded. Among numerous 

examples of such situations are energy control problems and synchronization problems.  

A number of problems of the above class were solved previously by the speed-gradient method under as-

sumption of passivity or passifiability [10], [11], [27], [28]. However, many systems of interest, e.g. those 

                                                           
1 This work is partly supported by grants 07-01-92166, 08-01-00775 of Russian Foundation for Basic Research, by Russian Science Support Foun-

dation and by Program of Presidium of Russian Academy of Science № 22. Authors are with the Control of Complex Systems Laboratory, Institute  
for Problem of Mechanical Engineering, 61, Bolshoy av. V.O. , St-Petersburg, 199178 Russia (efde@mail.ru, alf@control.ipme.ru). The present 
address of the first author is Department of Electrical Engineering and Computer Science, Université de Liège, Bat. 28, B-4000 Liege Sart-Tilman, 
BELGIUM. 

CONFIDENTIAL. Limited circulation. For review only

Preprint submitted to IEEE Transactions on Automatic Control. Received: November 25, 2008 02:14:11 PST



 

 

having relative degree greater than one cannot be made passive. Solutions for nonpassifiable systems were 

suggested in [12] based on a special nonlinear observer structure proposed by V. Nikiforov [11], [12], [24]. 

In the previous works of the authors [5], [6],[7], [8], [9] solutions for such sort of problems were proposed 

for output synchronization, observation, I-O stabilization. This paper is devoted to the robust and adaptive 

partial stabilization. Partial stabilization is considered with respect to a function and the goal set is a surface 

in the state space. We stress, that consideration of partial stability as the set stability is only one of the possi-

ble notions of partial stability; under some circumstances, indeed, more than one measure is requested to 

formulate the property in a suitable way. A new solution is proposed below for a class of nonlinear affine in 

inputs systems in an observer canonical form. 

II. PRELIMINARIES 

 Let us consider dynamical systems 

  ( , )=x f x u , )(xhy = , (1) 

where nR∈x  is the state vector; mR∈u  is the input vector; pR∈y  is the output vector; f  and h  are locally 

Lipschitz continuous vector functions, 0)0( =h ,  0)0,0( =f . Euclidean norm will be denoted as x , and 

0,[ ]t tu  denotes the mL∞  norm of the input ( )( tu  is Lebesgue measurable and locally essentially bounded 

function mRR →+:u , { }0: ≥τ∈τ=+ RR ): 

  [ ] [ ]{ }TtttessTt ,,)(sup 0,0
∈= uu , 

if ∞+=T  then we will simply write u . We will denote as mRM  the set of all such Lebesgue measurable 

inputs u  with property ∞+<u . For initial state 0x  and input mR
M∈u  let  ),,( 0 uxx t  be the unique 

maximal solution of (1) (we will use notation )( tx  if all other arguments of solution are clear from the con-

text; ( )),,(),,( 00 uxxhuxy tt = ), which is defined on some finite interval [ )T,0 ; if for every initial state 

nR∈0x  and mR
M∈u  the solutions are defined for all 0t ≥ , then system is called forward complete. It is 

said that system (1) has unboundedness observability (UO) property, if for each state nR∈0x  and input 

mR
M∈u  such that ∞+<T  necessarily 

   ∞+=
→

),,(suplim 0 uxy t
Tt

. 
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In other words it is possible to observe any unboundedness of the state by detecting an unboundedness of the 

output. The necessary and sufficient conditions for forward completeness and UO properties were investi-

gated in [1]. Distance in nR  from given point x  to set A  is denoted as ( ) ηxxx
η

−==
∈AA A inf,dist . As 

usual, a continuous function ++ →σ RR:  belongs to class K  if it is strictly increasing and ( ) 00 =σ ; addi-

tionally it belongs to class ∞K  if it is also radially unbounded; a continuous function : R R R+ + +β × →  is 

from class LK , if ( , )tβ ⋅ ∈K  for any t R+∈ , and ( , )sβ ⋅  is strictly decreasing to zero for each s R+∈ . 

 System (1) is called bounded-input-bounded-state (BIBS) stable if for all nR∈0x , mR
M∈u , 0≥t  the 

property ( ) ( ){ }uxuxx μμ≤ ,max),,( 00t  holds for K∈μ . 

 D e f i n i t i o n  1  [13], [29]. UO system (1) is input-to-output stable (IOS), if there exist LK∈β  and K∈γ  

such, that inequality ( ) 00 0 0 [ , )( , , ) ( ) , (|| || )t tt t t t≤ β − + γy x u x u , 0 0t t≥ ≥  holds for all 0( ) nt R∈x  and 

mR
M∈u . □ 

 D e f i n i t i o n  2 [9]. Forward complete system (1) is called integral input-to-state stable (iISS) with re-

spect to closed invariant set A  if there exist functions ∞∈α K , K∈γ  and LK∈β  such, that for any nR∈0x  

and mR
M∈u  the inequality holds ( ) ( ) ( ) ττγ+β≤α ∫ dtt

t

0
00 )(,),,( uxuxx AA , 0≥t . □ 

A. Robust stabilization with respect to a set via passification approach 

 Let us consider a system 

  ][)()( vuxGxfx ++= , )(xhy = , (2) 

where nR∈x , mR∈u , mR∈y  are state, input and output vectors correspondingly; mR∈v  is external distur-

bances vector; f , h  and columns of matrix G  are locally Lipschitz continuous vector functions, 0)0( =h ,  

0)0( =f .  

 D e f i n i t i o n  3 [4], [11], [31]. It is said that system (2) is passive with continuously differentiable storage 

function +→ RRV n:  if for all nR∈x  and mR∈u , mR∈v  it holds that [ ]TV ≤ +y u v . □ 

The passification method [11], [27], [28] is based on a feedback design making the closed loop system 

passive. It allows one to solve partial stabilization problem for system (2) with respect to the zero level set of 

storage function. The key property for this approach to partial stabilization is detectability assumption [26], 
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[27], [28] described in the following definition. 

 D e f i n i t i o n  4. It is said that passive system (2) with storage function +→ RRV n:  is V-detectable with 

respect to output y  if for all nR∈0x  it holds: 

  0)0,,( 0 ≡xy t , 0≥t  ⇒ 0))0,,((lim 0 =
∞+→

xx tV
t

. □ 

 The following result [7], [9] gives conditions of iISS with respect to set stabilization by passification. 

 T h e o r e m  1. Let the system (2) be passive with continuously differentiable storage function +→ RRV n:  

and a non decreasing function mm RR →ϕ : , 0)0( =ϕ  have the property 0)( >ϕ yyT  for all }0{mR∈y , 

0
| |

lim | ( ) | / ( )V
→∞

< ∞
x

h x x
V

. Let, additionally, there exist functions ∞∈αα K21,  such that for all nR∈x  inequali-

ties ( ) ( )00 ||)(|| 21 VV xxx α≤≤α V  are satisfied, where }0)(:{0 =∈= xx VRnV  is a compact set. Then the 

system (2) with control )( yu ϕ−=  has iISS property with respect to set 0V  if the system is V-detectable with 

respect to the output y . □ 

B. Positivity in the average  

 Identification ability of adaptation algorithms is one of the most attractive problems in the adaptive control 

theory. The solution of this problem is closely connected with persistent excitation (PE) property. There exist 

several closely related definitions of PE property [10], [18], [19], [22]. Here we will use the following one. 

 D e f i n i t i o n  5. Function RRa →+:  is called positive in the average (PA) if there exists some 0Δ >  and  

0>r  such that for all 0≥t  and 0>Δ≥δ  

  δ≥ττ∫
δ+

rda
t

t
)( . □ 

 Importance of PA property is explained in the following lemma, which slightly modified version was 

proven in [8]. 

 L e m m a  1. Let us consider time-varying linear dynamical system ( ) ( )tbptap +−= , 00 ≥t , where Rp ∈ , 

Rtp ∈)( 0  and functions RRa →+: , RRb →+:  are Lebesgue measurable, b  is locally  essentially bounded, 

function a  is PA for some 0>r , 0>Δ  and essentially bounded from below, i.e. there exists +∈ RA  such, 

that ( ){ } Atttaess −≥≥ 0,inf . Then solutions of the system are defined for all 0tt ≥  and admit the estimate 
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0 0 0

0 0

( ) ( ) 1 1
0

( ) 1
0

| ( ) | || || max{ , }, 0;
| ( ) |

| ( ) | || || max{ , } , 0.

r t t A r At r t

r t t r r t

p t e b A e r e A
p t

p t e b r e A

− − + + Δ −− −

− − + Δ −−

⎧ + ≠⎪≤ ⎨ + Δ =⎪⎩
 □ 

It is possible to show that PA property is equivalent to some versions of PE property. However, PA is 

more convenient for quantitative analysis. Standard sufficient conditions for PE that can be interpreted for 

PA can be found, e.g. in [22]. 

C. Adaptive observer design 

 Let us consider the following system with signal and parametric uncertainties: 

   1)()()( dθyByxyAx ++ϕ+= , xCy = , 2dyy +=d , (3) 

where nR∈x  is state vector; mR∈y  is output vector; pR⊂Ω∈ θθ  is vector of uncertain parameters, which 

values belong to compact set θΩ ; nR
M∈1d , mR

M∈2d  are vector signals of external disturbances and 

measurement noise, TTT ][ 21 ddd = ; dy  is vector of noisy measurements of the system (3) output. Vector 

function ϕ  and columns of matrix functions A  and B  are locally Lipschitz continuous, C  is some constant 

matrix of appropriate dimension. 

 The problem is to design an adaptive observer, which in the absence of disturbances d  provides partial 

estimates of unmeasured components of vector x  and estimates of unknown components of vector θ . For 

any mnR +∈Md  the observer should ensure boundedness of the system solutions. In works [6], [8], [12] a 

solution of this problem is proposed under the following suppositions. 

 A s s u m p t i o n  1. For all xΩ∈0x , θΩ∈θ , mnR +∈Md  system (3) is BIBS:  

  )||||()||(),,,( 0000 dxdθxx σ+σ≤t , K∈σ0 , 0≥t . □ 

 The rest suppositions deal with stabilizability by output feedback of the linear part of system (3). 

 A s s u m p t i o n  2. There exist matrix L , locally Lipschitz continuous matrix function mnm RR ×→:K  and 

continuously differentiable function +→ RRV n:  satisfying relations |||| xLxC ≤ , 

)||()()||( 21 xxx α≤≤α V ; 2
3( ) ( ) | |dV∂ ∂ ≤ −αx x G y x L x , 

for all m
d R∈y ,  nR∈x , where 1α , 2α  are from class ∞K  and 03 >α , ( ) ( ) ( )d d d= −G y A y K y C . □ 

 Assumption 2 ensures uniform asymptotic stability with respect to variable sL  [11], [25] for the system 

  ( )d= +s G y s r  (4) 
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coupled with the system (3) and uniform stability property with respect to variable nR∈s  for the case 0=r . 

    The next assumption requires bounded input-bounded state stability of the auxiliary system (4). 

 A s s u m p t i o n  3. For all initial conditions nR∈0s  and inputs nR
M∈r , md R

∈y M  the system (4) is 

BIBS uniformly with respect to signal dy :   

  0 1 0 1| ( , , , ) | ( | | ) ( || || )dt ≤ σ + σs s r y s r , K∈σ1 , 0≥t . □ 

 Consider the following equations of adaptive observer: 

  ( )( ) ( ) ( ) ( ) , ;d d d d d= + ϕ + + − =z A y z y B y θ K y y y y Cz  (5) 

  ( )d= −η G y η Ωθ ; (6) 
  )()( dd yBΩyGΩ += ; (7) 

  )( ηCyyCΩθ +−γ= d
TT , (8) 

where nR∈z  is the vector of variable x  estimates; vector nR∈η  and matrix pnR ×∈Ω  are auxiliary vari-

ables, which help to overcome high relative degree obstruction for system (3); pR∈θ  is vector of θ  esti-

mates; 0>γ  defines rate of adaptation.  

 T h e o r e m  2 [6]. Let assumptions 1–3 hold and minimum singular value )( ta  of matrix function 

)( tTTΩC  be PA. Then solutions of system (3), (5)–(8) are bounded for any initial conditions and 

mnR +∈Md  and any 0>γ , in the absence  of disturbance d  the following  relations hold: 

  θθ =
∞+→

)(lim t
t

, 0)()(lim =−
∞+→

tt
t

zLxL . □ 

III. MAIN RESULT 

 Let us consider uncertain nonlinear system: 

  13 ][)()()()( dduyRθyByxyAx ++++ϕ+= , (9) 
  xCy = , 2dyy +=d , 

where (as for the system (3) previously) nR∈x  is the state vector; mR∈y  is the output vector; pR⊂Ω∈ θθ  

is the vector of unknown parameters with values from set θΩ ; qR∈u  is the control; nR
M∈1d , mR

M∈2d , 

qR
M∈3d  are vector signals of external disturbances and measurement noise, TTTT ][ 321 dddd = ; dy  is noisy 

output vector of the system (9). Vector function ϕ  and matrix functions A , B , R  are continuous and lo-

cally Lipschitz, C  is a matrix of appropriate dimension. 
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 A s s u m p t i o n  4. There exist locally Lipschitz continuous functions qpkm RR →++:u , rn RR →:ψ  and 

matrix L  with dimension )( nk ×  such, that control 

  ),,( θxLyuu =  (10) 

guarantees for system (9) forward completeness and one of the following properties: 

A. IOS from input d  to output ψ . 

B. iISS with respect to set }0)(:{ == xψxZ  for input d . □

 Starting from control (10), depending on unmeasured variables xL  and vector of uncertain parameters of 

the system θ , it is necessary to design a new control using only measured signal dy . The control should 

provide boundedness of the closed loop system solutions for qmnR ++∈Md  and for the case 0=d  it should 

ensure asymptotic convergence to zero of output ψ  or attractiveness of the set Z  (depending which part of 

Assumption 4 is satisfied). 

 It is worth to stress, that two output functions y  and ψ   have been introduced. The first one defines the 

measured variables of the system (9), the second one characterizes the distance to the goal set. Although the 

vector of unknown parameters θ  appears in a linear fashion in the right hand side of system (9), the right 

hand side of the closed loop system (9), (10) may nonlinearly depend on θ  since Assumption 4 does not 

specify the form of function u  dependence on its arguments. 

 The form of the system (9) is similar to the system (3) (observer canonical form) for which it is possible to 

design adaptive observer (5)–(8). Substituting in control (10) the estimates of vectors xL  and θ  provided by 

the observer, it is possible to solve the posed problem (we assume that matrixes L  in assumptions 2 and 4 

are identical). The principal difference of the solved problem from the problem of adaptive observer design 

as in Theorem 2 consists in appearance of control u  in the right hand side of system (9). Generally speaking 

in the absence of control (10) system can possess unbounded solutions (Assumption 1 fails). Fortunately this 

obstacle does not prevent from the design of the observer similarly to (5)–(8): 

  ( )( ) ( ) ( ) ( ) ( ) , ;d d d d d d= + ϕ + + + − =z A y z y B y θ R y u K y y y y C z  (11) 

  ( )d= −η G y η Ωθ ; (12) 
  )()( dd yBΩyGΩ += ; (13) 

  )( ηCyyCΩθ +−γ= d
TT , 0>γ , (14) 

where all symbols have the same meaning, 0>γ  is adaptation gain. Since matrix function R  depends on the 
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output vector only and control u  is produced by the controller, their appearance does not change dynamics 

of state estimation error zxe −=  and auxiliary error )( θθΩηeδ −−+= : 

    [ ]
[ ] ,)()()(

)()()()()(
)()()()()(

1

32
xyAyAd

uyRyRdyRdyK
θyBθyByyeyGe

d

dd

ddd

t
t

−++
+−++−

−−+ϕ−ϕ+=
 (15) 

    
[ ]
[ ]

[ ] .)()()(
)()()()()(

)()()()()(

1

32
xyAyAd

uyRyRdyRdyK
θyByByyδyGδ

d

dd

ddd

t
t

−++
+−++−

−−+ϕ−ϕ+=
 (16) 

For the case of the absence of the disturbances 0=d  systems (15), (16) can be rewritten as follows 

  ][)()( θθyBeyGe −+= , (17) 
  δyGδ )(= . (18) 

Form of equations (17), (18) are the same as calculated for the observer (5)–(8) and, therefore, the conver-

gence proof for the observer (11)–(14) follows from the proof of Theorem 2 with minimal modifications 

dealing with a-prior absence of Assumption 1 for system (9). In the presence of noise 2d  the dependence of 

right hand sides of (15), (16) on vectors u  and x  makes difficulties for employing of the proof of Theorem 

2. This is the reason why this case will be considered under special conditions below. 

 T h e o r e m  3. Let for system (9) Assumption 2 hold and Assumption 3 be satisfied for any Lebesgue 

measurable signal y ; minimum singular value )( ta  of matrix function )( tTTΩC  be PA; | ( ( ) ) |d t B≤B y , 

| ( ( ) ) |d t R≤R y  for all 0≥t , ,B R R+∈ . Then the control law ),,( θzLyuu d=  ensures forward completeness 

of  system (9) , boundedness of the system (11)–(14) solutions and boundedness of variable ( ( ) )tψ x  for all 

initial conditions, qmnR ++∈Md  and any 0>γ  provided that at least one of the following additional suppo-

sitions is valid: 

1) Assumption 4.A holds, control ),,( θzLyuu d=  is globally Lipschitz function with respect to the last two 

arguments and 0)(2 ≡td  for all 0≥t ; 

2) Assumption 4.A holds  control ),,( θzLyuu d=  is globally Lipschitz function, function ϕ  is globally 

Lipschitz, AyA =)( , ByB =)(  and RyR =)( ; 

3) Assumption 4.B holds and 0)( ≡td  for all  0≥t . 

 Additionally, if 0)( ≡td  for all 0≥t , then limit relations 0)(lim =
∞+→

t
t

ψ  (Assumption 4.A) or 
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0|)(|lim =
∞+→

Zt
t

x  (Assumption 4.B) hold. 

 P r o o f . At first  let us consider the case 0)(2 ≡td , 0≥t  under Assumption 4.A. Then differential equa-

tions (15), (16) take form: 

  )()(][)()( 13 tddyRθθyBeyGe ++−+= , (19) 
  )()()( 13 tddyRδyGδ ++= .  (20) 

Equations (20) and (13) have form (4) with bounded inputs, thus, according to Assumption 3 variables δ  and 

Ω  are bounded. Let us consider the time derivative of Lyapunov function )()()( 1 θθθθθ −−γ= − TW ,  which 

for system (14)  has form: 

  ( ) 2
2 22 ( ) ( ) ( ) | | .T T TW a t W⎡ ⎤= − − + − + ≤ −γ + +⎣ ⎦θ θ Ω C C δ Ω θ θ d Cδ d  (21) 

For bounded input 2dδC +  the boundedness of error θθ −  follows from Lemma 1 and PA property of signal 

a . Having in mind this conclusion it is possible to transform equation (19) to the form (4) with bounded in-

puts. Applying again Assumption 3 one can substantiate boundedness of e . Variable η  is a part of error δ , 

where all other parts and δ  are bounded. Hence η  is also bounded. Let us substitute the control into equa-

tion (9): 

  3 1( ) ( ) ( ) ( )[ ( , , ) ] ( ) ,u= + ϕ + + + + +x A y x y B y θ R y u y L x θ d R y e d  (22) 

where ),,(),,( θxLyuθzLyue −=u  is the error of control (10) realization. By conditions control 

),,( θzLyuu d=  is globally Lipschitz continuous and errors e  and θθ −  are bounded. Therefore, there exists 

a  constant 0>uL  such, that for all 0≥t  inequality ]|)(||)(|[|)(| ttLt uu θθeLe −+≤  holds and error ue  is 

bounded. According to Assumption 4, control (10) ensures for system (9) forward completeness and IOS 

properties, that implies boundedness of function ψ . 

 Assume now the presence of noise 2d  under structure restrictions AyA =)( , ByB =)(  and RyR =)( . 

Obviously, that in this case KyK =)( . Equations (15), (16) can be rewritten as follows: 

  2 3 1( ) ( ) ( ) [ ] ( ) ( ) ,d d t t= + ϕ − ϕ + − − + +e G y e y y B θ θ K d R d d  
  )()()()()( 132 ttdd ddRdKyyδyGδ ++−ϕ−ϕ+= . 

Since ϕ  is globally Lipschitz continuous, applying Assumption 3 we justify boundedness of variables δ , e 

and Ω . Analyzing properties of function W  we obtain boundedness of variable θθ − . Boundedness of all 

other variables of the system can be proven in the same way as in the previous case.  
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 In the absence of disturbances ( 0=d ) system (15), (16) takes form (17), (18). It follows from  Assumption 

2 that the variable δ  is bounded and system is asymptotically stable with respect to the part of variables δL  

[25]. Assumption 3 gives boundedness of variable Ω . In this case for time derivative of function W  Lemma 

1 provides asymptotic convergence to zero of variable )( tθθ − . According to assumptions 2 and 3 the system 

(17) is asymptotically stable with respect to variable eL  and has bounded solutions. Since signals )(tθθ −  

and )(teL  converge to zero, the error )( tue  also converges to zero. Having in mind the properties of control 

(10) from Assumption 4.A we obtain convergence to zero of variable )(tψ . In such case error )( tue  is inte-

grally bounded and we can apply Assumption 4.B. Proof is completed. ■ 

 R e m a r k . Globally Lipschitz property requirement for control (9) naturally holds for bounded controls 

with bounded partial derivative (like, for example, for tanh() used in the next section).  □ 

 For Assumption 4.A the theorem provides convergence conditions in the presence of external disturbances 

and noise. The noisy case needs additional structural restrictions. 

 For Assumption 4.B Theorem 3 does not propose constructive conditions, which ensure operating of the 

system in the presence of disturbances d . Robust properties of control (10) in this case are oriented on  pa-

rametric uncertainty and partial state measurements compensation. It is possible to weaken requirements of 

Theorem 3 for the case of Assumption 4.B, supposing boundedness and asymptotic convergence to zero of 

disturbance d . The proof of Theorem 3 remains valid with minimal modifications. However, even under 

such restrictive conditions Assumption 4.B is the most important for practical applications since this part 

allows to design adaptive controls for Hamiltonian systems. 

 Theorem 1 presents results for iISS stabilization of passive systems with respect to a set (energy levels 

(Hamiltonian levels) stabilization for mechanical systems). If parameters of the plant are unknown, then 

Hamiltonian can depend on vector of uncertain parameters θ  in complex nonlinear fashion, that prevents 

application of conventional adaptation techniques oriented on convex parameterization of the system equa-

tions. Combining results of theorems 1 and 3 it is possible to propose a solution of this problem. 

 C o r o l l a r y  1 . Assume that: 

 1. System (9) for 0=d  is passive with respect to output TWL )()( xψ yR=  and input u  with smooth storage 

function +→ RRW n: , ( ) ( )00 ||)(|| 21 WW xxx α≤≤α W , ∞∈αα K21, , where }0)(:{0 == xx WW  is a compact 
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set; system (9) is W-detectable for output ψ , 
0

| |
lim | ( ) | / ( )W

→∞
< ∞

x
ψ x x

V
. 

 2. For system (9) Assumption 2 holds and Assumption 3 is satisfied for any Lebesgue measurable signal 

y ; minimum singular value )( ta  of matrix function )(tTTΩC  is PA; | ( ( ) ) |d t B≤B y , | ( ( ) ) |d t R≤R y  for all 

0≥t , ,B R R+∈ . 

 3. Smooth function qq RR →ϕ :  for all }0{qR∈ψ  possesses inequality 0)( >ϕ ψψT  and 

),,())(( θxLyuxψu =ϕ−= . 

 Then control law ),,( θzLyuu =  provides for system (9), (11)–(14) global boundedness of solutions for the 

case 0=d  and any 0>γ , additionally 0|)(|lim 0 =
∞+→ Wt

t
x . 

 P r o o f . The first and the third parts of conditions provide implementation of Theorem 1 in this case. In 

such situation control ),,())(( θxLyuxψu =ϕ−=  ensures iISS property with respect to compact set 0W  and 

input 3d  for system (9). Due to compactness property of the set, the system is also forward complete. There-

fore, all conditions of Assumption 4.B are satisfied and taking in mind other conditions of the corollary the 

result of Theorem 3 holds. ■ 

 Further let us consider example of Corollary 1 results application.  

IV. ADAPTIVE  SWINGING A  PENDULUM 

 Consider the problem of energy stabilization for a pendulum with partial observations and parametric un-

certainty: 

  21 xx = , 1xy = , uxx +ω−= )sin( 1
2

2 , 

where Txx ][ 21=x  is state vector; ω  is unknown natural frequency, 2ω=θ . It is required to stabilize the de-

sired value *H  of pendulum energy 2 2
1 2 2 1( , ) 0.5 (1 cos( ))H x x x x= + ω − . The system is passive with respect to 

output ]),([ *
212 HxxHx −=ψ  with positive and smooth storage function 2*

2121 ]),([5.0),( HxxHxxW −= . 

The system is W-detectable with respect to the output [26]. If 2* 2ω≤H , then the zero level set of the storage 

function is compact. The value 2* 2ω=H  corresponds to stabilization of the upper equilibrium of the pendu-

lum. 

 In [11] the energy control law ( )u = −ϕ ψ  was proposed, and successfully tested by simulation for 

CONFIDENTIAL. Limited circulation. For review only

Preprint submitted to IEEE Transactions on Automatic Control. Received: November 25, 2008 02:14:11 PST



 

 

)tanh()( ψ=ψϕ . Let us show that such control law and storage function satisfy conditions of Corollary 1. 

The equations (11)–(14) take form: 

  

;)]2))cos(1(5.0[(

)sin()(

;0;)(

1
2
22

1112

1121

θ−−θ+ϕ−

−θ−−=

>−+=

xzz

xzxKz

KzxKzz

 

  
;)sin(

;

112

211

xK

K

−Ω−=Ω

Ω+Ω−=Ω
      

;

;

212

1211

θΩ−η−=η

θΩ−η+η−=η

K

K
 

  )( 1111 η+−Ωγ=θ zx . 

 To test PA property of signal 1( ) ( )T T t t= ΩC Ω  it is enough to establish PE property of signal 

1( ) sin( ( ) )v t x t=  or PA property of 2
1( ) sin ( ( ) )v t x t′ = . Indeed, ( )v t  is the single input of stable linear filter 

(13). Clearly, that forced part of solution (proportional to ( )v t ) defines properties of signal 1( )tΩ  (transient 

motions converge to zero asymptotically). The PA property of signal ( )v t′  implies, that the system trajecto-

ries do not converge and do not stay into the points 1x n= ± π , 0,1,2,...n = . This convergence is possible only 

in the equilibriums of the system ( ,0 )n± π , 0,1,2,...n = , but linearization of the pendulum dynamics closed 

by the proposed control is unstable in these equilibriums for 20 * 2H< < ω , since these equilibriums are not 

the desired final positions of the system. Moreover, the simulation below show, that even for the case 

2* 2ω=H  the algorithm keeps its identification abilities. 

The proposed observer with control 

  )]2))cos(1(5.0[( 1
2
22 θ−−θ+ϕ−= xzzu  

provides stabilization of the upper equilibrium of the pendulum (in this case * 22 2H = ω = θ ). The simulation 

results are shown in Fig. 1 for 1=γ==ω K  and zero initial conditions (except 1.0)0(1 =x ). Trajectories in 

the state space of the pendulum (solid line) and in the coordinate space of the adaptive observer ),( 21 zz  (dot-

ted line) are shown in Fig. 1,а. The observation error is presented in Fig. 1,b separately. In figures 1,c and 

1,d plots of variables )( tθ  and )( tH  are shown. 

Note that solutions from papers, [10], [16], ,[23], [30] can not be applied in this example due to bounded-

ness of control (high gain feedbacks, which suppress nonlinearities, are not possible) or since output stabili-

zation is required here. 
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V. CONCLUSION 

In this paper the previous results of the authors [5], [6], [7], [8], [9] obtained for output synchronization, 

observation, I-O stabilization are extended to the robust and adaptive partial stabilization problems for a 

class of nonlinear systems affine in control and disturbances. Note that the existing results on stabilization 

with respect to a part of variables [25] are not applicable since in this paper the partial stabilization is consid-

ered with respect to a function and the goal set is a surface in the state space (e.g. energy surface). Applica-

bility conditions of the algorithms are established in the presence of external disturbances and partial obser-

vations with measurement noise. In the absence of measurement noise for any disturbance the proposed con-

trol algorithms ensure plant identification and estimation with bounded errors, while in the absence of distur-

bances the algorithms provide output stabilization with exact identification and estimation. This result also 

holds in the presence of measurement noise under some special structural conditions imposed on the plant 

equations. 
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Fig. 1. Adaptive swinging up of the pendulum.  
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