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Abstract. We investigate the concept of projective equivalence of connections
in supergeometry. To this aim, we propose a de�nition for (super) geodesics on
a supermanifold in which, as in the classical case, they are the projections of the
integral curves of a vector �eld on the tangent bundle: the geodesic vector �eld

associated with the connection. Our (super) geodesics possess the same properties
as the in the classical case: there exists a unique (super) geodesic satisfying a given
initial condition and when the connection is metric, our supergeodesics coincide
with the trajectories of a free particle with unit mass. Moreover, using our de�ni-
tion, we are able to establish Weyl's characterization of projective equivalence in
the super context: two torsion-free (super) connections de�ne the same geodesics
(up to reparametrizations) if and only if their di�erence tensor can be expressed
by means of a (smooth, even, super) 1-form.
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1. Introduction

The concept of projective equivalence of connections goes back to the 1920's, with
the study of the so-called �geometry of paths� (see [Th, TV, Wh] or [Ro1, Ro2, HR]
for a modern formulation). In 2002, M. Bordemann used this theory to answer the
problem of projectively invariant quantization in [Bo].
Projectively invariant quantization is a generalization to arbitrary manifolds of

the notion of equivariant quantizations in the sense of Lecomte-Ovsienko, see [LO, L,
MR]. It consists in building in a natural way a quantization (i.e., a symbol-preserving
linear bijection between a space of symbols and a space of di�erential operators) from
a linear connection, requiring that the quantization remains unchanged if we start
from another connection in the same projective class.
By de�nition, two connections are called projectively equivalent if they have the

same geodesics, up to parametrization. In other words, the geodesics of two equiv-
alent connections are the same, provided that we see them as sets of points, rather
than as maps from an open interval of R into the manifold. In [We], H. Weyl showed
that projective equivalence can be rephrased in an algebraic way: two connections
are projectively equivalent if and only if the symmetric tensor which measures the
di�erence between them can be expressed by means of a 1-form.
Weyl's algebraic characterization of projective equivalence provides a convenient

way to transport projective equivalence to the framework of supergeometry: two
superconnections are said to be projectively equivalent if the (super)symmetric ten-
sor which measures the di�erence between them can be expressed by means of a
(super)1-form. Using this notion, it is possible to set the problem of projectively
invariant quantization on supermanifolds while M. Bordemann's method can be
adapted in order to solve it (see [LR]).
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Remembering the classical picture, it is natural to ask whether it is possible to
�nd a geometric counterpart to the algebraic de�nition of projective equivalence
of superconnections, i.e., a characterization in terms of supergeodesics. The main
purpose of the present paper is to answer this question in the a�rmative.
As in the classical case, we de�ne, in section 3, supergeodesics associated with a

superconnection ∇ on a supermanifold M as being the projections onto M of the
integral curves of a vector �eld G on the tangent bundle TM : the geodesic vector
�eld of ∇. In section 4 we then de�ne the notion of reparametrization of a geodesic
and establish that two connections ∇ and ∇̂ on a supermanifold M have the same
geodesics up to parametrization if and only if there is an even 1-form α such that

∇̂XY = ∇XY +X · ι(Y )α + (−1)ε(X)·ε(Y ) · Y · ι(X)α ∀X, Y ∈ Γ(TM),

thus showing that Weyl's characterization also holds in supergeometry.
We note that our approach to supergeodesics di�ers from that of Goertsches [Go].

In particular, our equations for supergeodesics are the natural generalization of the
classical ones. Actually, our approach is nearly identical to that recently proposed by
Garnier-Wurzbacher in [GW], where they consider supergeodesics associated with a
Levi-Civita superconnection. In their paper, supergeodesics on a Riemannian super-
manifold M are shown to coïncide with the projections of the �ow of a Hamiltonian
supervector �eld de�ned on the (even) cotangent bundle of M . In section 5 we will
show that the same holds in our approach when we use a Levi-Civita connection.
In fact, beyond the fact that they restrict to the Riemannian setting where we

consider arbitrary connections, the main di�erence between Garnier-Wurzbacher's
supergeodesics and ours lies in the way we interpret geodesics. In [GW], geodesics
are seen as individual supercurves on M (which obliges them to add sometimes
an arbitrary additional supermanifold S, in particular to speci�y intial conditions),
whereas we focus on the geodesic �ow as a whole, seen as the projection on M of
the �ow of an even vector �eld on the tangent bundle TM . We thus can apply
directly the existence and uniqueness of the �ow of a super vector �eld, as was �rst
established in [M-SV].

2. Notation and general remarks

We will work with the geometric H∞ version of DeWitt supermanifolds, which is
equivalent to the theory of graded manifolds of Leites and Kostant (see [DW, Ko,
Le, Rog, Tu1]). Any reader using a (slightly) di�erent version of supermanifolds
should be able to translate the results to her/his version of supermanifolds.

Some general conventions.

• The basic graded ring will be denoted as A and we will think of it as the
exterior algebra A = ΛV of an in�nite dimensional real vector space V .
• Any element x in a graded space splits into an even and an odd part x =
x0+x1. Associated with this splitting we have the operation C of conjugation
in the odd part de�ned by C(x) ≡ C(x0 + x1) = x0 − x1.
• All (graded) objects over the basic ring A have an underlying real structure,
called their body, in which all nilpotent elements in A are ignored/killed.
This forgetful map is called the body map, denoted by B. For the ring A,
this map B is nothing but the canonical projection A = ΛV → Λ0V = R.
• If ω is a k-form and X a vector �eld, we denote the contraction of the
vector �eld X with the k-form ω by ι(X)ω, which yields a k − 1-form. If
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X1, . . . , X` are ` ≤ k vector �elds, we denote the repeated contraction of ω
by ι(X1, · · · , X`)ω. More precisely:

ι(X1, · · · , X`)ω =
(
ι(X1) ◦ · · · ◦ ι(X`)

)
ω

In the special case ` = k this de�nition di�ers by a factor (−1)k(k−1)/2 from
the usual de�nition of the evaluation of a k-form on k vector �elds. This
di�erence is due to the fact that in ordinary di�erential geometry repeated
contraction with k vector �elds corresponds to the direct evaluation in the
reverse order. And indeed, (−1)k(k−1)/2 is the signature of the permutation
changing 1, 2, . . . , k in k, k − 1, . . . , 2, 1. However, in graded di�erential
geometry this permutation not only introduces this signature, but also signs
depending upon the parities of the vector �elds. These additional signs are
avoided by our de�nition.
• Evaluation/contraction of a left-(multi-)linear map f with a vector v is
denoted just as the contraction of a di�erential form with a vector �eld as
ι(v)f . If f : E → A is just left-linear, this is just the image of v under the
map f . However, if f is for instance left-bilinear, the contraction ι(v)f now
is a left-linear map given by

ι(v)f : w 7→ ι(w, v)f

As left-linearity and right-linearity are the same for even maps, we some-
times use the more standard notation f(w, v) for the image of the couple
(w, v) under the bilinear map f , instead of ι(w, v)f .
• If E is an A-vector space, E∗ will denote the left dual of E, i.e., the space
of all left-linear maps from E to A.
• Let x1, . . . , xn be local coordinates of a super manifold M of graded dimen-
sion p|q, p + q = n, ordered such that x1, . . . , xp are even and xp+1, . . . , xn

are odd (we will denote the latter also by (ξ1, . . . , ξq)). Using the symbol ε
as the parity function, we thus have ε(xi) = 0 for i ≤ p and 1 for i > p. To
simplify notation, we introduce the abbreviation εi = ε(xi).

2.1. Lemma ([Tu1]). Let f and g be smooth functions of even variables x1, . . . , xp
and odd variables ξ1, . . . , ξq1 and η1, . . . , ηq2. We can expand these functions with
respect to products of odd variables, either only the ξ's, only the η's or both ξ's and
η's, giving (for f) the formulae

f(x, ξ, η) =
∑

I⊂{1,...,q1}

ξI · f (ξ)
I (x, η) =

∑
J⊂{1,...,q2}

ηJ · f (η)
J (x, ξ)

=
∑

I⊂{1,...,q1},J⊂{1,...,q2}

ξI · ηJ · f (ξ,η)
IJ (x)

where the sum is over all subsets with (for instance)

I = {i1, . . . , ik} with 1 ≤ i1 < i2 < · · · < ik ≤ q1 =⇒ ξI = ξi1 · · · ξik
Then the following statements are equivalent:

(i) f = g

(ii) for all I ⊂ {1, . . . , q1}: f (ξ)
I = g

(ξ)
I

(iii) for all J ⊂ {1, . . . , q2}: f (η)
J = g

(η)
J

(iv) for all I ⊂ {1, . . . , q1}, J ⊂ {1, . . . , q2}: f (ξ,η)
IJ = g

(ξ,η)
IJ
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Moreover, when we have expanded with respect to all odd variables, the remaining
functions of the even variables only are completely determined by their values on
real coordinates. Said di�erently, we may assume that they are ordinary smooth
functions of n real coordinates.

3. Super Geodesics

Before dealing with the speci�c problem of geodesics on a supermanifold, we �rst
recall some general de�nitions and facts about (super) connections in the tangent
bundle. Then we attack the problem of de�ning super geodesics: we associate with
any connection a so-called geodesic vector �eld on the tangent bundle, whose �ow
equations are the straightforward super analogs of the classical geodesic equations.

De�nition [Tu1, VII�6]. A connection in a (super) vector bundle p : E → M over
a supermanifold M is (can be seen as) a map ∇ : Γ(TM)×Γ(E)→ Γ(E) satisfying

(i) ∇ is bi-additive (in Γ(TM) and Γ(E)) and even
(ii) for X ∈ Γ(TM), s ∈ Γ(E) and f ∈ C∞(M) we have

∇fXs = f · ∇Xs

(iii) for homogeneous X ∈ Γ(TM), s ∈ Γ(E) and f ∈ C∞(M) we have

∇X(fs) = (Xf) · s+ (−1)ε(X)·ε(f)f · ∇Xs

Lemma. If ∇ and ∇̂ are connections in E, the map S : Γ(TM) × Γ(E) → Γ(E)
de�ned by

S(X, s) = ∇Xs− ∇̂Xs

is even and bilinear over C∞(M). In other words, S is a �tensor�, i.e., can be seen
as a section of the bundle TM∗ ⊗ End(E) [Tu1, IV�5].

Lemma. If ∇ is a connection in TM , then the map T : Γ(TM)×Γ(TM)→ Γ(TM)
de�ned on homogeneous X, Y ∈ Γ(TM) by

T (X, Y ) = ∇XY − (−1)ε(X)·ε(Y ) · ∇YX − [X, Y ]

is even, graded anti-symmetric and bilinear over C∞(M). In other words, T is a
�tensor�, i.e., can be seen as a section of the bundle

∧2 TM∗⊗TM , i.e., as a 2-form
on M with values in TM [Tu1, IV�5].

De�nition. A connection ∇ in TM is said to be torsion-free if the tensor T is
identically zero.

Corollary. If ∇ and ∇̂ are torsion-free connections in TM , the tensor S = ∇−∇̂ :
Γ(TM)× Γ(TM)→ Γ(TM) is graded symmetric.

Let ∇ be a connection in TM (we also say a connection on M). On a local chart
for M with coordinates x = (x1, . . . , xn) we de�ne the Christo�el symbols Γijk of ∇
by

Γijk(x) = ι(∇∂
xj
∂xk) dxi|x

with parity ε
(
Γijk(x)

)
= εi + εj + εk. It follows that for vector �elds X =

∑
iX

i · ∂xi
and Y =

∑
i Y

i · ∂xi , we have

∇XY =
∑
ij

Xj · ∂Y
i

∂xj
· ∂xi +

∑
ijk

Xj · Cεj(Y k) · Γijk · ∂xi
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When the vector �eld X is even, we have ε(Xj) = εj and in that case the above
formula can be written without signs as

∇XY =
∑
ij

Xj · ∂Y
i

∂xj
· ∂xi +

∑
ijk

Y k ·Xj · Γijk · ∂xi

Corollary. If ∇ and ∇̂ are connections on M with Christo�el symbols Γijk and Γ̂ijk
respectively, the tensor S reads locally as

S =
∑
ijk

dxk ⊗ dxj ·
(

Γijk − Γ̂ijk

)
⊗ ∂xi

while the tensor T is given by

T =
∑
ijk

dxk ∧ dxj · Γijk(x)⊗ ∂xi

= 1
2
·
∑
ijk

dxk ∧ dxj ·
(

Γijk − (−1)εjεk · Γikj
)
⊗ ∂xi

In particular ∇ is torsion-free if and only if the Christo�el symbols are graded sym-
metric in the lower indices, i.e., Γijk = (−1)εjεk · Γikj.

If y = (y1, . . . , yn) is another local system of coordinates, we can consider the

Christo�el symbols Γ̃ijk in terms of these coordinates:

Γ̃ijk(y) = ι(∇∂
yj
∂yk) dyi|y

Now let m ∈ M be the point in M whose coordinates are x or y depending upon
the choice of local coordinate system. As tangent vectors transform as ∂xi|m =∑

p(∂xiy
p)(x) · ∂yp |m, it follows that the relation between Γ and Γ̃ is given by

(3.1)
∑
i

Γijk(x) · (∂xiyr)(x)

= (∂xj∂xky
r)(x) +

∑
s,t

(−1)εj(εt+εk) · (∂xkyt)(x) · (∂xjys)(x) · Γ̃rst(y)

Finally, let us consider TM (0) (the even part of the tangent bundle). With any
local system of coordinates x = (x1, . . . , xn) (resp. y = (y1, . . . , yn)) we associate the
natural local system of coordinates (x, v) (resp. (y, w)) on TM (0). More precisely,
if x are the coordinates of a point m ∈ M , then (x, v) are the coordinates of the
tangent vector V =

∑
i v

i · ∂xi|m ∈ TmM (0). Now if (x, v) and (y, w) are the local
coordinates of the same tangent vector V , i.e.,

V =
∑
i

vi · ∂xi |m =
∑
p

wp · ∂yp |m

then we have

(3.2) wp =
∑
i

vi · (∂xiyp)(x)

It follows that we have

∂xi|V =
∑
p

(∂xiy
p)(x) · ∂yp |V +

∑
jp

(−1)εiεjvj · (∂xi∂xjyp)(x) · ∂wp|V(3.3a)

∂vi|V =
∑
p

(∂xiy
p)(x) · ∂wp |V(3.3b)
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With these preparations at hand, we now attack the question of de�ning geodesics.
We start very naïvely in local coordinates and copy the classical case: a geodesic is
a map γ : A0 →M given in local coordinates by γ(t) = (γ1(t), . . . , γn(t)) satisfying
the equations

(3.4)
d2γi

dt2
(t) = −

∑
jk

dγk

dt
(t) · dγj

dt
(t) · Γijk(γ(t))

But to solve second order di�erential equations one needs initial conditions, which
in our case are a starting point x and an initial velocity v. And then the geodesic γ
depends upon these initial conditions, forcing us to write γ(x,v) instead of simply γ
and adding the initial conditions

γi(x,v)(0) = xi and
dγi(x,v)

dt
(0) = vi

It is here that our de�nition deviates from the one given in [GW], as we look at maps
de�ned on A0×TM (0) rather than on A0×A1 or an arbitrary product A0×S. We
now recall that any system of second order di�erential equations on a manifold can
be expressed as a system of �rst order di�erential equations on the tangent bundle.
This means that we look at curves γ̃(x,v) : A0 → TM (0) given in local coordinates by

γ̃(x,v)(t) = (γ1
(x,v)(t), . . . , γ

n
(x,v)(t), γ̄

1
(x,v)(t), . . . , γ̄

n
(x,v)(t))

satisfying the equations
dγi

(x,v)

dt
(t) = γ̄i(x,v)(t)

dγ̄i
(x,v)

dt
(t) = −

∑
jk γ̄

k
(x,v)(t) · γ̄

j
(x,v)(t) · Γijk(γ(t))

and with initial conditions

γi(x,v)(0) = xi and γ̄i(x,v)(0) = vi

We now recognize that these are exactly the equations of the integral curves of a
vector �eld on TM (0). And indeed, using the Christo�el symbols we can de�ne a
vector �eld G on TM (0) in local coordinates (x, v) by

(3.5) G|V =
∑
i

vi∂xi|V −
∑
ijk

vk · vj · Γijk(x) · ∂vi |V

Combining (3.1) and (3.3), it is immediate that these local expressions glue together
to form a well-de�ned global vector �eld G on TM (0). As it is an even vector
�eld, it has a �ow Ψ de�ned in an open subset WG of A0 × TM (0) containing
{0} × TM (0) and with values in TM (0) [Tu1, V.4.9]. In local coordinates we will
write Ψ(t, x, v) = (Ψ1(t, x, v),Ψ2(t, x, v)), where Ψ1 = (Ψ1

1, . . . ,Ψ
n
1 ) represents the

base point while Ψ2 = (Ψ1
2, . . . ,Ψ

n
2 ) represents the tangent vector. By de�nition of

a �ow, these functions thus satisfy the equations
∂Ψi1
∂t

(t, x, v) = Ψi
2(t, x, v)

∂Ψi2
∂t

(t, x, v) = −
∑

jk Ψk
2(t, x, v) ·Ψj

2(t, x, v) · Γijk(Ψ1(t, x, v))

together with the initial conditions

Ψ1(0, x, v) = x and Ψ2(0, x, v) = v
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With the global vector �eld G we thus have found an intrinsic coordinate free de-
scription of the equations we wrote for the geodesic curves γ̃(x,v)(t) and we are now
in position to state a de�nition.

De�nition. Let ∇ be a connection in TM , let π : TM (0) →M denote the canonical
projection, let G be the even vector �eld (3.5) and let Ψ : WG → TM (0) be its �ow.
For a �xed (x, v) ∼= V ∈ TM (0) we will call the map γ : A0 →M de�ned by

γ(t) = π
(
Ψ(t,V)

) ∼= Ψ1(t, x, v)

the geodesic through x ∈M with initial velocity v. Note that if V is not in the body
of TM (0), this curve is not (necessarily) smooth (see [Tu1, III.1.23g, V.3.19]).

Remark. One could de�ne a similar vector �eld on TM (1), the odd part of the
tangent bundle. More precisely, we denote by (x, v̄) local coordinates on TM (1),
where (x, v̄) represents the tangent vector V =

∑
i v̄

i · ∂xi |m, but the parity of v̄i

is reversed: ε(v̄i) = εi + 1 = ε(xi) + 1. It thus is an odd tangent vector. These
coordinates still change according to (3.2) (with v replaced by v̄), but an additional
sign appears in the transformation of the tangent vectors: (3.3a) is replaced by

∂xi |V =
∑
p

(∂xiy
p)(x) · ∂yp |V +

∑
jp

(−1)εi(εj+1)v̄j · (∂xi∂xjyp)(x) · ∂wp|V(3.6a)

The analogon of the vector �eld G on TM (0) would be the odd vector �eld G′ on
TM (1) de�ned in local coordinates as

G′|V =
∑
i

v̄i∂xi |V −
∑
ijk

(−1)εk · v̄k · v̄j · Γijk(x) · ∂v̄i |V

The transformation properties (3.1), (3.3b) and (3.6a) ensure thatG′ is a well de�ned
global vector �eld. However, the condition for an odd vector �eld to be integrable
(with an odd time parameter τ) is that its auto-commutator is zero [Tu1, V.4.17].
But the auto-commutator [G′, G′] is given by

[G′, G′] = −2 ·
∑
ijk

(−1)εk · v̄k · v̄j · Γijk(x) · ∂xi + terms in ∂v̄i

= −
∑
ijk

(−1)εk · v̄k · v̄j · (Γijk(x)− (−1)εjεk · Γikj(x)) · ∂xi + terms in ∂v̄i

If this is to be zero, then at least the coe�cients of ∂xi have to be zero. But this is the
case if and only if the connection ∇ is torsion-free (on the odd tangent bundle, the
combination (−1)εk · v̄k · v̄j is graded anti-symmetric). Moreover, if this is the case,
then the vector �eld G′ reduces to G′ =

∑
i v̄

i∂xi , of which the auto-commutator
indeed is zero (hence we don't have to compute the coe�cients of ∂v̄i). But for this
vector �eld the �ow Φ′ is given by:

Φ′(τ, x, v̄) = (x+ τ · v̄, v̄)

which is rather uninteresting: the �odd geodesics� are �straight odd lines� in the
direction of the tangent vector. Another way to see that this must happen is the
following set of observations. If we use an odd time parameter τ , it follows imme-
diately that the velocity vector should be an odd tangent vector. Moreover, when
we write the naïve equations (3.4) for the geodesics, the left hand side is identically
zero because ∂τ ◦ ∂τ = 0. And then this equation tells us that the connection should
be torsion-free. We are thus left with the condition that the connection should be
torsion-free, together with the initial conditions γ(0, x, v̄) = x and ∂τγ(0, x, v̄) = v̄.
And these give us our straight odd lines.
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4. Projective equivalence

We now consider the situation in which we have two connections ∇, ∇̂ on M and
we wonder under what conditions these two connections have �the same� geodesics
as images in M . More precisely, if Ψ(t,V) and Ψ̂(t,V) are the geodesic �ows for ∇
and ∇̂ respectively, the naïve question is under what conditions we have

{Ψ1(t,V) : t ∈ A0 } = { Ψ̂1(t,V) : t ∈ A0 }
A more precise question is under what conditions we can �nd a reparametrization
function r : A0 × TM (0) → A0 such that we have

(4.1) ∀t ∈ A0 : Ψ1(r(t,V),V) = Ψ̂1(t,V)

Note that we added an explicit dependence on the initial condition V in the repara-
metrization function r, as there is no reason that geodesics through di�erent points
should be reparametrized in the same way.

De�nition. We say that the connections ∇ and ∇̂ have the same geodesics up
to reparametrization if there exists a function r : A0 × TM (0) → A0 such that
r(0,V) = 0, (∂r/∂t)(0,V) = 1 and for which equation (4.1) holds.1

We are going to characterize the connections that have the same geodesics up to
reparametrization in terms of the form of the tensor S which measures the di�erence
between these two connections. In order to do that, we are going to proceed in two
steps. First, we show that (4.1) holds if and only if the geodesic �ow Ψ of G, the

(di�erence) tensor S = ∇ − ∇̂ and the reparametrization function r are related
through a certain di�erential equation.

Proposition. The connections∇ and ∇̂ have the same geodesics up to reparametriza-
tion if and only if there exists a function r : A0×TM (0) → A0 such that r(0,V) = 0,
(∂r/∂t)(0,V) = 1 and for which the following di�erential equation holds:

(4.2)
∂2r

∂t2
(t,V) · ∂Ψ1

∂t
(r(t,V),V)

=
(∂r
∂t

(t,V)
)2

· SΨ1(r(t,V),V)

( ∂Ψ1

∂t
(r(t,V),V) ,

∂Ψ1

∂t
(r(t,V),V)

)
Proof. Let us show that the condition is necessary. In view of (3.4), if Ψ1(r(t,V),V)

is a geodesic for ∇̂, then

0 =
∂2Ψi

1(r(t,V),V)

∂t2
+
∑
j,k

∂Ψk
1(r(t,V),V)

∂t
· ∂Ψj

1(r(t,V),V)

∂t
· Γ̂ijk(Ψ1(r(t,V),V))

Let us replace in this equation Γ̂ijk by Γijk − Sijk and let us apply the chain rule to

compute the derivatives of the functions Ψi
1(r(t,V),V). Doing so, we obtain

0 =
∂2r

∂t2
(t,V) · ∂Ψ1

∂t
(r(t,V),V) +

(
∂r

∂t
(t,V)

)2(
∂2Ψi

1

∂t2
(r(t,V),V)

)
+

(
∂r

∂t
(t,V)

)2
(∑

j,k

∂Ψk
1

∂t
(r(t,V),V) · ∂Ψj

1

∂t
(r(t,V),V) · Γijk(Ψ1(r(t,V),V))

)
1The additional conditions r(0,V) = 0 and (∂r/∂t)(0,V) = 1 ensure that the reparametrization

transforms each geodesic of ∇ into the geodesic of ∇̂ with the same initial conditions.
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−
(∂r
∂t

(t,V)
)2
(∑

j,k

∂Ψk
1

∂t
(r(t,V),V) · ∂Ψj

1

∂t
(r(t,V),V) · Sijk(Ψ1(r(t,V),V))

)
Using the fact that Ψ1 is a geodesic for ∇, the second and third term on the right
hand side cancel and hence this equation reduces to (4.2).
In order to show the converse, it su�ces to note that the above computations also

show that if (4.2) is satis�ed, then the curve(
Ψ1(r(t,V),V),

∂r

∂t
(t,V) · ∂Ψ1

∂t
(r(t,V),V)

)
satis�es the equation of the �ow (Ψ̂1(t,V), Ψ̂2(t,V)) of Ĝ, the geodesic vector �eld

corresponding to ∇̂. As it satis�es the same initial conditions as (Ψ̂1(t,V), Ψ̂2(t,V))
at t = 0, these two curves have to coincide, and in particular Ψ1(r(t,V),V) =

Ψ̂1(t,V). QED

Now in order to obtain Weyl's characterization in the super context, it remains to
show that condition (4.2) amounts to imposing that S can be expressed by means of
an even (super) 1-form. As for the previous Proposition, the proof of the theorem
follows the lines of the classical case. It invokes a technical Lemma which roughly
says that if we have a bilinear function S(v, w) such that S(v, v) = h(v) · v for
some function h, then h must be linear in v. The proof of this technical Lemma is
elementary but long, simply because we have to be careful with the odd coordinates
and moreover, everything depends upon additional parameters (the local coordinates
x and ξ on M). Therefore the proof of the lemma will be given after that of the
Theorem.

4.1. Lemma. Let E be a graded vector space of graded dimension p|q with even basis
vectors e1, . . . , ep and odd basis vectors f1, . . . , fq, let U be an open coordinate subset
of a manifold M with local even coordinates x and local odd coordinates ξ. Suppose
that S : U×E×E → E is a smooth function which is left-bilinear, graded symmetric
in the product E×E and for which there is a smooth function h : U ×E0 → A such
that

(4.3) ∀(x, ξ) ∈ U ∀v ∈ E0 : S(x, ξ, v, v) = h(x, ξ, v) · v
Then there exists a unique smooth function α : U → E∗ such that h(x, ξ, v) =
ι(v)α(x, ξ) and

S(x, ξ, v, w) = 1
2
·
(
v · ι(w)α(x, ξ) + (−1)ε(v)·ε(w) · w · ι(v)α(x, ξ)

)
4.2. Theorem. Two torsion-free connections ∇ and ∇̂ on M have the same
geodesics up to reparametrization if and only if there exists a smooth even 1-form α

on M such that the tensor S = ∇− ∇̂ is given by

(4.4) Sx(v, w) = 1
2
· (v · ι(w)αx + (−1)ε(v)·ε(w) · w · ι(v)αx)

for any x ∈M and any homogeneous v, w ∈ TxM .

Proof of the theorem. We �rst assume that we have a reparametrization r that
transforms the geodesics of ∇ into those of ∇̂. Taking t = 0 in (4.2) and using
the initial conditions for Ψ and r, we get the following (vector) equation in local
coordinates:

(4.5) v · ∂
2r

∂t2
(0, x, v) = Sx(v, v)
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Lemma 4.1, with h being here the function h(x, v) = ∂2r
∂t2

(0, x, v), gives us a (lo-
cal) smooth 1-form α, which must be even by parity considerations. But (4.5) is
an intrinsic equation which does not depend upon the choice of local coordinates
(because (4.2) is intrinsic). As the 1-form α is unique, the local 1-forms α given by
Lemma 4.1 glue together to form a global smooth even 1-form α satisfying (4.4).
To show the converse, let us now assume that we have an even 1-form α on M

such that the tensor S is given by (4.4). Then (4.2) reduces to the (vector) equation

(4.6)
∂2r

∂t2
(t, x, v) · ∂Ψ1

∂t
(r(t, x, v), x, v)

=
(∂r
∂t

(t, x, v)
)2

· ι
(
∂Ψ1

∂t
(r(t, x, v), x, v)

)
αΨ1(r(t,x,v),x,v) ·

∂Ψ1

∂t
(r(t, x, v), x, v)

For this to be true for all geodesics of ∇, the function r thus has to satisfy the
second order di�erential equation

∂2r

∂t2
(t, x, v) =

(∂r
∂t

(t, x, v)
)2

· ι
(
∂Ψ1

∂t
(r(t, x, v), x, v)

)
αΨ1(r(t,x,v),x,v)

As for the geodesic equations, we translate this into a system of �rst order di�erential
equations by introducing a second function s : A0 × TM (0) → A0 and we obtain{

∂r
∂t

(t, x, v) = s(t, x, v)

∂s
∂t

(t, x, v) = s(t, x, v)2 · ι
(
∂Ψ1

∂t
(r(t, x, v), x, v)

)
αΨ1(r(t,x,v),x,v)

while the initial conditions for r yield r(0, x, v) = 0 and s(0, x, v) = 1. To show that
these equations always have a (unique) solution, we just note that these equations
determine the �ow of the even vector �eld R on (A0)2 × TM (0) given by

R|(r,s,V) = s · ∂
∂r

+ s2 · ι
(
∂Ψ1

∂t
(r,V)

)
αΨ1(r,V) ·

∂

∂s

And indeed, the equations for the �ow Φ = (Φr,Φs,Φ1,Φ2) of R are given by

∂Φr
∂t

(t, ro, so, x, v) = Φs(t, ro, so, x, v)

∂Φs
∂t

(t, ro, so, x, v) = (Φs(t, ro, so, x, v))2

·ι
(
∂Ψ1

∂t
(Φr(t, ro, so, x, v), x, v)

)
αΨ1(Φr(t,ro,so,x,v),x,v)

∂Φ1

∂t
(t, ro, so, x, v) = 0

∂Φ2

∂t
(t, ro, so, x, v) = 0

It thus su�ces to de�ne r(t,V) = Φr(t, 0, 1,V) and s(t,V) = Φs(t, 0, 1,V) to obtain
the desired functions. QED

Proof of the lemma. Uniqueness of α follows from the equation h(x, ξ, v) = ι(v)α(x, ξ).
To prove existence, let us start by introducing global (linear, left) coordinates y, η
on E0 by

v ∈ E0 ⇒ v =
∑
i

yi · ei +
∑
i

ηi · fi

Using bilinearity and graded symmetry, we thus can write

S(x, ξ, v, v) =
∑
i,j

yiyj · S(x, ξ, ei, ej)

+ 2
∑
i,j

yiηj · S(x, ξ, ei, fj) +
∑
i,j

ηjηi · S(x, ξ, fi, fj)
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The functions S, when evaluated in a pair of basis vectors of E, is a smooth function
on U with values in E. As such we can determine the coe�cients with respect to
the given basis for E as for instance

S(x, ξ, ei, ej) =
∑
p

Sp(x, ξ, ei, ej) · ep +
∑
p

σp(x, ξ, ei, ej) · fp

When we substitute this in (4.3) with the (linear, left) coordinates of v ∈ E0, we
get the system of equations

h(x, ξ, y, η) · yp =
∑
i,j

yiyj · Sp(x, ξ, ei, ej)

+ 2
∑
i,j

yiηj · Sp(x, ξ, ei, fj) +
∑
i,j

ηjηi · Sp(x, ξ, fi, fj)

h(x, ξ, y, η) · ηp =
∑
i,j

yiyj · σp(x, ξ, ei, ej)

+ 2
∑
i,j

yiηj · σp(x, ξ, ei, fj) +
∑
i,j

ηjηi · σp(x, ξ, fi, fj)

Applying [2.1] we can expand these equations in powers of the ξ coordinates and
equate the separate powers ξJ giving

hJ(x, y, η) · yp =
∑
i,j

yiyj · Sp,J(x, ei, ej) + 2
∑
i,j

yiηj · (−1)|J | · Sp,J(x, ei, fj)(4.7)

+
∑
i,j

ηjηi · Sp,J(x, fi, fj)

hJ(x, y, η) · ηp =
∑
i,j

yiyj · σp,J(x, ei, ej) + 2
∑
i,j

yiηj · (−1)|J | · σp,J(x, ei, fj)(4.8)

+
∑
i,j

ηjηi · σp,J(x, fi, fj)

Note that we had to add a factor (−1)|J | in the right hand side for the terms linear
in η, because we factor the powers of ξ to the left, and interchanging a power ξJ

with a linear factor η gives this sign. We now expand the functions hJ in powers of
the odd coordinates η:

hJ(x, y, η) = hJ,∅(x, y) +
∑
q

ηq · hJ,{q}(x, y)

+
∑
q<r

ηqηr · hJ,{q,r}(x, y) +
∑
I,|I|≥3

ηI · hJ,I(x, y)

When we now invoke [2.1] applied to (4.7), we get the equations

hJ,∅(x, y) · yp =
∑
i,j

yiyj · Sp,J(x, ei, ej)(4.9)

hJ,{q}(x, y) · yp = 2
∑
i

yi · (−1)|J | · Sp,J(x, ei, fq)(4.10)

hJ,{q,r}(x, y) · yp = 2Sp,J(x, fr, fq)(4.11)

hJ,I(x, y) · yp = 0 |I| ≥ 3(4.12)
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As these are equations between smooth functions of even coordinates only, we may
consider them to be equations of smooth functions of real coordinates. And remem-
ber, the y coordinates run over the whole of R as they are coordinates on a (graded)
vector space. These functions thus are in particuler smooth at y = 0.
As the right hand sides of (4.11) and (4.12) do not depend upon the y coordinates

and their left hand sides have at least degree one in y, it follows that the coe�cients
must be zero, and thus the right hand side of (4.11) too:

hJ,I(x, y) = 0 for |I| ≥ 3 , hJ,{q,r}(x, y) = 0 , Sp,J(x, fr, fq) = 0

From (4.10) it follows easily that hJ,{q}(x, y) is independent of the y coordinates:

hJ,{q}(x, y) = hJ,{q}(x)

and that we must have

(−1)|J | · Sp,J(x, ei, fq) = 1
2
· δip · hJ,{q}(x)

Using the bilinearity of S, one can show that (4.9) implies that hJ,∅(x, y) must be
linear in y:

hJ,∅(x, y) =
∑
q

hqJ,∅(x) · yq

and then that we must have

Sp,J(x, ei, ej) = 1
2
·
(
δip · hjJ,∅(x) + δjp · hiJ,∅(x)

)
We now apply exactly the same reasoning to (4.8), equating the separate powers

of η and using what we already know about the functions hJ,I(x, y). This gives us
the equations

0 =
∑
i,j

yiyj · σp,J(x, ei, ej)(4.13) ∑
q

yq · hqJ,∅(x) = 2
∑
i

yi · (−1)|J | · σp,J(x, ei, fp)(4.14)

1
2
·
(
hJ,{j}(x) · δip − hJ,{i}(x) · δjp

)
= σp,J(x, fi, fj)(4.15)

As these are (again) equations between smooth functions of real variables, we may
conclude from (4.13) that we have σp,J(x, ei, ej) = 0 and from (4.14) that we have
1
2
· hiJ,∅(x) · δjp = (−1)|J | · σp,J(x, ei, fj).
To summarize, we have found the following equalities

hJ(x, y, η) =
∑
q

yq · hqJ,∅(x) +
∑
q

ηq · hJ,{q}(x)

Sp,J(x, ei, ej) = 1
2
·
(
δip · hjJ,∅(x) + δjp · hiJ,∅(x)

)
Sp,J(x, ei, fj) = 1

2
· (−1)|J | · δip · hJ,{j}(x)

Sp,J(x, fi, fj) = 0

σp,J(x, ei, ej) = 0

σp,J(x, ei, fj) = 1
2
· (−1)|J | · hiJ,∅(x) · δjp

σp,J(x, fi, fj) = 1
2
·
(
hJ,{j}(x) · δip − hJ,{i}(x) · δjp

)
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We now de�ne the smooth functions Hq
∅ , H{q} : U → A by

Hq
∅(x, ξ) =

∑
J

ξJ · hqJ,∅(x) , H{q}(x, ξ) =
∑
J

ξJ · (−1)|J | · hJ,{q}(x)

Using these functions, we now put the powers of ξ back in to obtain

h(x, ξ, y, η) =
∑
J

ξJ ·

(∑
q

yq · hqJ,∅(x) +
∑
q

ηq · hJ,{q}(x)

)
=
∑
q

yq ·
∑
J

ξJ · hqJ,∅(x) +
∑
q

ηq ·
∑
J

ξJ · (−1)|J | · hJ,{q}(x)

=
∑
q

yq ·Hq
∅(x, ξ) +

∑
q

ηq ·H{q}(x, ξ)

Sp(x, ξ, ei, ej) =
∑
J

ξJ · Sp,J(x, ei, ej) = 1
2
·
(
δip ·Hj

∅(x, ξ) + δjp ·H i
∅(x, ξ)

)
Sp(x, ξ, ei, fj) =

∑
J

ξJ · Sp,J(x, ei, fj) = 1
2
· δip ·H{j}(x, ξ)

Sp(x, ξ, fi, fj) = 0 = σp(x, ξ, ei, ej)

ρ · σp(x, ξ, ei, fj) = ρ ·
∑
J

ξJ · σp,J(x, ei, fj) = 1
2
H i
∅(x, ξ) · δjp · ρ

ρ · σp(x, ξ, fi, fj) = ρ ·
∑
J

ξJ · σp,J(x, fi, fj)

= 1
2
·
(
H{j}(x, ξ) · δip −H{i}(x, ξ) · δjp

)
· ρ

where ρ is any odd variable. Finally, we can reconstruct the full function S: if v
reads as

∑
i yiei+

∑
i ηifi and w reads as

∑
j zjej +

∑
j ζjfj, then direct substitution

gives us, with v and w homogeneous (but not necessarily even)

S(x, ξ, v, w) = 1
2
· v ·

(∑
j

zj ·Hj
∅(x, ξ) +

∑
j

ζjH{j}(x, ξ)
)

+ (−1)ε(v)ε(w) 1
2
· w ·

(∑
j

yj ·Hj
∅(x, ξ) +

∑
j

ηjH{j}(x, ξ)
)

This suggests that we introduce the left-linear form α : U → E∗ by

ι(v)α(x, ξ) = ι(
∑
i

yiei +
∑
i

ηifi)α(x, ξ) =
∑
i

yi ·H i
∅(x, ξ) +

∑
i

ηi ·H{i}(x, ξ)

where yi, ηi are arbitrary (non-homogeneous) coe�cients. It then follows immedi-
ately that we have

S(x, ξ, v, w) = 1
2
·
(
v · ι(w)α(x, ξ) + (−1)ε(v)·ε(w)w · ι(v)α(x, ξ)

)
It also follows that we have

h(x, ξ, y, η) = ι(v)α(x, ξ)

con�rming the equation S(x, ξ, v, v) = h(x, ξ, v) · v for even vectors v. QED
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5. Super metrics and connections

As in non-super geometry, connections on the tangent bundle arise naturally when
the supermanifold is equipped with a metric. Moreover, again as in non-super
geometry, geodesics in this context can be interpreted as the trajectories on the
supermanifold of a free particle whose kinetic energy is given by the metric. We now
substantiate these claims. More precisely, we shall �rst expose some basic theory of
super metrics and their associated Levi-Civita (super) connections. Then we shall
brie�y describe the mechanics of a free particle whose kinetic energy is given by
the metric and �nally, following [GW], we shall relate the Hamiltonian vector �eld
of this mechanical system to the geodesic vector �eld of the corresponding metric
connection.

De�nition. A (super) metric g on a supermanifoldM is an even graded symmetric
non-degenerate smooth section of the bundle T ∗M ⊗ T ∗M → M . A Riemannian
supermanifold is a pair (M, g) with M a supermanifold and g a metric on M .

A metric g on M amounts to a collection of maps gm : TmM × TmM → A
(depending smoothly on m ∈M) possessing the following four properties:

• The map (v, w) 7→ ι(v, w)gm is (left-)bilinear in v and w ;2

• for all homogeneous v, w ∈ TmM : ε(ι(v, w)gm) = ε(v) + ε(w);
• for all homogeneous v, w ∈ Tm : ι(w, v)gm = (−1)ε(v)ε(w) ι(v, w)gm.

Now for each m ∈M , the map gm can be seen as transforming tangent vectors into
cotangent vectors, i.e., we can de�ne a map g[m : TmM → T ∗mM by setting

ι(v)g[m = ι(v)gm = ι(·, v)gm i.e., ι(w)
(
ι(v)g[m

)
= ι(w)

(
ι(v)gm

)
≡ ι(w, v)gm

With this de�nition we can state the fourth condition

• g[m : TmM → T ∗mM is a (left-)linear bijection.

The collection of all maps g[m gives rise to an even bundle isomorphism g[ : TM →
T ∗M , whose inverse is denoted by g] : T ∗M → TM . As usual, the use of the musical
superscripts is inspired by the fact that g[ lowers indices of tensors, whereas g] raises
them.

Remark. As it is well-known, if (M, g) is a Riemannian supermanifold of graded
dimension p|q, then the odd dimension q must be even because of the non-degeneracy
condition of the super metric. Note that the de�nition of a super metric as given here
is the straightforward generalisation of a metric to the super context. In [Tu1, �IV.7]
a di�erent (and not completely natural) notion of a super metric was introduced.
That de�nition was adapted to the need to be able to de�ne a supplement to any
subbundle of a given vector bundle without the constraint that the odd dimension
should be even.

If (x1, . . . , xn) are local coordinates on M , then the vectors ∂xi |m form a basis of
the tangent space TmM . Using these vectors, we de�ne the matrix gij by

gij = ι(∂xi |m, ∂xj |m)gm

2Since the map gm is supposed to be even, we could also have written gm(v, w) instead of
ι(v, w)gm. However, once we express gm in terms of the left-dual basis dxi, there is a high risk

of confusion on how to compute evaluations, as we have (dxj)(∂xi) = (−1)εxi δji , and not (as one

might be inclined to think) (dxj)(∂i) = δji , simply because we have (by de�nition of the left-dual

basis): δji = ι(∂xi)dxj = (−1)εiεj (dxj)(∂xi).
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It follows immediately that for any two arbitrary tangent vectors v =
∑

i v
i ∂xi |m

and w =
∑

iw
i ∂xi |m, we have

ι(v, w)gm =
∑
i,j

vi Cεi(wj) gij

Equivalently, in terms of the (left-)dual basis (dx1|m, . . . , dxn|m) of T ∗mM , we have

gm =
∑
ij

dxj|m ⊗ dxi|m gij

The graded-symmetry and even-ness of gm translate as the properties

gij = (−1)εi εj gji and ε(gij) = εi + εj

and non-degeneracy means that the matrix gij is invertible. We denote the inverse
matrix by gij, i.e., we have the equalities∑

j

gij g
jk = δki =

∑
j

gkj gji

where δki denotes the Kronecker delta. It is straightforward that the parity of gij is
ε(gij) = εi + εj, while the graded symmetry of g gives us the following symmetry
property of the inverse matrix:

gij = (−1)εi+εj+εiεjgji

Finally note that the map g[m : TmM → T ∗mM reads

ι(v)g[m =
∑
ij

(−1)εi vj gji dx
i|m for v =

∑
i

vi ∂xi |m

and that, using the inverse matrix, it is not hard to show that the inverse map
g]m = (g[m)−1 : T ∗mM → TmM is given by

ι(α)g]m =
∑
ij

(−1)εi αi g
ij ∂xj for α =

∑
i

αi dx
i|m(5.1)

5.1. Lemma. If (M, g) is a Riemannian supermanifold, there exists a unique
torsion-free connection ∇ in TM which is compatible with the metric in the sense
that for any three homogeneous vector �elds X, Y and Z on M , we have

(5.2) X
(
ι(Y, Z)g

)
= ι(∇XY, Z)g + (−1)ε(X)ε(Y ) ι(Y,∇XZ)g

Proof. Existence follows from the explicit formula for the Christo�el symbols in
local coordinates

Γijk = 1
2

∑
`

(
∂xjgk` + (−1)εjεk ∂xkgj` − (−1)ε`(εj+εk) ∂x`gjk

)
g`i

For uniqueness we observe �rst that condition (5.2) applied to the (local) vector
�elds X = ∂xp , Y = ∂xj and Z = ∂xk gives us the equality

∂xpgjk = Γp
i
j gik + (−1)εjεk Γp

i
k gij

It follows that if we have two connections ∇ and ∇̂ satisfying these conditions, then
the components Sijk = Γijk − Γ̂ijk of the di�erence tensor must satisfy the conditions

Sipj gik = −(−1)εjεk Sipk gij

Using the graded symmetry of the tensor S (the connections are torsion-free), we
can further compute

Sipj gik = (−1)εjεp Sijp gik = (−1)1+εp(εj+εk) Sijkgip
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= (−1)1+εp(εj+εk)+εjεk Sikjgip = (−1)εk(εj+εp) Sikpgij

= (−1)εkεj Sipkgij = −Sipjgik

This shows that the di�erence tensor must be zero, i.e., ∇ = ∇̂. QED

De�nition. Let pr : T ∗M → M be the cotangent bundle of the supermanifold
M . The canonical 1-form θ on T ∗M is de�ned as follows: for α ∈ T ∗M and
V ∈ Tα(T ∗M) we write m = pr(α) (and thus α ∈ T ∗mM), and then

ι(V )θα = ι(v)α

where v = ι(V )Tpr ∈ TmM is the image of V ∈ Tα(T ∗M) under the tangent map
of the canonical projection.

If (x1, . . . , xn) are local coordinates on M , then any 1-form α at m ∈ M can be
expressed as α =

∑
i αi dx

i. Splitting the coe�cients αi ∈ A into their even and
odd parts αi = pi + p̄i, we write

α =
∑
i

(pi + p̄i) dxi with α0 =
∑
i

pi dx
i and α1 =

∑
i

p̄i dx
i

The parity of these coordinates thus is given by ε(pi) = εi and ε(p̄i) = εi + 1. Thus,
if the graded dimension of M is p|q, then the graded dimension of the full cotangent
bundle is 2p + q|p + 2q with coordinates xi, pi and p̄i, the graded dimension of its
even part (whose sections are the even 1-forms) is 2p|2q with coordinates xi and pi
and the graded dimension of its odd part (whose sections are the odd 1-forms) is
p+ q|p+ q with coordinates xi and p̄i.
In terms of these local coordinates on T ∗M , it is easy to show that the canonical

1-form θ on T ∗M is given by

θ =
∑
i

(pi + p̄i) dxi

By de�nition, the canonical 2-form ω on T ∗M is the exterior derivative of the
canonical 1-form: ω = dθ. In local coordinates ω thus reads

ω =
∑
i

dpi ∧ dxi +
∑
i

dp̄i ∧ dxi

In particular, the restriction of ω to T ∗M (0), the even part of the cotangent bundle,
is an even symplectic form, while its restriction to the odd part of the cotangent
bundle T ∗M (1) is an odd symplectic form.

We now come to the description of the movement of a free particle with unit mass
on the Riemannian supermanifold (M, g). There is no potential energy while kinetic
energy is simply given by half the metric. More precisely, the phase space is the
even part of the cotangent bundle T ∗M (0) while the Hamiltonian of the system is
the function H : T ∗M (0) → A whose value on an element α ∈ T ∗mM (0) is

(5.3) H(α) = 1
2
ι(g]m(α), g]m(α))gm

In local coordinates, the Hamiltonian thus reads

H(x, p) = 1
2

∑
jk

(−1)εj+εk pj g
jk(x) pk = 1

2

∑
jk

(−1)εj pk pj g
jk(x)

= 1
2

∑
jk

(−1)εk gjk(x) pk pj
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The local expression for ω is ω =
∑

i dpi ∧ dxi and the de�nition of the hamiltonian
vector �eld Xf associated with a function f is given by the formula

ι(Xf )ω = −df

In local coordinates this gives us

Xf =
∑
i

(
(−1)εi Cεi(∂pif) ∂xi − Cεi(∂xif) ∂pi

)
and thus, for our particular function H, we obtain the even vector �eld

XH =
∑
ik

(−1)εk pk g
ki ∂

∂xi
− 1

2

∑
ijk

(−1)εi+εk
∂gjk

∂xi
pk pj

∂

∂pi

Remark. Knowing that we also have a symplectic form on the odd tangent bundle
and on the full tangent bundle, we could have tried to play the same game on these
symplectic manifolds. However, formula (5.3) applied to elements of T ∗M (1) gives
us a function which is identically zero, simply because g is graded symmetric and
g]m(α) is an odd tangent vector. So on the odd tangent bundle nothing interesting
happens. Note that the full cotangent bundle is also a symplectic supermanifold
(with a non-homogeneous symplectic form). However, it can be shown following
[Tu2] that formula (5.3) yields a function which is not in the Poisson algebra of
T ∗M , i.e., a function which does not give rise to a hamiltonian vector �eld. So
again nothing interesting can be obtained.

Proposition. Under the isomorphism g] : T ∗M (0) → TM (0) the vector �eld XH on
T ∗M (0) is mapped to the vector �eld G on TM (0) given by (3.5) using the unique
metric connection given by [5.1]

Proof. The proof is a lenghty but straightforward computation. QED

It follows that the integral curves of the Hamiltonian vector �eld XH correspond
to the integral curves of the geodesic vector �eld of the metric connection associated
with g, and thus in particular the geodesics of the metric connection coincide with
the projections of the integral curves of the Hamiltonian vector �eld onto M , i.e.,
the geodesics are the trajectories of a free particle with unit mass on the Riemannian
supermanifold (M, g).

Remarks.
• The isomorphism g] : T ∗M (0) → TM (0) can be interpreted as the Legendre

transformation, which transforms the Hamiltonian formalism on the cotangent bun-
dle into the Lagrangian formalism on the tangent bundle. More details on this
interpretation in the non-super case can be found in [AM, �3.6�7].
•We have used left coordinates pi, p̄i on the cotangent bundle, writing α =

∑
i(pi+

p̄i) dxi. We could also have used right coordinates p′i, p̄
′
i by writing α =

∑
i dx

i (p′i +
p̄′i). They are related by the simple equations p̄′i = p̄i and p

′
i = (−1)εi pi. This would

have �simpli�ed� the formulæ for H to

H(x, p′) = 1
2

∑
jk

p′j g
jk p′k

The reason not to use these coordinates (and it is a simple change of coordinates) is
�rst that it is good practice not to mix left- and right-coordinates at the same time
(and when using matrices it becomes crucial, see [Tu1, VI.1.20]) and secondly that
the explicit expression for the full map g] : T ∗M → TM would have contained the
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conjugation map C, as we would have had to transform the right-coordinates αi of
α =

∑
i dx

i αi into left coordinates vj of v =
∑

j v
j ∂xj = g](α).

Appendix A. The exponential map

In the non-super case it is well-known that �running faster� through a geodesic is
the same as taking the geodesic with a bigger initial velocity. In terms of the �ow
Ψ ∼= (Ψ1,Ψ2) this would mean that we should have

Ψ1(t, x, λv) = Ψ1(λt, x, v) and Ψ2(t, x, λv) = λ ·Ψ2(λt, x, v)

for any λ ∈ A0.
In order to prove this rigourously and in a coordinate independent way, we intro-

duce the map Dλ : TM (0) → TM (0), the dilation of the tangent space by a factor λ,
in local coordinates by

Dλ(x, v) = (x, λv)

These local de�nitions glue together to form a well-de�ned global map. Moreover,
it does not a�ect the base point:

π ◦Dλ = π : TM (0) →M

Proposition. On a suitable open domain in A0 × A0 × TM (0) containing {0} ×
{0} × TM (0), the maps Ψ̂ and Ψ̃ with values in TM (0) and de�ned by

Ψ̃(t, λ,V) = Ψ(t,Dλ(V)) ∼= (Ψ1(t, x, λv),Ψ2(t, x, λv))

Ψ̂(t, λ,V) = Dλ(Ψ(λt,V)) ∼= (Ψ1(λt, x, v), λ ·Ψ2(λt, x, v))

are the same.

Proof. We start with the observation that in local coordinates (x, v) on TM (0) the
tangent map of Dλ behaves as

ι(∂xi |(x,v))TDλ = ∂xi |(x,λv) and ι(∂vi |(x,v))TDλ = λ · ∂vi|(x,λv)

It follows that we have the following equality concerning the local expression of the
vector �eld G:

λ · ι(G|(x,v))TDλ = λ · ι(
∑
i

vi∂xi |(x,v) −
∑
ijk

vk · vj · Γijk(x) · ∂vi |(x,v))TDλ

= λ ·
∑
i

vi∂xi |(x,λv) −
∑
ijk

λ · vk · vj · Γijk(x) · λ · ∂vi |(x,λv)

= G|(x,λv)

which means that λ ·G|V is mapped by TDλ to G|Dλ(V).
With that knowledge we compute the image of the tangent vector ∂t under the

maps Ψ̃ and Ψ̂:

(A.1a) ι(∂t|(t,λ,V))T Ψ̃ = ι(∂t|(t,Dλ(V)))TΨ = G|Ψ(t,Dλ(V)) = G|Ψ̃(t,λ,V)

and

ι(∂t|(t,λ,V))T Ψ̂ = λ · ι(∂t|(λt,V))T (Dλ ◦Ψ) = λ · ι(G|Ψ(λt,V))TDλ

= G|Dλ(Ψ(λt,V)) = G|Ψ̂(t,λ,V)(A.1b)

We then introduce the extended manifold N = A0 × TM (0) on which we de�ne
the even vector �eld H (the extension of G to N) by

H|(λ,V) = G|V
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and we introduce the maps Φ̃, Φ̂ : A0 ×N → N by

Φ̃(t, λ,V) =
(
λ, Ψ̃(t, λ,V)

)
and Φ̂(t, λ,V) =

(
λ, Ψ̂(t, λ,V)

)
It then is immediate from (A.1) that we have

ι(∂t|(t,λ,V))T Φ̃ = H|Φ̃(t,λ,V) and ι(∂t|(t,λ,V))T Φ̂ = H|Φ̂(t,λ,V)

Moreover, at time t = 0 we have

Φ̃(0, λ,V) =
(
λ,Dλ(V)

)
= Φ̂(0, λ,V)

As the map (λ,V) 7→ Dλ(V) is smooth, we can apply the (existence and) uniqueness
of local �ows of a vector �eld (H in our case) with given initial condition to conclude

that Φ̃ and Φ̂ and thus a fortiori Ψ̃ and Ψ̂ are the same [Tu1, V.4.8]. QED

Remark. We have been a bit vague on the domain of de�nition on which the maps
are de�ned. The domains of Ψ̃ and Ψ̂ are in the obvious way related to the domain
WG of the �ow Ψ, but initially it is not clear that they are the same. The fact that
these two maps coïncide then proves that these two domains coïncide. And thus
that we have in particular the equivalence

(λt,V) ∈ WG ⇐⇒
(
t,Dλ(V)

)
∈ WG

Corollary. Running faster through a geodesic is the same as taking a bigger initial
velocity:

π(Ψ(λt,V)) = π(Ψ(t,Dλ(V)))

In local coordinates this boils down to Ψ1(λt, x, v) = Ψ1(t, x, λv). Moreover, the
subset Ω ⊂ TM (0) de�ned as

Ω = { V ∈ TM (0) | (1,V) ∈ WG }
contains the zero section of the tangent bundle TM (0).

De�nition. Let ∇ be a connection on TM and let Ψ : WG → TM (0) be the
�ow of the vector �eld G associated with ∇. Then the geodesic exponential map
exp : Ω→M is de�ned as

V ∈ TmM (0) 7→ expm(V) = π
(
Ψ(1,V)

)
with m = π(V)

This map is jointly smooth in the coordinates (x, v) of V ∈ Ω. However, if m =
π(V) does not belong to the body of M , then there is no guarantee that the map
expm : TmM

(0) →M (with m �xed) is smooth.
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