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Abstract. We report physical phenomena occurring in a wvertical Newton’s cradle system. A dozen of
metallic spheres are placed in a vertical tube. Therefore, the gravity induces a non-uniform pre-compression
of the beads and a restoring force. An electromagnetic hammer hits the bottom bead at frequencies tuned
between 1 and 14 Hz. The motion of the beads are recorded using a high-speed camera. For low frequencies,
the pulses travel through the pile and expel a few beads from the surface. Then, after a few bounces of these
beads, the system relaxes to the chain of contacting grains. When the frequency is increased, the number
of fluidized beads increases. In the fluidized part of the pile, adjacent beads are bouncing in opposition of
phase. This phase locking of the top beads is observed even when the bottom beads experience chaotic
motions. While the mechanical energy increases monotically with the bead vertical position, heterogeneous
patterns in the kinetic energy distribution are found when the system becomes fluidized.

1 Introduction

Newton’s cradle is a classical experiment that is discussed
in a large amount of physics textbooks. Moreover, the cra-
dle is also one of the most popular decorative physical
toys. Usually, the cradle is composed of 5 suspended iden-
tical metallic beads of typically 1cm of diameter. They
have to be very well aligned along the horizontal direc-
tion. The distance between two centers should be equal
to one diameter. They are suspended by two wires in or-
der to leave them one degree of freedom: they can only
move in the vertical plane. The classical experiment con-
sists of releasing one bead. This one collides with the oth-
ers and one bead is ejected by the other end of the chain.
The same experiment is performed when two beads are
released, two beads are ejected by the other end. This
experiment is used as a paradigm to illustrate the con-
servation laws. Different variants exist including a cradle
with beads of different sizes [1-3]. The collision time mea-
surements have shown that Hertz [4] theory of contacts
is of application [5], as observed in the collision of two
beads [6].

Despite the relative simplicity of the craddle experi-
ment, the involved subtle mechanisms are far from being
trivial. A large number of research works are related to
this phenomenon. The propagations of solitary waves have
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been studied for nearly 450 years. Sen et al. have shown
in their theoretical reviewing paper [7] that the propaga-
tion of single solitary waves in a granular column needs to
be re-examined and could lead to exciting technological
applications. In engineering science, a column of beads is
a good candidate to build shock absorbers and damping
systems. Different configurations have been studied [8]: a
chain of monodisperse grains, a chain of bidisperse grains
and a tapered chain. By applying an external magnetic
field on a pile of ferromagnetic grains, an active damping
system can be obtained [9]. Indeed, magnetic interactions
between the grains modify the physical properties of a
granular material [10,11].

The behavior of the solitary wave is particularly in-
teresting when the column is submitted to gravity due
to the non-uniformity of the precompression. The prop-
agation of a solitary wave in a column of grains with a
uniform precompression has been analyzed theoretically
by Nesterenko [12] and Chatterjee [13] and experimen-
tally studied by Falcon et al. [14]. The propagation of a
solitary wave in a granular chain submitted to gravity has
been solved theoretically by Hong et al. [15]. They have
shown that the variation of bead compression as a function
of the height modifies the propagation of solitary waves.
In these studies, all contacts are permanent.

The behavior of a column of beads submitted to
mechanical vibrations has also been extensively studied
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in the granular material community. Indeed, the agita-
tion induced by vibrations in a packing produces com-
paction processes [16-20], phase segregations [21], convec-
tions [22], granular Leidenfrost effect [23], pattern forma-
tion [24,25], etc. Even the apparently simple system of
the single bouncing bead on an oscillating plate leads to
interesting behaviors like phase locking and period dou-
bling [26, 27]. Concerning 1D systems, the collision of a
column of beads with a fixed wall has been studied by
Falcon et al. [28]. The behavior of a vertical column sub-
mitted to sinusoidal oscillations has been studied by Lud-
ing et al. [29]. In this study, a progressive transition is
observed between a condensed phase, where the beads ex-
perience a collective motion, and a fluidized phase, where
the bead motion is erratic. The transition between both
regimes is controlled by the relative acceleration of the os-
cillations. In these studies concerning granular materials,
the column of beads is submitted to gravity and the top
of the column is free. Therefore, the contacts between the
grains could be lost.

In this paper, we propose to study a system that is
similar to Newton’s cradle. It could be nicknamed wvertical
Newton’s cradle. It consists of a vertical tube in which
identical beads are placed to form a column (see fig. 1). As
the beads are loaded by gravity, the contact force between
them increases with the height in the column. Periodical
shocks are given to the bead located at the very bottom
of the chain. The top bead being free, the shock wave
is able to expel some grains at the top. We tuned the
period between two successive shocks in order to study
the repartition of the kinetic energy through the sample
due to the “interference” between successive shocks.

The vertical Newton’s cradle presents several advan-
tages and specificities. i) The expelled grains (located at
the top of the chain) in our system are submitted to the
gravity force mg. That situation contrasts sharply with
Newton’s cradle for which the expelled grains are submit-
ted to a reduced gravity force mgsin(a), where « is the
angle between the pendulum and the vertical, whose an-
gle is small. As a consequence, in the vertical cradle, the
forces which tend to reset the system to equilibrium are
large compared to the horizontal cradle. ii) The propaga-
tion of a shock though a line of beads has been intensively
studied as reminded in this introduction. In addition, a lot
of works and studies can be found on sinusoidal excitation
of a column. In our system, we combine the physics related
to the shock (propagation, rapid relaxation) to the physics
related to the periodical excitation (fluidization). We will
see that, even if our system presents similarities with the
oscillating column, the behavior of the wvertical Newton’s
cradle is different. We also compare our experimental re-
sults with theoretical works dedicated to the modeling of
the vertical loaded chain.

In sect. 2, the experimental set-up is described. Sec-
tion 3 is devoted to the analysis of the different bead tra-
jectories. From the measurement of the bead positions,
several parameters will be particularly studied to empha-
size the physical complexity of the system. From the bead
trajectories, phase locking will be pointed out. Afterward,
the motion of the center of mass is analyzed and the aver-

Eur. Phys. J. E (2013) 36: 16

* impulses

Fig. 1. (Color online) Sketch of the experimental set-up at
rest. Twelve beads are placed in a vertical tude of inner di-
ameter D. The diameter of a bead is d. Bead numbers are
illustrated. Taps (impulses) are applied from the bottom and
bead trajectories are tracked by a camera.

age energy as a function of the bead number is measured.
In sect. 4, the results are discussed and compared with
theoretical models. Finally, the conclusions are drawn in
sect. 5.

2 Experimental set-up

Figure 1 presents a sketch of our experimental set-up.
Twelve metallic beads are placed in a vertical glass tube.
The diameter and the mass of the stainless steel beads
are respectively d = 8.73mm and m = 2.74g. The in-
ner diameter of the tube (D = 8.9mm) is slightly larger
than the bead diameter. The bottom bead is blocked by
a ring. Therefore, this bead can be hit by an electromag-
netic hammer which injects impulses in the column. The
frequency and the intensity of the impulses are controlled
by a micro-controller. The frequency can be adjusted be-
tween 1 and 14 Hz. The impulsion provided by the ham-
mer at each tap is 0.16 kg m/s. The typical duration of
the collision between the bottom bead and the hammer
is at most 1ms. A high-speed camera is used to record
the motion of the grains. Lighting is ensured by a lamp
located far away from the beads in order to have a spot on
each bead, providing bead positions on the images. After-
ward, the motion of the beads are obtained with a classical
tracking method. The beads are numbered from bottom
(1) to top (12).

3 Results

Figure 2 presents typical trajectories of the beads for three
selected values of the excitation frequency (1.4, 7.2 and
13.8 Hz). The equilibrium positions of the beads have been
substracted from their vertical positions Z; to obtain the
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Fig. 2. (Color online) Trajectories of the twelve beads for three
values of the excitation frequency. From bottom to top, the
frequencies are, respectively, 1.4, 7.2 and 13.8 Hz. The height
of the beads when the column is at rest has been subtracted
from the trajectories.

displacements z; of the bead number ¢ given by

id — iek] s (1)

k=1

Zi:Zi—

where €, is the overlapping at the contact below the bead
k. The deformation ¢ of the beads can be estimated. From
the Rockwell hardness scale [30] given by the bead manu-
facturer, the deformation at the bottom of the column due
to gravity load is roughly ¢, ~ 7- 107 m. From Hertz’s
law (see eq. (6)), it is possible to determine this deforma-
tion using the Young modulus of stainless steel. We found
a similar value: €, ~ 10~8 m. Both estimates are far below
the resolution of our instruments. Nevertheless, the equi-
librium position of each grain is determined before the
experiment.

First, let us describe the motions experienced by the
beads due to a single tap. The behavior is seen at very
low frequency (bottom plot of fig. 2). All the beads start
to move directly after the impulse according to the resolu-
tion of the high-speed camera (1/500s). The nine bottom
beads move together and behave like a single block. This
body experiences a small parabolic motion before coming
back to the equilibrium position. Only one parabola is ob-
served; no bouncing occurs according to the spatial resolu-
tion of our measurements. We conclude that the block be-
haves like a complete inelastic body. The impulse is trans-
mitted through this block to the three top beads. The
beads number 10, 11 and 12 take off and lose the contact
with their neighbors. Their trajectories are also parabolas
with an amplitude that increases with the number of the
bead. Moreover, these beads bounce before coming back
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Fig. 3. (Color online) Displacement of the center of mass zem
as a function of time, for three different excitation frequencies.
From bottom to top, f = 1.4, 7.2 and 13.8 Hz.

to their equilibrium state. The same scheme is repeated
for every tap.

The dissipation due to the tube walls may be estimated
by analyzing the motion of the top bead. While flying, the
bead experiences a parabolic trajectory. Assuming a free-
falling motion, the acceleration should be found equal to
gravity. The fit of the parabola provides an acceleration
of about 9.77m/s?. This is close to the gravity constant
acceleration, meaning that friction is low.

If the tap frequency f increases, i.e. if the period 7 =
1/f between two successive impulses decreases, the behav-
ior of the pile becomes strongly different. Indeed, succes-
sive pulses interact inside the column. As shown in fig. 2,
the number of fluidized beads increases with the impulses
frequency f and the rest of the column still behaves like
a single block. In the fluidized part of the pile, adjacent
beads bounce in opposition of phase. This phase locking
of the top beads is observed even when the bottom beads
experience chaotic motions (see fig. 2 (top)).

Figure 3 shows the temporal evolution of the position
of the center of mass z., given by

Zem = %Zzz (2)

After a short transient regime, the center of mass is found
to oscillate around a median value which increases with
the tap frequency f. Figure 4 presents three main charac-
teristics of z.y, as a function of f. The average of z.,, over
several periods is seen to increase linearily with the tap
frequency (see fig. 4 (top)). However, the minimum value
of z.y starts to grow after a threshold frequency, meaning
that at least one bead is always detached from the column
(see fig. 4 (center)). Finally, the amplitude of the z¢y 0s-
cillations decreases when the tap frequency increases.
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Fig. 4. (Color online) Three main characteristics of the aver-
age motion of the beads (zcm ) as a function of the tap frequency
f. From top to bottom, the figure presents the average posi-
tion of the column (zem), the minimum value of zem (¢) and the
fluctuations of the average position \/(z2,) — (zem)?.

Since the standard deviation of the center of mass (see
fig. 4 (bottom)) is reduced at high frequency, more colli-
sions per time unit between the beads are expected and
consequently more energy exchanges. When the frequency
is high, one observes indeed that the separation between
beads increases (see fig. 2) implying individual motion in-
stead of block motion.

The energy of each bead has been calculated from
the knowledge of the normalized trajectories z;(t), where
i ={1,...,12} is the bead number. The kinetic energy is
therefore given by

2
zi(t + At) — zz(t)> ’ (3)

Tit) = gm ( At

where m is the mass of each bead and At = 2ms is the
time between two successive frames. The variation of po-
tential energy is given by

AU;(t) = mgzi(t). (4)

Since the equilibrium positions of the beads are not taken
into account in the normalized positions z;(¢), the value
of this potential energy is zero when the column is at rest.
The total mechanical energy E; is the sum of T; and U;.
Figure 5 presents the energies averaged over several pe-
riods as a function of the bead number. For low values
of the tap frequency (see fig. 5 (bottom)) below the onset
of fluidization, both kinetic and potential energies increase
monotonicaly with the bead number i. Moreover, the value
of the total energy is almost zero for the nine lowest beads.
A large block is still present in the system. When the ap-
plied frequency f becomes higher (see fig. 5 middle and
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Fig. 5. (Color online) Energies averaged over several periods as
a function of the bead number. T (circles), U (squares) and E
(triangles) are respectively the kinetic, the potential and the
total energy. From top to bottom, the excitation frequencies
are, respectively, 1.4, 7.2 and 13.8 Hz.

top), the energy is distributed over a larger number of
beads and the kinetic energy T' shows a maximum which
goes down inside the pile when f increases.

4 Discussion

For low tap frequencies, the pulses travel along the col-
umn and expel some grains at the top. The bottom part
of the column experiences a small parabolic flight as a
single block. After the tap, the system dissipates the en-
ergy when the flying grains are bouncing on the column.
We define a flying time 7; which is the duration of the
first parabolic flight experienced by the bead number i.
After a single tap, we have 7; = 7,41 = 0.064 s for i < 10
and 79 = 0.096s < 71 = 0.176s < 710 = 0.291s. The
relaxation time for the whole column is about 7, &~ 0.4s.

If the tap frequency f increases, i.e. if the period
7T = 1/f between two successive impulses decreases be-
low 7., successive pulses interact inside the column. If
T2 > 7 > 711, the second impulse occurs between the
end of the parabolic flight experienced by the bead num-
ber 12 and the end of the parabolic flight experienced by
the bead number 11. Then, bead 11 is ejected from the
column and collides with bead 12. As a consequence, the
beads located at the top are fluidized while the rest of the
column still behaves like a single block. The phase locking
and the ordered character of the beads motion is related
to the method of injection of the energy in the system.
Indeed, this effect was not observed in the case of a pile
submitted to sinusoidal oscillations [29]. In our system,
the bottom block transmits the impulses to the top beads
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which experience a phase locking while the energy is more
distributed over the whole pile in the case of sinusoidal
oscillations. The existence of the bottom block is allowed
because the system has the possibility to relax between
two taps while the plate is always in motion in the oscil-
lating configuration. When 71 > 7 > 7y, the same argu-
ments demonstrate that the top three beads are fluidized.
Finally, if period 7 becomes lower than 719 the block of
the nine bottom beads described previously is more and
more decomposed. The fluidized part of the pile reminds
of the Tonks gas that consists of a one-dimensional gas of
hard spheres [31].

Concerning the distribution of energy in the column,
one could expect that for a fluidized bed, both kinetic and
potential energies grow with bead number. Indeed, at first
glance, the beads located at the top of the column are sub-
mitted to a smallest confinement pressure and have the
ability to move more freely. However, at high frequency
(see fig. 5), the surprising result is that the maximum of
the kinetic energy is not located at the position of the top
bead but is located at bead number i = 10! It seems that
an increases of f involves a shift of this peak towards low
1 values. In fig. 2, a careful observation of trajectories at
high frequency shows indeed that the bead i = 10 has
the largest amplitude, while the top bead has a limited
motion. This localization of high kinetic energy inside the
column was not expected and looks similar to a Leiden-
frost effect [23].

The coexistence of a condensed and a fluidized phase
complicates the modeling of the system. The condensed
phase can be modeled by a vertical column of non-linear
oscillators. Considering the equation which governs the
motion of mechanical impulse impacted from the bottom
of the vertical granular cradle with Hertzian contacts (or
non-linear spring), one has

d*z;
de?

3
2

3

=7 {ld=(Zi— Zin)]F — (A= (Zin - Z)]F | +9

(5)
for each bead i except the last one which has only one con-
tact. The parameter v = E/3(1 —v?)m takes into account
the Young elastic modulus F, the Poisson ratio v, and the
mass m of each particle. The equilibrium condition for
every bead k reads

gk=rvye? (6)

that one can use also in eq. (1). One may note that in
this model governed by eq. (5), both friction or non-
elasticity effects are neglected. This belongs to Hertzian
contacts approximation. Under the assumption of weak
non-linearities, i.e. € < 1, eq. (5) can be mapped
into functional-differential equations [32] which have a
rigourous solution given by Bessel functions Jo; of an in-
teger order, i.e.

zi = J2 (géVét) ; (7)

defining a characteristic time

Page 5 of 6

For the beads used in this experiment, the obtained char-
acteristic time is 7 &~ 10 us. Therefore, the fact that we do
not measure any time delay between the impulses on the
chain and the top grains expelled with our time resolution
is coherent with this model.

Of course, any observable bead motion should be de-
scribed in form of a linear combination of a few cylindrical
waves which should take into account boundary condi-
tions. The remarkable feature of this simple model is that
oscillations are predicted and more importantly their am-
plitude depends on the integer order of cylindrical waves.
Hong et al. have shown with a similar model that, due
to the gravitational compaction of the column, the im-
pulses propagate dispersively. Therefore the pulses do not
stay a soliton during the propagation, in contrary to the
propagation mode in a horizontal column. This dispersive
propagation explains that more than one bead is expelled
from the column after an impulse.

Concerning the fluidized part of the system, the ballis-
tic motion of beads has already been studied theoretically
by Gerasymov et al. [33]. This one-dimensional model,
considering inelastic particles in the case of the simplest
modes of external energy supply, allows the possibility for
stationary states, which correspond to simple periodic mo-
tions. This result is in agreement with our remarkable
observation of phase locking in the fluidized part of the
column. The phase locking is a common feature shared
by bouncing ball systems [27,34,35] such as a single bead
in an oscillating box. Numerical models could therefore
be implemented for describing the fluidized part but this
remains outside the scope of the present paper.

In [29], the bead column is sinusoidally excited, lead-
ing to fluidization above some acceleration threshold. This
transition is due to the take-off and subsequent bounces
of the column above the threshold. Herein, the excitation
is discontinuous and the amount of energy injected in the
column (within one tap) is fixed. We have found a similar
threshold linked to the competition between dissipation
rate and frequency. Contrary to [29], the beads separate
into two parts: a static block at the bottom of the column
above which moving grains are freely falling and colliding.
The distribution in kinetic energy is therefore completely
different if one considers continuous energy injection or
taps.

5 Conclusion

A vertical column of twelve beads has been excited by a
hammer that hits the bottom of the column at a given fre-
quency f. Due to the gravity, the beads are submitted to
a non-uniform compression. The system is dissipative and
the contact force is non-linear. The top bead being free,
the shock wave is able to expel some grains at the top.
The dynamics of this system is found to be rich. For low
values of the applied frequency (f < fo), only a few beads
situated at the top of the pile are performing successive
parabolic flights. A part of the system remains in a “con-
densed” phase while the second part is fluidized. When
the frequency increases above the onset for fluidization,
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all beads are in motion. Adjacent beads are bouncing in
opposition of phase. This phase locking and the ordered
character of the beads motion is related to the method of
injection of the energy in the system. Indeed the behavior
of our pile is radically different from the case of a sinu-
soidal excitation [29]. The average energy of each bead has
been calculated. The kinetic energy presents a maximum
which was unexpected. This maximum goes down inside
the pile when the frequency increases and could lead to
a Leidenfrost effect for higher values of the injection fre-
quency.
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project (IAP P6/17) of the Belgian Science Policy.
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