
INTRODUCTION 

In a previous paper [1], we proposed an original formulation of the global reverberation in a room, based on the 

solution of the acoustic radiative transfer equation [2]. The objective was to quantify the influence of the scattering 

properties of the surfaces of the room on the reverberation time. Indeed, we still miss a clear relation between the 

scattering coefficients and the reverberation, though some recent works have brought interesting contributions to this 

problem [3-6]. 

The results obtained in our previous paper are summarized in the next section. The formulation has been 

restricted to rooms having specular and diffuse reflections, but with special conditions imposed on the “cloud” of 

image sources (isotropy and uniformity). The formulation is extended in this paper to rooms having a pair of parallel 

surfaces, in which a certain degree of anisotropy can be introduced in the cloud of image sources. 

 

SUMMARY OF PREVIOUS RESULTS 

Our formulation is derived from the acoustic radiative transfer equation, and more particularly from its 

formulation proposed by Navarro et al [2]: 
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In this equation, ),( trw


is the sound energy density (J.m
-3

) at position r


in the room and at time t. J


 is the 

sound energy flow vector (W.m
-2

) defined as [1,2] the sum (integral) of all oriented flux of sound particles 

converging at position r


in time t ( 0J


 for a perfectly diffuse sound field). Finally, m is the attenuation of sound 

energy in the medium (m
-1

), c is the speed of sound and q0 is the sources’ power density (W.m
-3

). 

If equation (1) is integrated on the whole volume of the room V, then: 
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where )(tw  is the volume-averaged energy density, S is the surface enclosing the volume V and xn


is the unit 

vector normal to this surface at position dSrb


and directed towards the exterior of V. Equation (2) simply 

expresses that the instantaneous variation of the total sound energy in the room is the result of the total power W(t) 

generated in the room at time t diminished by the power absorbed by the surfaces and the medium. The absorption 

and scattering properties of the surfaces are included in the boundary conditions [1]. 

 

It was shown in [1] that the reverberation decays in rooms with diffusely reflecting boundaries are approximately 

exponential, after an initial transient period. In a reverberation experiment, if the source is cut off at t=0 and ta is the 

duration of this transient period: 
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The constant  of this exponential decay has been assumed to be the same at all positions in the room. It depends 

on the absorption coefficients )( br


 , on the absorption of the medium and on the relative distribution of the sound 

energy on the surfaces at time ta: 
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A first improvement of this model has been the introduction of mixed specular and diffuse reflections. In this 

case, two groups of sound particles exist at each position in the room and at each instant t : those which have already 

undergone at least one diffuse reflection (the “diffuse” particles wd) and the others (the “specular” particles ws): 
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At each reflection of a group of specular particles, their incident flux is partly absorbed (), partly specularly 

reflected ((1-s) (1-)) and partly diffusely reflected (s (1-)), where s is the scattering coefficient of the surface at 

the reflection point. Diffuse particles are never reflected as specular particles in this model. 

The contribution ),( trws


in (5) is the sound field generated by the “cloud” of image sources and, therefore, it 

satisfies equation (1). As the total sound field ),( trw


also satisfies (1), so does ),( trwd


by (5). Two assumptions 

were made on the “cloud” of image sources in [1]: 

- it must be approximately isotropic, 

- it must be the same at all positions br


on the room’ surface (cloud’s uniformity). 

Clearly, this brings some restrictions on the kind of rooms that can be represented by the model and this is 

discussed in the following section. 

 

ISOTROPIC AND UNIFORM CLOUDS OF IMAGE SOURCES 

The assumption of (quasi-) isotropy allows to develop the oriented flux of specular particles ),,( tsrLs


(in 

W.m
-2

.sr
-1

) as a first order spherical harmonics expansion at position r


and in the direction of the unit vector s


(see 

eq. 28 of [2]) : 
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This approximation can be used to derive the specular flux absorbed at any position br


on the surface of the 

room: 
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In this expression, inc  is the solid angle containing all incident directions at position br


, s is the specular 

absorption coefficient ( )1(   ss ) and 
2/1 s

s
s







 . 

The assumption of (quasi-) isotropy of the cloud of image sources can be considered as a good approximation in 

rooms where there’s no significant anisotropy in the geometry and in the distribution of the acoustical properties on 

the surfaces. It is also expected that this assumption must be a better approximation at greater distances from the real 

source, where the number of image sources increases and the local influences of the first-orders image sources are 

no longer effective. 

To verify this, we analyze the sound pressure level distribution (related to ws in (6)) and the amplitude of the 

sound intensity vector (related to sJ


) in a cubic room with specularly reflecting surfaces. For example, figure 1 

shows the distribution of the ratio 
),(

),(

trJ

trwc

s

s




 in dB, computed by ray tracing in a cubic room (length = 10m) 

equipped with a point source in its center. All (specular) reflection coefficients are identical (s = 0.7). These ratio  



are computed at mid-height, 50ms after the source’s cut off time, during a reverberation decay. In this case, the ratio 

 are greater than 9 dB (a factor 8) and the minimum value of  is obtained in the vicinity of the room’ surfaces. 

 

 

 
 

FIGURE 1. Ratio  (see definition in the text) between the sound pressure level and the sound intensity vector  in dB computed 

after 50ms during the reverberation decay, in a cubic room (length = 10m) at 10x10 positions r


 regularly spaced and situated in 

the mid-height horizontal plane. The sound source occupies a central position in this plane. The reflection coefficient is the same 

for all surfaces, i.e. s = 0.7 . 

 

Several combinations of reflection coefficients and receptor’s positions have been simulated in this cubic room. 

The analysis of the computations’ results led to the following conclusions: 

- if all reflection coefficients are identical, the ratio ),( tr


 is maximum at the room’s center and minimum 

along the surfaces, during a reverberation decay, if t > 50ms. Table 1 gives the minimum value of this ratio 

as a function of the reflection coefficient; 

- this table suggests that the assumption (6) of the (quasi-) isotropy of the cloud of image sources is 

reasonable in this cubic room if 5.0s and t > 50ms. The validity of the assumption degrades as the 

reflection coefficient decreases; 

- if one wall has a different coefficient ( sw ) than the other walls ( sa ), the validity of the assumption tends 

to be confirmed if sasw   and it is degraded otherwise. Also, the validity tends to increase with the time 

t after the source’s cut off; 

- the sound pressure level is nearly constant (variations less than 1dB) in the whole volume of the room, at all 

t > 50ms during the reverberation decay. 

-  
TABLE 1. Minimum value of the ratio  (dB) in the whole volume 

of the cubic room, for t > 50ms after the source’s cut off time in a 

reverberation experiment. 
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This last conclusion indicates that it makes sense to assume a “uniform” cloud of image sources in this kind of 

rooms, meaning that the specular contribution is nearly constant at each position in the room and at each instant, 

after an “initial” transient time tb. We can therefore assume in (7) that )(),( twtrw sbs 


if t > tb . 

 

With both assumptions (isotropy and uniformity), it was shown in [1] that: 
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The contributions )(tws  and )(twd satisfy the following equations (cfr. [1]): 
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In the second equation, the constant d has the same definition as in (4), except that w is replaced by wd. 

 

ROOMS HAVING A PAIR OF PARALLEL SURFACES 

Let A1 and A2 represent a pair of parallel surfaces (see figure 2). A’1 and A’2 are sections of A1 and A2 respectively 

that define the larger prism P  connecting A1 to A2 and having its lateral faces perpendicular to A1 and A2. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

FIGURE 2. The prism P  is the volume contained between surfaces A’1 and A’2 , which are sections of the parallel surfaces A1 

and A2 respectively. The axis x1


is perpendicular to both surfaces and it is parallel to the faces of the prism. 
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We can extract from the cloud of image sources those which are only created by reflections on A1 and A2. Their 

contribution is called ),( trwp


in the following, whereas ),( trws


is the contribution of the remaining image 

sources: 
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The larger prism P  is not empty and it is also assumed that the sound source is included in P  . We still consider 

in the following a reverberation experiment, the source being cut off at t=0 . 

 

The image sources that contribute to pw and pJ


belong to two groups: those which are situated at x<0 (see 

figure 2) and create a flow vector 


pJ


(quasi-) parallel to x1


and those situated at x>L and create a flow vector 



pJ


(quasi-) parallel to x1


 . Similarly, we have: 
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If the geometrical divergence between (ct) and (ct + 2L) is neglected (this can be done in a reverberation 

experiment if t is “great enough”), then we have: 
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where s1 and s2  are the specular reflection coefficients of A1 and A2 respectively. Note that (12) is an 

asymptotic expression, valid if t >>0 . This approximation is also equivalent to the assumption of plane waves 

travelling in the x1


 direction between the surfaces A1 and A2 . From (12), we have: 
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Similar approximations are obtained for the sound energy flow vectors, since : 
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Now, the radiative transfer equation (2) applies for the three contributions  ( dsp www ,, ) individually, with 

W(t)=0 for t > 0 in a reverberation experiment. We still consider that the flux of specular particles reflected by any 

dS is only created by the incident flux of specular particles. Moreover, we introduce a further approximation, i.e. that 

the transfer of energy during a reflection from pJ


to sJ


can be neglected. This is again equivalent to neglect the 

geometrical divergence of the flux pJ


 and assume that it is only incident on  A’1 and A’2 . Of course, there exists 

no transfer of energy from sJ


to pJ


and the scattering coefficient of dS still allows transfers from sJ


and pJ


 

to dJ


. 



If the cloud of image sources giving the contribution ws is still (quasi-) isotropic and uniform, then )(tws still 

satisfies (8). Furthermore, )(twp is obtained by averaging (13) on the whole volume of the room (not only the 

prism P ), which gives: 
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Solving equation (2) for )(twd is somewhat more complex, since we must take into account the diffuse energy 

created by the scattering of both specular fluxes on the surfaces of the room. The flux  xd nJ


. in (2) is given by 

(see eq. (7)): 

 )().,,()().,( bscatxbdbxbd rdntsrLrntrJ

inc


  



 (16) 

 

The oriented flux of diffuse sound particles dL


 is assumed to be (quasi-) isotropic as in [1]. Therefore, it can 

be developed as a first order spherical harmonics expansion at position br


, which gives (see eq. (6)): 
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The flux ),( trbscat


  is the part of the incident specular flux that is scattered at position br


at time t. The 

contribution of pJ


to this flux is: 
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The contribution of sJ


to this flux can be derived from (7): 
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Finally, eq. (2) for )(twd is derived from (4), (8) and (17-19): 
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The constant d is the same as in (9), while Ksd and K12 depend on the scattering coefficients and they express the 

transfer of sound energy from the specular to the diffuse contribution. If we introduce the vector of sound energy 

densities  )(,)(,)()( twtwtwtw dps


, the transfer equation results in a matrix equation, similar to the SEA 

formulation that was suggested by [7]: 
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This equation is valid for t > tin , the “initial” transient time necessary for all assumptions that have been 

formulated for all components of the vector )(tw


to be fulfilled. The solution of (21) is : 
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DISCUSSION ON POSSIBLE APPLICATIONS 

As such, the model (22) is not particularly suited for a simple formulation of a relation between the reverberation 

time in a room and the scattering coefficients of its surfaces. First of all, the constants Ksd and K12 are complex 

expressions of the scattering coefficients: some simplifications could be introduced (for example in rooms where the 

absorption is low), but this would introduce new assumptions and reduce the scope of the model. Second, we need to 

know the distribution of the sound energy densities  dps www ,,  at tin > 0, and this is far from being obvious. 

Third, the solution of (22) is a sum of three exponential decays and the corresponding reverberation time of such a 

decay has no simple expression, except if the three slopes are approximately identical. 

 

However, the model (22) of the sound field can be used in combination with a sound particles or ray tracing 

algorithm to speed up the computation of the reverberation decay. These algorithms can indeed be applied to: 

- compute the echograms between  t=0 and t=tin , taking into account the exact geometrical description of the 

room and the real distribution of the absorption and scattering coefficients on the surfaces, 

- compute the remaining sound energy densities  dps www ,,  at tin , the initial conditions of the solution 

(22). 

Then, the matrix L can be evaluated and the reverberation decays are completed for t > tin  through (22). 
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