
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. CONTROL OPTIM. c© 2009 Society for Industrial and Applied Mathematics
Vol. 48, No. 2, pp. 618–640

OSCILLATORITY OF NONLINEAR SYSTEMS WITH STATIC
FEEDBACK∗

DENIS V. EFIMOV† AND ALEXANDER L. FRADKOV‡

Abstract. New Lyapunov-like conditions for oscillatority of dynamical systems in the sense
of Yakubovich are proposed. Unlike previous results these conditions are applicable to nonlinear
systems and allow for consideration of nonperiodic, e.g., chaotic modes. Upper and lower bounds for
oscillations amplitude are obtained. The relation between the oscillatority bounds and excitability
indices for the systems with the input are established. Control design procedure providing nonlinear
systems with oscillatority property is proposed. Examples illustrating proposed results for Van der
Pol system, Lorenz system, and Hindmarsh–Rose neuron model as well as computer simulation
results are given.

Key words. analysis of oscillations, control of oscillations

AMS subject classifications. 34C15, 93B52

DOI. 10.1137/070706963

1. Introduction. Most works on analysis or synthesis of nonlinear systems are
devoted to studying stability-like behavior. Their typical results show that the mo-
tions of a system are close to a certain limit motion (limit mode) that either exists in
the system or it is created by a controller. Evaluating deflection of the system tra-
jectory from the limit mode, one may obtain quantitative information about system
behavior [10, 27].

During recent years an interest in studying more complex dynamical systems be-
havior including oscillatory and, particularly, chaotic modes has grown significantly.
Most authors deal with relaxed stability properties (orbital stability, Zhukovsky sta-
bility, partial stability) of some periodic limit modes [16, 19]. However, in order to
study irregular, chaotic behavior the development of analysis and design methods for
nonperiodical oscillations is needed. One such method based on the concept of ex-
citability index (limit oscillation amplitude) for the systems excited with a bounded
control was proposed in [7, 8].

It is worth noting that there exist many definitions for the term “oscillation”
[11, 16]. For example, oscillation is understood as “any effect that varies in a back-
and-forth or reciprocating manner” [6]. Otherwise, oscillation is the behavior of a
sequence or a function, that does not converge, but also does not diverge to +∞ or
-∞; that is, oscillation is the failure to have a limit [29]. Geometrically, an oscillating
function of real numbers follows some path in a space, without settling into ever-
smaller regions. In more simple cases the path might look like a loop coming back on
itself, that is, periodic behavior; in more complex cases it may be a quite irregular
movement covering a whole region [29]. Existing approaches based on Lyapunov
stability theory [17, 23] or relaxed stability properties (orbital stability, Zhukovsky
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OSCILLATORITY OF NONLINEAR SYSTEMS 619

stability, partial stability) [16, 19, 24] are not completely suitable for study of complex
oscillations. Indeed, these approaches require information on some limit modes, which
stability should be investigated (that is not suitable for chaotic or irregular oscillations,
for example). Besides, these approaches are not suitable for distinguishing between
simple bounded behavior and oscillating one (a trajectory can converge to a steady-
state solution that is a stable behavior from any kind of stability definition, but
it is not an oscillation). Despite significant success in study of regular oscillations
[4, 5, 12, 18, 20], comprehensive solutions for generic irregular oscillations have not
been obtained yet.

An important and useful concept for studying irregular oscillations is that of “os-
cillatority” introduced by V.A.Yakubovich in 1973 [31]. Frequency domain conditions
for oscillatority were obtained for Lurie systems, and split in linear and nonlinear
parts [16, 31, 32]. However, when studying physical and biological systems in many
cases it is hard to decompose the system into two parts: Linear nominal system plus
nonlinear feddback. Mechanical systems (where energy plays a role of Lyapunov func-
tion) serve as a widespread example of such systems. Extension of analysis and design
methods to oscillations in such class of systems is still to appear.

In this paper an approach to detection of oscillations and design of oscillatory
systems for a class of nonlinear systems is suggested. New conditions for oscillatority
of dynamical systems in the sense of Yakubovich are proposed. These conditions
are applicable to nonlinear systems, and they are formulated in terms of Lyapunov
functions existence. As a result upper and lower bounds for oscillations amplitude
are obtained. A variant of converse Lyapunov theorem for strictly unstable systems
is proposed. The relation between the oscillatority bounds and excitability indices for
the systems with input are established. Design procedure for oscillations excitation
is presented. Potentiality of the proposed technique is illustrated by four examples of
analytical computations and computer simulations.

The main advantage of the obtained solution consists in possibility of application
to a wide range of oscillation analysis and design problems. The proposed conditions
are applicable even in the cases when other existing solutions cannot be used due to
complexity of oscillations or system models [5, 18, 20].

Section 2 contains auxiliary statements and definitions (two preliminary results
are placed in Appendix). Main definitions and oscillation existence conditions are
presented in section 3. Section 4 deals with the task of static feedback design, which
ensures oscillations appearance in closed loop system with desired bounds on ampli-
tude. Conclusion is given in section 5. Examples illustrating proposed results for
Van der Pol system, Lorenz system, and Hindmarsh–Rose neuron model as well as
computer simulation results are presented in the text.

2. Preliminaries. Let us consider a general model of nonlinear dynamical sys-
tem:

ẋ = f(x,u ); y = h(x ),(1)

where x ∈ Rn is the state space vector; u ∈ Rm is the input vector; y ∈ Rp is the
output vector; f and h are locally Lipschitz continuous functions on Rn, h( 0 ) = 0,
and f( 0, 0 ) = 0. For initial condition x0 ∈ Rn and Lebesgue measurable input
u the solution x(x0,u, t ) of the system (1) is defined at least locally for t ≤ T ,
y(x0,u, t ) = h (x(x0,u, t ) ) (further we will simply write x( t ) or y( t ) if all other
arguments are clear from the context). If for all initial conditions x0 ∈ Rn and inputs
u the solutions are defined for all t ≥ 0, then such system is called forward complete.
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620 DENIS V. EFIMOV AND ALEXANDER L. FRADKOV

In this work we will consider feedback connection of system (1) with static system
u = k(y ).

As usual, it is said that a continuous function ρ : R+ → R+ belongs to class
K, if it is strictly increasing and ρ ( 0) = 0; ρ ∈ K∞ if ρ ∈ K and ρ ( s) → ∞
for s → ∞; Lebesgue measurable function x : R+ → Rn is essentially bounded, if
‖x ‖ = ess sup { |x( t ) | , t ≥ 0 } < +∞, where | · | denotes usual Euclidean norm,
R+ = { τ ∈ R : τ ≥ 0 }. Notation DV (x )F( · ) stands for directional derivative of
function V with respect to vector field F if function V is differentiable and for Dini
derivative in the direction of F

DV (x )F(·) = lim
t→0+

inf
V (x + tF(·) ) − V (x )

t

if function V is Lipschitz continuous. In what follows we need the standard dissipa-
tivity property [30] and some its modifications. Function f(x1, . . . , xn ) defined on
Rn is called monotone if the condition x1 ≤ x′1,. . . , xn ≤ x′n implies that everywhere
either f(x1, . . . , xn ) ≤ f(x′1, . . . , x

′
n ) or f(x1, . . . , xn ) ≥ f(x′1, . . . , x

′
n ) everywhere.

Definition 1. The system (1) is dissipative if there exists continuous function
V : Rn → R+ and a function � : Rn+m+p → R such that for all x0 ∈ Rn and
Lebesgue measurable and locally essentially bounded u : R+ → Rm the following
inequality is satisfied:

V (x( t ) ) ≤ V (x0) +
∫ t

0

� (x( τ ),y( τ ),u( τ ) ) dτ, t ≥ 0.(2)

The functions � and V are called supply rate and storage functions of the system
(1).

In the case when storage function is continuously differentiable, inequality (2) can
be rewritten in a simple form:

V̇ (x ,u ) = Lf(x,u )V (x ) ≤ � (x, u, y ) .

Definition 2. Dissipative system (1) is called
– passive if � (x,y,u ) = yTu−β(x ), where β is a continuous function reflecting

the dissipation rate in the system; if β (x ) ≥ �

β ( |x | ) ,�

β ∈ K, then system (1) is
called strictly passive [13];

– h-dissipative, if it has continuously differentiable storage function V and

α ( |y |) ≤ V (x ) ≤ α ( |x |) , ω(y,u ) = −α ( |y | ) + σ ( |u | ) ,
σ ∈ K, α, α, α ∈ K∞;

– input-output-to-state stable (IOSS), if it has continuously differentiable storage
function W and [26]

α1 ( |x |) ≤W (x ) ≤ α2 ( |x |) , α1, α2 ∈ K∞,

ω(x,y,u ) = −α3 ( |x | ) + σ1 ( |u | ) + σ2 ( |y | ) ,
α3 ∈ K∞, σ1, σ2 ∈ K [26];

– input-to-state stable (ISS), if it has continuously differentiable storage function
U and [21]

α4 ( |x |) ≤ U(x ) ≤ α5 ( |x |) , α4, α5 ∈ K∞;

ω(x,y,u ) = −α6 ( |x | ) + δ ( |u | ) , α6 ∈ K∞, δ ∈ K.
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If inequality sign in (2) for the case � (x,y,u ) = yTu − β(x ) can be replaced
with equality, then it is said that the system possesses passivity property with known
dissipation rate β.

Term h-dissipativity was introduced with minor differences in [2]. An important
example of such kind of systems is y-strictly passive systems [13]. Also, passive system
(1) can be transformed to h-dissipative under suitable feedback transformation.

Storage functions for IOSS and ISS systems are called Lyapunov functions [23, 26].
Existence of corresponding Lyapunov functions is the equivalent characterization of
ISS and IOSS properties [21, 26].

The interrelations of the properties introduced in Definition 2 are established
in the Lemma A.1 (see Appendix), which was proved in [1] with a more restrictive
requirement for h-dissipativity storage function:

α7 ( |x |) ≤ V (x ) ≤ α8 ( |x |) , α7, α8 ∈ K∞.

General result in this direction was obtained in [15], where it was proven that input-
to-output stability (this property is closely connected with h-dissipativity; see also
[24] for more details) and IOSS are equivalent to ISS property for the system (1).

3. Oscillatority conditions. At first it is necessary to give a precise definition
of the term “oscillatority” placed in the title of this section and the paper. There are
several approaches to define oscillation phenomena for nonlinear dynamical systems
[16]. Perhaps, the most general one is the concept introduced by Yakubovich [31, 32].
Here we recover definitions from [31, 32] with some mild modifications [11, 16] dealing
with high dimension and general form of the system.

Definition 3. Solution x(x0, 0, t ) with x0 ∈ Rn of system (1) is called [π−, π+ ]-
oscillation with respect to output ψ = η(x ) (where η : Rn → R is a continuous
monotone function) if the solution is defined for all t ≥ 0 and

lim
t→+∞

ψ( t ) = π−; lim
t→+∞ ψ( t ) = π+; −∞ < π− < π+ < +∞.

Solution x(x0, 0, t ) with x0 ∈ Rn of system (1) is called oscillating, if there ex-
ist some output ψ and constants π−, π+ such that x(x0, 0, t ) is [π−, π+ ]-oscillation
with respect to the output ψ. Forward complete system (1) with u( t ) ≡ 0, t ≥ 0 is
called oscillatory, if for almost all x0 ∈ Rn solutions of the system x(x0, 0, t ) are
oscillating. Oscillatory system (1) is called uniformly oscillatory, if for almost all
x0 ∈ Rn for corresponding solutions x(x0, 0, t ) there exist output ψ and constants
π−, π+ not depending on initial conditions.

In other words, the solution x(x0, 0, t ) is oscillating if output ψ( t ) = η(x(x0, 0, t))
is asymptotically bounded and there is no single limit value of ψ( t ) for t→ +∞ that
is close to definition of oscillatority from [29].

Note that the term “almost all solutions” is used to emphasize that generally
system (1) for u( t ) ≡ 0, t ≥ 0 has a nonempty set of equilibrium points; thus,
there exists a set of initial conditions with zero measure such that corresponding
solutions are not oscillations. It is worth stressing that constants π− and π+ are exact
asymptotic bounds for output ψ. Therefore, in order to compute these values the exact
estimates for the system solutions should be known, which is a hard task for general
nonlinear system (1). Fortunately, information on approximate estimates of constants
π− and π+ is sufficient to obtain estimates on system amplitude oscillations. The
oscillation property introduced in Definition 3 is defined for zero input and any initial
conditions of system (1). The following property is a closely related characterization
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of the system behavior, which develops the proposed above property for the case of
nonzero input but for specified initial conditions [8].

Definition 4. Let u : R+ → Rm be Lebesgue measurable and essentially bounded
function and x0 ∈ Rn be given such that x(x0,u, t ) be defined for all t ≥ 0. The
functions χ−

ψ,x0
( γ ), χ+

ψ,x0
( γ ) defined for ||u|| ≤ γ, γ ∈ R+ are called lower and

upper excitation indices of system (1) in point x0 with respect to the output ψ = η(x )
(where η : Rn → R is a continuous monotone function), if(

χ−
ψ,x0

( γ ), χ+
ψ,x0

( γ )
)

= arg max
( a,b )∈E( γ )

{ b− a } ,

E( γ ) =
{

( a, b ) :
(

a = limt→+∞ η (x(x0,u, t ) ) ,
b = limt→+∞ η (x(x0,u, t ) )

) }
‖u ‖≤γ

.

Lower and upper excitation indices of a forward complete system (1) with respect to
the output ψ are

χ−
ψ ( γ ) = inf

x0∈Rn
χ−
ψ,x0

( γ ), χ+
ψ ( γ ) = sup

x0∈Rn

χ+
ψ,x0

( γ ).

In the same way it is possible to introduce indices for a vector output ψ = η(x ),
in this case indices would be vectors of the same dimension as the output ψ.

Excitation indices characterize ability of system (1) to exhibit forced or control-
lable oscillations caused by bounded inputs. It is clear that properties π− = χ−

ψ ( 0 )
and π+ = χ+

ψ ( 0 ) are satisfied. For nonzero inputs the excitability indices char-
acterize maximum (over specified set of inputs ‖u ‖ ≤ γ) asymptotic amplitudes
χ+
ψ ( γ ) − χ−

ψ ( γ ) of ψ.
Note that it is useful to calculate or estimate values of χ−

ψ ( γ ) and χ+
ψ ( γ ) for all

0 ≤ γ < +∞ due to the following reason. Let oscillation amplitude be an inverse
function of input amplitude, then the maximum oscillation amplitude be reached
for some γ∗ and for all γ ≥ γ∗ the amplitude decreases. The indices χ−

ψ ( γ ) and
χ+
ψ ( γ ) preserve their values for γ ≥ γ∗. Hence, to catch the critical value γ∗ of

input amplitude providing maximum output amplitude for ψ, it is necessary to build
full graphics of functions χ−

ψ ( γ ) and χ+
ψ ( γ ). The obtained characteristics will be

closely related with the Cauchy gain recently investigated in [22] (in fact, π+ − π− or
χ+
ψ,x0

( γ ) − χ−
ψ,x0

( γ ) are asymptotic amplitudes of ψ( t ) in the sense of [22] for zero
or nonzero input u, while χ+

ψ ( γ ) reflects the Cauchy gain of the system (1)).
On the other hand, excitation indices from Definition 4 describe robustness of the

oscillations property proposed in Definition 3. Conditions of oscillations existence in
the system are summarized in the following theorem.

Theorem 1. Let system (1) with u( t ) ≡ 0, t ∈ R+, i.e.,

ẋ = f (x, 0 ) ,(3)

have two continuous and locally Lipschitz Lyapunov functions V1 and V2 satisfying
for all x ∈ Rn the following inequalities:

υ1 ( |x |) ≤ V1(x ) ≤ υ2 ( |x |) , υ3 ( |x |) ≤ V2(x ) ≤ υ4 ( |x |) , υ1, υ2, υ3, υ4 ∈ K∞,

and for some 0 < X1 < υ−1
1 ◦ υ2 ◦ υ−1

3 ◦ υ4(X2 ) < +∞:
DV1(x ) f(x, 0 ) > 0 for 0 < |x | < X1 and x /∈ Ξ,
DV2(x ) f(x, 0 ) < 0 for |x | > X2 and x /∈ Ξ,
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where Ξ ⊂ Rn is a set with zero Lebesgue measure, which contain all equilibriums of
the system, and

Ω ∩ Ξ = ∅,

where Ω =
{
x : υ−1

2 ◦ υ1(X1 ) < |x | < υ−1
3 ◦ υ4(X2 )

}
.

Then the system (3) is oscillatory.
Proof. Consider set Ξ0 ⊂ Rn of initial conditions not containing equilibrium

points (which belong to set Ξ) of system (3). Then the solutions of the system
starting from Ξ0 are globally bounded, due to V̇2 < 0 for |x | > X2, and defined
for all t ≥ 0. Since the trajectory x(x0, 0, t ), x0 ∈ Ξ0, t ≥ 0 is bounded, it has
a nonempty closed, invariant, and compact ω-limit set, which belongs to the set
Ω. Indeed, V2( t ) asymptotically enters into the set where V2( t ) < υ4(X2 ), then
|x( t ) | < υ−1

3 ◦ υ4(X2 ). In the same way function V1( t ) is upper bounded and its
limit values fall into the set where V1( t ) > υ1(X1 ); i.e., again |x( t ) | > υ−1

2 ◦υ1(X1 ).
As it was supposed, Ω does not contain equilibrium points of the system. Hence,

ω-limit set also does not include such invariant solutions. Then for each x0 ∈ Ξ0

there exists an index i, 1 ≤ i ≤ n such that the solution is [π−, π+ ]-oscillation with
respect to output xi with −υ−1

3 ◦ υ4(X2 ) ≤ π− < π+ < υ−1
3 ◦ υ4(X2 ). Suppose

that there is no such output. It means that for all 1 ≤ i ≤ n for output xi equality
π− = π+ holds. However, the latter could be true only in equilibrium points, which
are excluded from the set Ω by the theorem conditions. Therefore, for almost all
initial conditions the system solutions have such oscillating output and system (3) is
oscillatory by Definition 3. Note that for different x0 ∈ Ξ0 oscillating outputs xi may
exist for different i, 1 ≤ i ≤ n.

Remark 1. The set Ω determines lower and upper bounds for the values of π−

and π+.
Like in [32] one can consider the Lyapunov function candidate for linearized near

the origin system (3) as a function V1 to prove local instability of the system. Instead
of existence of storage function V2, one can require just boundedness of the system
solution x( t ) with a known upper bound. It can be obtained using another approach
not dealing with time derivative of Lyapunov function analysis. In this case Theorem
1 is transforming into Theorem 3.4 from [11]; see also [33].

Corollary 1. Define Ξ as the set of the system (3) equilibriums, i.e., Ξ = {x ∈
Rn : f(x, 0 ) = 0 }, which consists in isolated points, and A(x0 ) = d f(x, 0 )/dx|x=x0

is the matrix of the system (3) linearization in point x0 ∈ Rn. Let the following
conditions be valid:

1. For all x0 ∈ Ξ the matrices of the system (3) linearization A(x0 ) have eigen-
values with positive real parts.

2. There exists R > 0 such that for almost all initial conditions x0 ∈ Rn:

lim
t→+∞ |x(x0, 0, t )| ≤ R.

Then the system (3) is oscillatory.
Proof. By conditions of the corollary for almost all initial conditions the ω-limit

set is compact and it does not contain the equilibriums of the system. Further the
proof is similar to the proof of Theorem 1.

Conditions of Theorem 1 are rather general and define the class of systems, which
oscillatory behavior can be investigated by the approach, namely systems which have
an attracting compact set in state space containing oscillatory movements of the
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systems. For such systems Theorem 1 or Corollary 1 give useful tools for testing their
oscillating behavior and obtaining estimates for amplitude of oscillations.

Theorem 1 presents the sufficient conditions for system (1) to be oscillating in the
sense of Yakubovich. It is possible to show that for a subclass of uniformly oscillating
systems these conditions are also necessary. To prove this result we need the following
two lemmas.

Lemma 1. Let there exist constant r > 0 such that for solutions of systems (3)
the following property is satisfied:

0 < |x0| < r ⇒ |x(x0, 0, t )| > r

for all t ≥ Tx0 , where 0 < Tx0 < +∞. Then there exists a continuous and locally
Lipschitz–Lyapunov function V1(x ) such that for all x ∈ Rn

υ1 ( |x |) ≤ V1(x ) ≤ υ2 ( |x |) , υ1, υ2 ∈ K∞,

additionally for all 0 < |x| < r it holds:

DV1(x ) f(x, 0 ) > 0.

Proof. For |x0| < r let us introduce the function:

v(x0 ) = inf
0≤t≤Tx0

|x(x0, 0, t )|.

According to conditions of the lemma this function admits the following properties:
(i) v( 0 ) = 0 and v(x ) > 0 for 0 < |x| < r;
(ii) v(x0 ) = inf0≤t≤Tx0+Δ |x(x0, 0, t )| for any Δ ≥ 0.
Additionally for 0 < |x| < r the property |v( 0 )−v(x )| = v(x ) ≤ |x| = |0−x|

holds, which means continuity of function v at the origin. In the set |x| < r the
relation δ( |x| ) ≤ v(x ) ≤ |x| holds, where δ( s ) = s ( 1 + s )−1 inf |x| =s v(x ) is a
continuous and strictly increasing function, δ( 0 ) = 0. The locally Lipschitz property
of function v in the set 0 < |x| < r follows from the following series of inequalities
satisfied for any x1, x2 belonging to this set and some constants L > 0, M > 0,
T = max{Tx1, Tx2 }:

|x(x1, 0, t ) − x(x2, 0, t )| ≤M |x1 − x2|, t ≤ T ;

||x(x1, 0, t )| − |x(x2, 0, t )|| ≤ L|x1 − x2|, t ≤ T ;

|v(x1 ) − v(x2 )| = | inf
0≤t≤T

|x(x1, 0, t )| − inf
0≤t≤T

|x(x2, 0, t )||

≤ sup
0≤t≤T

||x(x1, 0, t )| − |x(x2, 0, t )|| ≤ L|x1 − x2| .

By construction for initial conditions |x0| < r the relation v(x(x0, 0, t ) ) ≥ v(x(x0,
0, 0 ) ), t ≤ Tx0 holds, then Dv(x ) f(x, 0 ) ≥ 0 for all |x| < r and function v( t ) is
not decreasing. To design a strictly increasing function let us introduce for |x0| < r
the function:

V1(x0 ) = inf
0≤t≤Tx0

k( t ) v(x(x0, 0, t ) ),

where k : R+ → R+ is a continuously differentiable function with the following
properties for all t ∈ R+:

κ1 ≤ k( t ) ≤ κ2, 0 < κ1 < κ2 < +∞; ∂ k/∂ t < 0.
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As an example of such function k it is possible to choose the following one:

k( t ) = κ1 + (κ2 − κ1 ) e−t, k̇( t ) = (κ1 − κ2 ) e−t.

By construction V1( 0 ) = 0 and V1(x ) > 0 for 0 < |x| < r. In the set |x| < r the
relation κ1 δ( |x| ) ≤ v(x ) ≤ κ2|x| holds. The locally Lipschitz continuity of function
V1 in the set 0 < |x| < r follows from the same arguments, since the following series
of inequalities are satisfied for any x1, x2 belonging to this set and some constants
L > 0, M > 0, T = max{Tx1, Tx2 }:

|x(x1, 0, t ) − x(x2, 0, t )| ≤M |x1 − x2|, t ≤ T ;

|v(x1 ) − v(x2 )| ≤ L |x1 − x2|;

|v(x(x1, 0, t )) − v(x(x2, 0, t ))| ≤M L |x1 − x2|, t ≤ T ;

|V1(x1) − V1(x2)| = | inf0≤t≤Tx1
k( t ) v(x(x1, 0, t )) − inf0≤t≤Tx2

k( t ) v(x(x2, 0, t ) )|
≤ sup0≤t≤T k( t )|v(x(x1, 0, t ) − v(x(x2, 0, t )| ≤ κ2M L |x1 − x2|.

For |x| ≥ r extend function V1 : Rn → R+ in such a way that for all x ∈ Rn function
V1 is continuous and locally Lipschitz and there exist two functions υ1, υ2 ∈ K∞ such
that for all x ∈ Rn:

υ1 ( |x |) ≤ V1(x ) ≤ υ2 ( |x |) ,
where υ1( s ) ≤ κ1 δ( s ), κ2 s ≤ υ2( s ) for s < r. By construction for initial conditions
0 < |x0| < r the following relations hold:

V1(x(x0, 0, t ) ) = inf
0≤τ≤Tx(x0,0,t )

k( τ ) v(x[x(x0, 0, t ), 0, τ ] )

> inf
0≤τ≤Tx0

k( τ ) v(x[x0, 0, τ ] ) = V1(x0 ) , 0 < t ≤ Tx0 , Tx(x0,0,t ) < Tx0 ,

then DV1(x ) f(x, 0 ) > 0 for all 0 < |x| < r.
Under conditions of Lemma 1 solutions x(x0, 0, t ) of the system (3) are locally

unstable for initial conditions x0 which belong to the sphere 0 < |x0| < r. According
to the result of the lemma in this case the system (3) has corresponding Lyapunov
function with positive time derivative for 0 < |x| < r. It is possible to say that
Lemma 1 presents a variant of necessary conditions of a Lyapunov function existence
for a subclass of strictly unstable systems, which is a new result.

Lemma 2. Let there exist constants R > 0 and 0 < TR,x0 < +∞ such that for
solutions of the system (3) the following property is satisfied:

|x0| > R ⇒ |x(x0, 0, t )| < R, t ≥ TR,x0 .

Then there exists a continuous and locally Lipschitz–Lyapunov function V2(x ) such
that for all x ∈ Rn

υ3 ( |x |) ≤ V2(x ) ≤ υ4 ( |x |) , υ3, υ4 ∈ K∞,

and for all |x| > R it holds that

DV2(x ) f(x, 0 ) < 0.
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Proof. For |x0| > R let us introduce the function

v(x0 ) = sup
t≥0

|x(x0, 0, t )| = sup
TR,x0≥t≥0

|x(x0, 0, t )|.

Under conditions of the lemma the property v(x ) > R for |x| > R is satisfied.
Additionally due to continuity of solutions of the system (3) with respect to initial
conditions for each ε > 0 there exists δ > 0 such that

x1 ∈ Rn, x2 ∈ Rn,
|x1 − x2| ≤ δ ⇒ |x(x2, 0, t) − x(x1, 0, t)| ≤ ε, t ≤ tmax, tmax = max{TR,x1 , TR,x2}.

Note that for solutions of the system the equality suptmax≥t≥0 |x(xi, 0, t )| = supt≥0 |
x(xi, 0, t)|, i = 1, 2 is satisfied. Then for any initial conditions under constrain |x1 −
x2| ≤ δ, |x1| > R, |x2| > R it holds that

|v(x1 ) − v(x2 )|
=

∣∣∣∣ sup
tmax≥t≥0

|x(x1, 0, t )| − sup
tmax≥t≥0

|x(x2, 0, t )|
∣∣∣∣

≤ sup
tmax≥t≥0

||x(x1, 0, t )| − |x(x2, 0, t )|| ≤ ε ,

which means continuity of function v for |x| > R. In the set |x| > R for function v
the following relation also holds:

|x| ≤ v(x ) ≤ δ( |x| ),

where δ( s ) = s +sup|x| =s v(x ) is a continuous and strictly increasing function. The
locally Lipschitz continuity of function v into set |x| > R follows from the series of
inequalities satisfied for any x1, x2 from the set and some L > 0:

||x(x1, 0, t )| − |x(x2, 0, t )|| ≤ L|x1 − x2|, t ≤ tmax,

|v(x1 ) − v(x2 )|
=

∣∣∣∣ sup
tmax≥t≥0

|x(x1, 0, t )| − sup
tmax≥t≥0

|x(x2, 0, t )|
∣∣∣∣

≤ sup
tmax≥t≥0

||x(x1, 0, t )| − |x(x2, 0, t )|| ≤ L |x1 − x2|.

By construction for all initial conditions with |x0| > R it holds that

v( t ) = v(x(x0, 0, t ) ) ≤ v(x(x0, 0, 0 ) ) = v( 0 ),

then Dv(x ) f(x, 0 ) ≤ 0 for |x| > R and function v is not increasing. To design a
strictly decreasing function, consider the following one for |x0| > R:

V2(x0 ) = sup
TR,x0≥t≥0

k( t ) v(x(x0, 0, t ) ),

where k : R+ → R+ is a continuously differentiable function with properties for all
t ∈ R+:

κ3 ≤ k( t ) ≤ κ4, 0 < κ3 < κ4 < +∞; ∂ k/∂ t > 0.
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For example, it is possible to choose as a function k( t ) the following one:

k( t ) =
κ3 + κ4 t

1 + t
, k̇( t ) =

κ4 − κ3

( 1 + t )2
.

Under conditions of the lemma in the set |x| > R for function V2 the relation κ3|x| ≤
V2(x ) ≤ κ4 δ( |x| ) holds. For any initial conditions under constrain |x1 − x2| ≤ δ,
|x1| > R, |x2| > R it holds that

|V2(x1 ) − V2(x2 )|

=

∣∣∣∣∣ sup
TR,x1≥t≥0

k( t ) v(x(x1, 0, t ) ) − sup
TR,x2≥t≥0

k( t ) v(x(x2, 0, t ) )

∣∣∣∣∣
≤ sup

tmax≥t≥0
k( t )||x(x1, 0, t )| − |x(x2, 0, t )|| ≤ κ4 ε,

which means continuity of function V2 for |x| > R. The locally Lipschitz continuity
of function V2 into set |x| > R follows from the same inequalities satisfied for any
x1, x2 from the set and some L > 0:

|V2(x1 ) − V2(x2 )|

=

∣∣∣∣∣ sup
TR,x1≥t≥0

k( t ) v(x(x1, 0, t ) ) − sup
TR,x2≥t≥0

k( t ) v(x(x2, 0, t ) )

∣∣∣∣∣
≤ sup

tmax≥t≥0
k( t )||x(x1, 0, t )| − |x(x2, 0, t )|| ≤ κ4L|x1 − x2 |.

For |x| ≤ R we extend the definition of function V2 such that for all x ∈ Rn function
V2 : Rn → R+ would be continuous and locally Lipschitz and for all x ∈ Rn:

υ3 ( |x |) ≤ V2(x, t ) ≤ υ4 ( |x |) ,
where υ3, υ4 ∈ K∞ and κ4 s ≥ υ3( s ), υ4( s ) ≥ κ3 δ( s ) for s > R. By construction
for all initial conditions with |x0| > R, it holds that

V2( t ) = V2(x(x0, 0, t ) ) = sup
TR,x( x0,0,t )≥τ≥0

k( τ ) v(x[x(x0, 0, t ), 0, τ ] )

< sup
TR,x0≥τ≥0

k(τ)v(x[x0 , 0, τ ]) = V2(x0) = V2(0), 0 < t ≤ TR,x0 , TR,x(x0,0,t) < TR,x0,

and then DV2(x ) f(x, 0 ) < 0 for |x| > R.
Under conditions of the lemma set, A = {x : |x| < R } is a globally attractive

invariant set for solutions of system (3) with zero input; see also [17] for other converse
Lyapunov theorems for set stability. Contrarily to the case considered in this paper,
the Lyapunov functions W : Rn → R+ proposed in [17] possess for all x ∈ Rn the
properties

α1( |x|A ) ≤W (x ) ≤ α2( |x|A ), α1, α2 ∈ K∞,

where |x|A is the distance from point x to the set A, which stability is investigated.
Now we are ready to substantiate the necessary conditions of oscillatority.
Theorem 2. Let system (3) be uniformly oscillatory with respect to the output

ψ = η(x ) (where η : Rn → R is a continuous function), and for all x ∈ Rn the
following relations are satisfied:

χ1( |x| ) ≤ η(x ) ≤ χ2( |x| ), χ1, χ2 ∈ K∞;
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the set of initial conditions for which the system is not oscillating consists in just
one point Ξ = {x : x = 0 }. Then there exist two continuous and locally Lipschitz
Lyapunov functions V1 : Rn → R+ and V2 : Rn → R+ such that for all x ∈ Rn the
inequalities hold:

υ1 ( |x |) ≤ V1(x ) ≤ υ2 ( |x |) , υ3 ( |x |) ≤ V2(x ) ≤ υ4 ( |x |) , υ1, υ2, υ3, υ4 ∈ K∞;

DV1(x )f(x, 0 ) > 0 for 0 < |x| < χ−1
2 (π− );

DV2(x )f(x, 0 ) < 0 for |x| > χ−1
1 (π+ ).

Proof. Since system (3) is uniformly oscillatory with respect to output ψ = η(x ),
then for almost all initial conditions (except the origin) there exists constants −∞ <
π− < π+ < +∞ such that

lim
t→+∞

η(x(x0, 0, t ) ) = lim
t→+∞

ψ( t ) = π−;

lim
t→+∞ η(x(x0, 0, t ) ) = lim

t→+∞ ψ( t ) = π+.

By radial unboundedness and positive definiteness of function η it means that all
solutions of the system converge to the invariant set Ω = {x : χ−1

2 (π− ) ≤ x ≤
χ−1

1 (π+ ) }. Then there exist constants X1 < χ−1
2 (π− ) and X2 > χ−1

1 (π+ ) such
that conditions of Lemmas 1 and 2 hold for r = X1 and R = X2. Based on these
facts, the existence of Lyapunov functions V1 and V2 follows.

For uniformly oscillatory systems with single equilibrium point at the origin, The-
orems 1 and 2 give necessary and sufficient conditions of oscillations existence (Van
der Pol or Hindmarsh and Rose systems (see below) are examples of uniformly oscilla-
tory systems). The oscillatority concept introduced by Yakubovich covers situations
of periodic and chaotic oscillations. That allows one to analyze behavior of wide
spectrum of oscillating dynamical systems using common approach. Note that for
chaotic systems constants π− and π+ evaluate geometrical size of strange attractor.
Let us demonstrate on examples the efficiency of the proposed approach for analysis
of oscillation phenomena in nonlinear systems.

Example 1. Consider the Van der Pol system:

ẋ1 = x2; ẋ2 = −x1 + ε ( 1 − x2
1 )x2,

where ε > 0 some parameter. To detect presence of oscillations in this system, it is
required (according to Theorem 1) to find two Lyapunov functions, which establish
local instability of equilibrium ( 0, 0 ) and global boundedness of the system solutions.
Since the system has only one equilibrium point in the origin, the set Ω from the
theorem does not contain the point ( 0, 0 ). Let us consider the following Lyapunov
functions for 0 < ε ≤ 1:

V1(x ) = 0.5
(
(1 − ε+ ε−1)x2

1 + (1 + ε−1)x2
2 + ε (x2 − ε x1 )2

)
;

V2(x ) = 0.5
(
ε−1x2 − 2 x1 + 1/3 x3

1

)2
+ 1/12 x4

1,

V̇1 = ε x2
2 + (x2 − ε x1 )2 +

[
ε3x1 − ( 1 + ε+ ε2 )x2

]
x2

1 x2;

V̇2 = − [
0.5

√
ε

(
2 − ε−2

)
x1 − ε−0.5x2

]2 − 1/3 ε−1x4
1

+
[
0.25 ε

(
2 − ε−2

)2 + 2 ε−1
]
x2

1 .



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

OSCILLATORITY OF NONLINEAR SYSTEMS 629

Fig. 1. Trajectories and set Ω for Van der Pol system.

Function V̇1 is strictly positive in the set 0 < |x | < X1, where X1 = X1( ε ) > 0
(the same conclusion was obtained in [12] for ε = 1, X1 =

√
3). Instability of the

system also can be verified for a linearized version of the system, which eigenvalues
λ1,2 = 0.5

(
ε±√

ε2 − 4
)

are always positive for ε > 0. Analyzing function V̇2 it is
possible to obtain X2 ≤ √

3 [ 0.25 ε2 ( 2 − ε−2 )2 + 2 ]. Results of the set Ω calculation
and computer simulation of the system for ε = 1 are presented in Figure 1, where the
set Ω is bounded by solid ellipses.

Example 2. Let us consider Lorenz model:

ẋ = σ ( y − x ),
ẏ = r x− y − x z,
ż = −b z + x y ,

where parameters σ = 10, r = 28, and b = 8/3. With such choice of parameter
values the system is chaotic, which is a good example of complex nonlinear oscillation
processes. To apply the result of Theorem 1 here let us note that the system has three
equilibriums with coordinates

x1
e = ( 0 0 0 )T , x2

e = (
√

72
√

72 27 )T , x3
e = (−√

72 −√
72 27 )T .

The matrix of linear approximation of this system at the equilibriums

A(xe ) =

⎡
⎣ −σ σ 0
r − xe,3 −1 −xe,1
xe,2 xe,1 −b

⎤
⎦

has for the given values of parameters eigenvalues with positive real parts for all
equilibriums. Therefore the system is locally unstable. Lyapunov function

V (x, y, z ) = 0.5
(
σ−1x2 + y2 + ( z − r )2

)
for this system has the following time derivative:

V̇ = −x2 + x y − y2 − b z2 + r b z
≤ −0.5 x2 − 0.5 y2 − 0.5 b z2 + 0.5 b r2 ,
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Fig. 2. Trajectory of Lorenz system.

which implies global boundedness of all trajectories of Lorenz system. All conditions
of Corollary 1 are satisfied and system is oscillatory in the sense of Definition 3. An
example of state space trajectory of the system is presented in Figure 2 (blue dots
correspond to coordinates of equilibriums xie).

Example 3. A Hindmarsh and Rose model neuron is defined by the following
system of differential equations [14]:

ẋ = −a x3 + b x2 + y − z + u,
ẏ = c− d x2 − y,
ż = ε [ s (x− x0 ) − z ] ,

where x ∈ R+ is the membrane potential, y ∈ R+ is recovery variable, and z ∈ R+ is
adaptation variable. External stimulation is given by input u ∈ R. It is a well-known
fact that this model demonstrates complex oscillatory behavior for the following values
of the model parameters a = 1, b = 3, c = 1, d = 5, s = 4, x0 = 0.795, ε = 0.001 with
input u = 0. Let us investigate oscillatority property of the model for the case u = 0
applying the proposed approach.

As the first let us compute the number of equilibriums in the system which coor-
dinates are solutions of the following system of nonlinear equations:

−a x3
e + ( b− d )x2

e − s xe + s x0 + c = 0 ;
ye = c− d x2

e ;
ze = s (xe − x0 ) .

As in the first example we are interested in a situation when the model has a single
equilibrium. This is the case when the first cubic equation above has only one real
solution and two complex solutions. Under conditions

n ≥ 0,
m

6 a
+

2
3

3 s a− ( b− d )2

a u
�= 0,

n = 4 s3 a− s2 ( b− d )2 +
[
27 a2 ( s x0 + c ) − 18 s a ( b− d ) + 4 ( b− d )3

]
( s x0 + c ),

m = 3
√

12 a
√

3n− 36 s a ( b− d ) + 108 a2 ( s x0 + c ) + 8 ( b− d )3,

the model has the following single equilibrium

xe = a−1 (m/6 − 2/3 [ 3 s a− ( b− d )2 ]/m+ ( b− d )/3 ) ;
ye = c− d x2

e ;
ze = s (xe − x0 ) .



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

OSCILLATORITY OF NONLINEAR SYSTEMS 631

Fig. 3. Trajectories of Hindmarsh and Rose neuron model.

To prove global boundedness of the system solutions, it is possible to use the following
Lyapunov function:

V2 = 0.5
(
s x2 + ε−1z2 + s a y2/d2

)
,

in which the time derivative for the model admits inequality:

V̇2 ≤ s x
( −0.5 a x3 + b x2 + 8 d2x/a

)−0.25 s a y2/d2−0.5 z2+8 s a c2/d2 +0.5 s2 x2
0.

To prove local instability of the equilibrium, consider linearization of the system with
matrix

A(xe, ye, ze ) =

⎡
⎣ −3 a x2

e + 2 b xe 1 −1
−2 d xe −1 0
ε s 0 −ε

⎤
⎦ .

According to Hurwitz criteria matrix A has eigenvalues with positive real parts if at
least one from the following inequalities is satisfied:

3 a x2
e − 2 b xe + 1 + ε ≤ 0, 3 a x2

e + 2 ( d− b )xe + s ≤ 0,

3 a ( ε+ 1 )x2
e + 2 ( d− ( ε+ 1 ) b )xe + ε ( s+ 1 ) ≤ 0,

9a2(ε+ 1)x4
e + a[6d− 12(ε+ 1)b]x3

e +
[
4b[(ε+ 1)b− d] + 3a[ε2 + (2 + s)ε+ 1]

]
x2
e

+ 2
[
d− [ε2 + (s+ 2)ε+ 1]b

]
xe + (s+ 1)ε2 + ε ≤ 0.

Thus we obtain all set of restrictions on admissible values of the model parameters
under which the system is uniformly oscillatory. The proposed values in [14] of the
model parameters admit all these conditions (there exists single unstable equilibrium
with globally bounded solutions). The result of the model simulation is shown in
Figure 3, where z̃ = 10 z is a scaled adaptation variable.

A link between oscillatority and excitation indices is established in the following
corollary.
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Corollary 2. Let for initial condition x0 ∈ Rn the solution x(x0,k(x ), t ) of
system (1) with control u = k(x ), k( 0 ) = 0 be [π−, π+ ]-oscillation with respect to
output

ψ = η(x ), α1 ( |x| ) ≤ η(x ), α1 ∈ K∞.

Then excitation indices of system (1) satisfy inequality

π+ − π− ≤ χ+
ψ,x0

( γ ) − χ−
ψ,x0

( γ ),

for γ ≥ γ∗, where γ∗ = sup|x | ≤α−1
1 (π+ ) |k(x ) |.

Proof. From oscillatority property with respect to output ψ, the solutions of the
closed by feedback k system (1) are asymptotically bounded:

|x( t ) | ≤ α−1
1 (π+ ), t ≥ 0.

Therefore input u = k(x ) is upper bounded by γ ≥ γ∗ and the statement follows
from Definitions 3 and 4 (excitation indices are not decreasing functions of γ).

Hence, to compute estimates on excitation indices it is enough to find some control
k for system (1), which ensures oscillations existence in closed loop system.

In the proof of Theorem 1 a component of state space vector was proposed as an
oscillating output. However, such output does not discover all features of oscillation
processes in the system and it does not restrict the possible set of oscillating variables
of the system. To avoid this obstacle we formulate the same conclusion for output
oscillations of system (3) rewriting conditions of the theorem with respect to y:

υ1(|y| ) ≤ V1(x ) ≤ υ2(|y| ), υ3(|y| ) ≤ V2(x ) ≤ υ4(|y| ),
DV1(x )f(x, 0 ) > 0 for 0 < |y | < Y1;

DV1(x )f(x, 0 ) > 0 for |y | > Y2,

Y1 < υ−1
1 ◦ υ2 ◦ υ−1

3 ◦ υ4(Y2 ).

Then the set Ω =
{
y : υ−1

2 ◦ υ1(Y1 ) < |y | < υ−1
3 ◦ υ4(Y2 )

}
and the system is oscil-

latory if set Ω does not contain equilibrium points of closed loop system ẋ = f (x, 0 ).
A more constructive result, which points out on oscillating variables, can be presented
as follows.

Lemma 3. Let system (1) have IOSS Lyapunov function W and h-dissipative
storage function V as in Definition 2 and lims→+∞ α( s )−1σ2( s ) < +∞ (conditions
of Lemma A.1 hold). Suppose that u = k(x ) and

(i) α6 ( |x | ) > δ ( |k(x ) | ) for |x | > X ≥ 0 and x /∈ Ξ,
(ii) Lf(x,k(x ) )V (x ) > 0 for 0 < |h(x ) | ≤ Y and x /∈ Ξ,

for some positive constants X and Y with Y < α−1◦α◦α−1
4 ◦α5(X ) (where functions

α4, α5, α6 and δ defined in Lemma A.1), set Ξ has zero Lebesgue measure. If set Ω ={
V (x ) : α(Y ) ≤ V (x ) ≤ α ◦ α−1

4 ◦ α5(X )
}

does not contain equilibrium points of
closed loop system ẋ = f (x,k(x ) ), then the system is oscillatory.

Proof. First of all note that from point (i) the system satisfies all conditions
from Lemma A.1 to be ISS with respect to input u and it also has bounded (i.e.,
defined for all t ≥ 0) solutions due to property (i). As before, x( t ) and y( t ) have
nonempty closed and compact ω-limit sets, which are upper bounded by estimate
|x | ≤ α−1

4 ◦ α5(X ).
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From point (ii) of the lemma it is possible to conclude that V̇ > 0 for small enough
0 < |y | ≤ Y . Then the set of ω-limit trajectories for function V ( t ) belongs to the
set Ω. Now the result immediately follows similarly to the final steps of Theorem 1
proof.

Generically function V depends on part of variables only, which helps to define a
subset of oscillating variables in the system. Additionally, Lemma 3 points out a way
to find functions V1 and V2 (V1(x ) = V (x ) and V2(x ) = U(x ) from Appendix). Re-
sults of proposed theorems and Lemma 3 do not deal with feedback k design problem.
Now let us continue with the task of control design that ensures desired oscillation
parameters for passive systems.

4. Stabilization of oscillation regimes. In this section the problem of feed-
back design for passive system is considered, and the proposed feedback ensures os-
cillatority of closed loop system. Section 4 is based on result of Lemma A.2, although
conditions imposed on feedback k in the Lemma A.2 look complex and hardly veri-
fied, they are very natural and can be easily resolved. For example, if σ1 and σ2 are
quadratic functions of their arguments, then control k with linear growth rate with
respect to y satisfies all proposed conditions.

Theorem 3. Let system (1) be passive with known dissipation rate β and IOSS
in the sense of Definition 2 and

α ( |y |) ≤ V (x ) ≤ α ( |x |) , α, α ∈ K∞.

Consider control u = k(x ) + d, which possesses the following properties for all x ∈
Rn :

(1) for some 0 < K < +∞,

|k(x ) | ≤ λ ( |y | ) +K;

(2) decreasing of storage function V for large values of the output, i.e., inequality
holds

β(x ) − yTk(x ) + μ ( |d | ) + μ(K ) ≥ κ ( |y | ) + yTd;

(3) yTk(x ) > β(x ) for 0 < |y | < Y < +∞, Y < α−1◦α◦α−1
4 ◦α5◦α−1

6 ◦δ(K ),
lims→+∞

σ2( s )+σ1◦λ( s )
κ( s ) < +∞, where λ ∈ K, κ ∈ K∞, μ ∈ K (functions α4, α5, α6

and δ obtained in Lemma A.2) and d ∈ Rm is new input (Lebesgue measurable and
essentially bounded function of time). Then

(i) system solutions are bounded;
(ii) if set Ω =

{
V (x ) : α(Y ) ≤ V (x ) ≤ α ◦ α−1

4 ◦ α5 ◦ α−1
6 ◦ δ(K )

}
does not

contain equilibrium points of system ẋ = f (x,k(x ) ) then for d( t ) ≡ 0, t ≥ 0 closed
loop system is an oscillatory one.

Proof. Introduce partition of control input:

u = k(x ) = −k1(x ) + k2(x ),

such that

|k1(x ) | ≤ λ ( |y | ) , |k2(x ) | ≤ K;

yTk1(x ) + β(x ) + μ ( |d | ) ≥ κ ( |y | ) + yTd;

yTk2(x ) > β(x ) + yTk1(x ) for 0 < |y | < Y < +∞.
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This separation is possible due to conditions of Theorem 3. Introduce auxiliary
input d̃ = d + k2(x ) (essentially bounded by conditions of the theorem ‖ d̃ ‖ ≤
K + ‖d ‖). For system (1) all conditions of Lemma A.2 are satisfied for the feedback
u = −k1(x )+d̃ and system is ISS with respect to input d̃. According to ISS property
[21] and boundedness of d̃, boundedness of system solution immediately follows and
statement (i) of Theorem 3 is proven. To justify statement (ii) note that the conditions
of Lemma 3 also hold.

Theorem 3 extends the result from [3] and [28] to the case of general nonlinear
dynamical systems. Additional special attention is given to the lower estimate of the
oscillation amplitude for d( t ) ≡ 0, t ≥ 0.

Exciting part k2 of feedback k defines the size of set Ω (due to constants Y and K
are prescribed by k2) and, hence, it regulates the gap between values of π− and π+.

Remark 2. It is worth stressing that the control in Theorem 3 is proposed to
satisfy some sector condition with respect to output y. For design of such controls in
practical application it is possible to use speed-gradient approach [9, 10], e.g., choose
u = ϕ(y ), where ϕ(y )Ty > 0 for 0 < |y | < Y1 and ϕ(y )Ty < 0 for |y | > Y2 > Y1.

Example 4. Let us consider controlled linear oscillator:

ẋ1 = x2; ẋ2 = −x1 + u,

which is passive with storage function

V (x ) = 0.5
(
x2

1 + x2
2

)
, V̇ = x2 u,

and IOSS with corresponding Lyapunov function

W (x ) = 0.5
(
x2

1 + (x1 + x2 )2
)
,

Ẇ ≤ −0.5
(
x2

1 + x2
2

)
+ x2

2 + u2

with output y = x2 (σ1( s ) = σ2( s ) = s2). Then control u = −k1(x ) + k2(x ) with
k1(x ) = a x2, a > 0.5 and k2(x ) = K sign(x2 ) admits all condition of Theorem 3
with λ( s ) = a s, κ( s ) = ( a − 0.5 ) s2, μ( s ) = 0.5 s2. All functions σ2, σ1 ◦ λ and κ
are square-law and, hence,

lim
s→+∞

σ2( s ) + σ1 ◦ λ( s )
κ( s )

< +∞;

inequality x2 k2(x ) > x2 k1(x ) holds for 0 < |x2 | < Y , Y = K/a. This system is
ISS for control u = −k1(x ) + d with ISS Lyapunov function:

U(x ) = W (x ) +
1 + 2 a2

a− 0.5
V (x ),

U̇ ≤ −0.5
(
x2

1 + x2
2

)
+

(
2 +

0.5 + a2

a− 0.5

)
d2.

Then set

Ω =

{
x : K/a ≤ |x | ≤

√
1 +

1.5 a− 0.75
a2 + 0.5

√
4 +

1 + 2 a2

a− 0.5
K

}

is always nonempty. Simulation results and bounds of set Ω are shown in Figure 4
for a = 1 and K = 1/3.
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Fig. 4. Trajectories of linear oscillator under nonlinear feedback.

Based on the results of Theorem 3 and Corollary 2 it is possible to obtain the esti-
mates of excitation indices of closed loop system for the case of nonvanishing signal d.

Corollary 3. Let all conditions of Theorem 3 hold. Then for ‖d ‖ ≤ γ < +∞
0 ≤ χ−

V ( γ ) ≤ χ+
V ( γ ) ≤ α ◦ α−1

4 ◦ α5 ◦ α−1
6 ◦ δ(K + γ ),

if additionally

y( t )Td( t ) ≥ 0 for all t ≥ 0, (3),

then

α(Y ) ≤ χ−
V ( γ ) < χ+

V ( γ ) ≤ α ◦ α−1
4 ◦ α5 ◦ α−1

6 ◦ δ(K + γ ).

Proof. Upper estimate on excitation indices follows from ISS property of the
system with respect to input d̃ (asymptotic gain property in [25]). Now let us consider
time derivative of storage function V :

V̇ = yT (−k1(x ) + k2(x ) + d ) − β(x )
≥ [

yT (−k1(x ) + k2(x ) ) − β(x )
]
+ yTd .

From conditions of Theorem 3, the expression in square brackets is positive for 0 <
|y | < Y < +∞, but the presence of sign-varying term yTd allows one to claim only
0 ≤ χ−

V ( γ ) ≤ χ+
V ( γ ) in common case. But if y( t )Td( t ) ≥ 0 for all t ≥ 0, then

[yT (−k1(x ) + k2(x ) ) − β(x ) ] + yTd
≥ yT (−k1(x ) + k2(x ) ) − β(x ),

and the desired result follows by the same line of consideration as in Theorem 3.
Further let us suppose that it is possible a situation χ−

V ( γ ) = χ+
V ( γ ) for some γ. But

according to Definition 4, excitation indices admit conditions:

γ1 ≤ γ2 ⇒ χ−
V ( γ2 ) ≤ χ−

V ( γ1 ) and χ+
V ( γ1 ) ≤ χ+

V ( γ2 ).
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Applying the same arguments as in Corollary 2 for the results of Theorem 3 it is
possible to obtain

0 < χ+
V ( 0 ) − χ−

V ( 0 ) ≤ α ◦ α−1
4 ◦ α5 ◦ α−1

6 ◦ δ(K ) − α(Y ),

therefore, χ+
V ( γ ) − χ−

V ( γ ) > 0 for any γ ≥ 0.
According to the corollary index χ+

V ( γ ) is always bounded, that is more, it can
not be equal to χ−

V ( γ ) for any γ ∈ R+ with (3). Thus, system can not lose its
oscillation ability for any large enough input disturbance possessing “coordination”
condition (3) and such input d does not provide new equilibrium points into set
Ω =

{
V (x ) : α(Y ) ≤ V (x ) ≤ α ◦ α−1

4 ◦ α5(K + γ )
}

for system ẋ = f(x,k1(x) +
k2(x) + d). Also it is worth to note, that the requirement (3) can be satisfied for
t ≥ T only, where 0 ≤ T < +∞.

5. Conclusion. In this paper conditions for oscillatority in the sense of
Yakubovich applicable to nonlinear systems are proposed. Upper and lower bounds
for oscillation amplitude are evaluated. Presented conditions are also necessary for
some special class of uniformly oscillating systems. Relation between the oscillatority
bounds and excitability indices for the systems with input is established. An impor-
tant advantage of the results of the paper is their applicability to complex nonperiodic
(e.g., chaotic) oscillations. Such an advantage is achieved due to using the concept
of oscillatority in the sense of Yakubovich as the starting point of the whole study.
The results are illustrated by examples: Evaluation of oscillations for Van der Pol and
Hindmarsh–Rose neuron systems. As a side result a smooth nonquadratic Lyapunov
function providing boundedness of Van der Pol system solutions has been found.

Appendix.
Lemma A.1. Let system (1) have IOSS Lyapunov function W and h-dissipative

storage function V as in Definition 2. If

lim
s→+∞

σ2( s )
α( s )

< +∞,

then system (1) is ISS with ISS Lyapunov function

U(x ) = V (x ) + W̃ (x ), W̃ (x ) = ρ (W (x ) ) ,

ρ( r ) =
∫ r

0

q( s ) ds, q( s ) =
α ◦ σ−1

2

(
0.25α3 ◦ α−1

2 ( s )
)

1 + 0.5α3 ◦ α−1
2 ( s )

,

α4( s ) = ρ ◦ α1( s ), α5( s ) = α( s ) + ρ ◦ α2( s ), α6( s ) = 0.5 q (α1( s ) ) α3( s ),

Lf(x,u )U(x ) ≤ −α6 ( |x | ) + δ ( |u | ) , δ( s ) = σ( s ) + 2χ ( 2 σ1( s ) ) σ1( s ),

χ ( 2 σ2( s ) ) = α( s ) [ 1 + 2 σ2( s ) ]−1.

Proof. According to conditions of the lemma and Definition 2, the following series
of inequalities holds for all x ∈ Rn and u ∈ Rm:

α1 ( |x |) ≤W (x ) ≤ α2 ( |x |) ; Lf(x,u )W (x ) ≤ −α3 ( |x | ) + σ1 ( |u | ) + σ2 ( |y | ) ;

α ( |y |) ≤ V (x ) ≤ α ( |x |) ; Lf(x,u )V (x ) ≤ −α ( |y | ) + σ ( |u | ) ,
where α, α1, α2, α3, α, α ∈ K∞ and σ, σ1, σ2 ∈ K. Let us consider a new IOSS Lya-
punov function

W̃ (x ) = ρ (W (x ) ) , ρ( r ) =
∫ r

0

q( s ) ds,
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where q is some function from class K (that will be defined later). Clearly function W̃
is again continuously differentiable, positive definite, and radially unbounded provided
that ρ ∈ K∞. Its time derivative admits an estimate:

Lf(x,u )W̃ (x ) ≤ q (W (x ) ) [−α3 ( |x | ) + σ1 ( |u | ) + σ2 ( |y | ) ] .

To disclose the above inequality let us analyze consequently three situations:
(a) If 0.5α3 ( |x | ) ≥ σ1 ( |u | ) + σ2 ( |y | ), then

Lf(x,u )W̃ (x ) ≤ −0.5 q (W (x ) ) α3 ( |x | ) ;

(b) If 0.5α3 ( |x | ) < σ1 ( |u | ) + σ2 ( |y | ) and σ1 ( |u | ) ≤ σ2 ( |y | ), then

Lf(x,u )W̃ (x ) ≤ −q (W (x ) ) α3 ( |x | ) + 2 q (W (x ) ) σ2 ( |y | )
≤ −q (W (x ) ) α3 ( |x | ) + 2χ ( 2 σ2 ( |y | ) ) σ2 ( |y | ) ,

where χ( s ) = q ◦ α2 ◦ α−1
3 ( 2 s );

(c) If 0.5α3 ( |x | ) < σ1 ( |u | ) + σ2 ( |y | ) and σ1 ( |u | ) > σ2 ( |y | ), then

Lf(x,u )W̃ (x ) ≤ −q (W (x ) ) α3 ( |x | ) + 2 q (W (x ) ) σ1 ( |u | )
≤ −q (W (x ) ) α3 ( |x | ) + 2χ ( 2 σ1 ( |u | ) ) σ1 ( |u | ) .

Thus, the time derivative of function W̃ calculated for system (1) can be rewritten in
the form:

Lf(x,u )W̃ (x ) ≤ −0.5 q (W (x ) ) α3 ( |x | )
+ 2χ ( 2 σ2 ( |y | ) ) σ2 ( |y | ) + 2χ ( 2 σ1 ( |u | ) ) σ1 ( |u | ) .

Let function χ be taken to possess the following equality:

χ ( 2 σ2( s ) ) =
α( s )

1 + 2 σ2( s )
,

such choice of χ is possible due to

lim
s→+∞

σ2( s )
α( s )

< +∞

with q( s ) =
α◦σ−1

2 ( 0.25α3◦α−1
2 ( s ) )

1+0.5α3◦α−1
2 ( s )

from class K. Then system (1) is ISS with ISS

Lyapunov function U(x ) = V (x ) + W̃ (x ) (α4( s ) = ρ ◦ α1( s ), α5( s ) = α( s ) + ρ ◦
α2( s )), indeed:

Lf(x,u )U(x ) ≤ −0.5 q (W (x ) ) α3 ( |x | ) + σ ( |u | )
+ 2χ ( 2 σ1 ( |u | ) ) σ1 ( |u | ) ≤ −α6 ( |x | ) + δ ( |u | ) ,

where α6( s ) = 0.5 q (α1( s ) ) α3( s ) and δ( s ) = σ( s ) + 2χ ( 2 σ1( s ) ) σ1( s ).
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The next lemma is a corollary of Lemma A.1 presenting a variant of ISS stabilizing
control law for a passive system.

Lemma A.2. Let system (1) be passive and IOSS in the sense of Definition 2 and

α ( |y |) ≤ V (x ) ≤ α ( |x |) , α, α ∈ K∞.

Then control

u = −k(x ) + d, |k(x ) | ≤ λ ( |y | ) , λ ∈ K;

yTk(x ) + β(x ) ≥ κ ( |y | ) + 0.5 |y |2 , κ ∈ K∞;

lim
s→+∞

σ2( s ) + σ1 ◦ λ( s )
κ( s )

< +∞,

where d ∈ Rm is new input (Lebesgue measurable and essentially bounded function of
time), and provides for the system ISS property with ISS Lyapunov function:

U(x ) = V (x ) + W̃ (x ), W̃ (x ) = ρ (W (x ) ) , ρ( r ) =
∫ r

0

q( s ) ds,

q( s ) =
κ ◦ σ̃−1

2

(
0.25α3 ◦ α−1

2 ( s )
)

1 + 0.5α3 ◦ α−1
2 ( s )

, α4( s ) = ρ ◦ α1( s ),

α5( s ) = α( s ) + ρ ◦ α2( s ), α6( s ) = 0.5 q (α1( s ) ) α3( s ),

δ( s ) = 0.5 s2 + 2χ ( 2 σ1( 2 s ) ) σ1( 2 s ).

Proof. From Definition 2 the following conditions hold for all x ∈ Rn and u ∈ Rm:

α1 ( |x |) ≤W (x ) ≤ α2 ( |x |) ;

Lf(x,u )W (x ) ≤ −α3 ( |x | ) + σ1 ( |u | ) + σ2 ( |y | ) ;

α ( |y |) ≤ V (x ) ≤ α ( |x |) ; Lf(x,u )V (x ) ≤ −β ( |x | ) + yTu

with α1, α2, α3, α, α ∈ K∞, σ1, σ2 ∈ K and β some nonnegative definite function.
Substituting control in these inequalities, it is possible to obtain

Lf(x,u )W (x ) ≤ −α3 ( |x | ) + σ1 ( |d− k(x ) | ) + σ2 ( |y | )
≤ −α3 ( |x | ) + σ1 ( 2 |d | ) + σ1 ( 2λ ( |y | ) ) + σ2 ( |y | ) ;

Lf(x,u )V (x ) ≤ −β ( |x | ) + yT (d − k(x ) ) ≤ −κ ( |y | ) + 0.5 |d |2 .
Thus, such control provides for closed loop system IOSS property and h-dissipativity
with respect to new input d. If

lim
s→+∞

σ̃2( s )
κ( s )

< +∞, σ̃2( s ) = σ2( s ) + σ1 ◦ λ( s ),

then all conditions of Lemma A1 are satisfied and the system is ISS with ISS Lyapunov
function

U(x ) = V (x ) + W̃ (x ), W̃ (x ) = ρ (W (x ) ) , ρ( r ) =
∫ r

0

q( s ) ds,

q( s ) =
κ ◦ σ̃−1

2

(
0.25α3 ◦ α−1

2 ( s )
)

1 + 0.5α3 ◦ α−1
2 ( s )

, α4( s ) = ρ ◦ α1( s ),

α5( s ) = α( s ) + ρ ◦ α2( s ), α6( s ) = 0.5 q (α1( s ) ) α3( s ),

δ( s ) = 0.5 s2 + 2χ ( 2 σ1( 2 s ) ) σ1( 2 s ).
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