Consistency of stress smoothing by convolution
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1. Introduction

A very classical stress smoothing procedure consists to generate from the finite
elements stress field &, a new stress field of the same form as the displacements,
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o-h = ZNiO_h,
i=1

The main difficulty of such a scheme is to obtain sufficiently accurate nodal values of the
stresses. In the so-called local methods, these nodal values are obtained as a weighted mean of
stresses at selected points.

The main idea of the present work was to replace these discrete averages by an integral
one, which is more systematic. Here,

&y = [0,05+ 1))y,
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with a radial convolution kernel ¢ whose support is a ball of radius R, and which verifies the

normalization condition j¢(y)dy =1. For internal nodes, R may be chosen so the ball lies
R"
inside the patch of elements containing node i (fig. 1).
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The ball is then inside the body Q. On the boundary of Q (point j) the integration may be
restricted to the part of the ball that is contained in Q. The result is then divided by the sum
of weights, that is,
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2. Kernel families

In order to obtain a kernel family ¢@r with support in Br and unit integral, the
following scheme is available

e Select some radial function @ (x) whose support is B; and such that
[p(eyax =0
Bl
e Set
P(x)
[P(oax
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e On a ball Bg, the kernel will be
1
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The best known kernel is the canonical mollifier defined by
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But more simple choices are possible.

3. First experimentations

This method, with the canonical mollifier, has been tested by Do Viet Tuyen [5] on 2-
D stress fields. The conclusions are as follows

o With /% degree elements (o of degree 0), the convolution method leads to good
effectivity indices.

e With 2™ degree elements, it is no more the case, and strangely, the lowest the kernel
support radius R, the best the effectivity index.

If it is noted that for O-degree stresses, any radial convolution leads to the same result, a
fact that is not true for higher degrees, this all seems to ask the following question : are there
better suited kernels ?




— 4. A consistency condition

The convolution process may be considered as an operator T which from a given
function f leads to a new function f =Tf . If fy is an approximation of f, let us consider the

difference between the true function f and f,, = If, . One has

f-Tf =T +If - T,

So, when f, — f, one has

|77 -zl <7l - £

But it remains the term f —7f which is independent of fi, and has to be zero in order to
ensure that 7f, — f.

This is to say that the adopted transformation has to be neutral when applied to the true stress
field : it is a consistency condition.

5. Internal consistency with harmonic functions

- A neutral kernel for any function is of course not attainable (it would be a
representation of Dirac's measure). But restricting this aim to some classes of functions, this

property may be true. Let us first consider Aarmonic functions. Noting
o, =x/r, r=4,

let us compute the following integral :

I= [[f(Ro)- f(o)Hw (1)

jo)=1

It is easy to see that

I= [do[ D, f(ro)d

[m[:l

Now, defining the function e(r) by

it is clear that
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and after an integration by parts,

1= [[e(R) - e(r)|Afix @)

Bp

This result contains the well-known mean value theorem for harmonic functions [1] :
For any harmonic function f,

flo)=—- j F(Rw)dw VR

n |ol=1
where @, is the superficial measure of the n-D unit sphere.

Multiplying this result by any radial function @,(7) and by ', one obtains

FOP I = [ £ @)pu (I de
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e Amrintegration-from-0-to-R-leads-to

F©) [r(r)dy = [ 1 ro)p(r)ay 3)
This, translated of x, gives
F) [ fGx+ )0, )y )
By(x)

Where is supposed to be of unit integral.

The result is thus that any normalized radial kernel is neutral for harmonic functions.
Although of simple nature, this result is seldom citated [3].

6. The case of biharmonic functions

Unfortunately, elastic stress fields are not generally harmonic, so that from (2), a
convolution by any radial kernel is not consistent. However, in the case of an isotropic
homogeneous solid, submitted to body forces of degree 2 at most, it may be proved that the
stress field is biharmonic.




The Laplacian of a biharmonic function being harmonic, one has

I'= [[e(R) - e(r)ave = Af (0). [[e(R) — e(r) ix

since [e(R) - e(r)] is a radial kernel. After elementary transformations, this leads to
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Returning to the definition of I, multiplying both sides of this equality by »""'p, (#) where @,
is a normalized radial kernel, and integrating from O to R leads to the following result

@ =(f * 0, + S O R ©
where
4= p™g(p)dp )

is independent of R. So, the consistency error on a biharmonic function is proportional to R,

The consistency condition for biharmonic functions is that the kernel verifies A = 0,
that is

A= J.pzfoldx =0

B

Two comments about this condition
e A biharmonic-consistent kernel cannot be positive everywhere since ¢, >0 would
imply A > 0. Note that the existence of positive consistent kernels would imply a

maximum theorem such as for harmonic functions, and this is not true.

e In the 2-D case, it follows from Goursat's theorem [6] that any biharmonic function £ is
of the form

f=a+r'p

where @ and f are harmonic. Therefore, with a radial kernel ¢,
[ fodc = [apde+ [ prgds = a(o) [ pds + (o) [rgdx
Bp Bg By Bp Bg

and this reduces to




/() [ pex = a(0) [ peix

only if

j7‘2¢dx =0,
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that is, our consistency condition.

7. Biharmonic-consistent kernels

A direct derivation of biharmonic-consistent kernels may be performed starting from
the equation
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by somewhat long developments inspired from ideas of Parton and Perline [2]. The result is as
follows :

Let @, be a normalized radial kernel such that

° lirr}{_%_(ﬂ =0

o limr'p,(r)=0
r—»0
Then, a biharmonic-consistent kernel is given by

1 1 d 2 1 do
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In fact, it is normalized, as

lerl d
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It also verifies the consistency condition, since

[tama [ Lni-bal -




8. Example

Tt is generally admitted that a suitable kernel has to fastly decay with 1. Let us
consider, for the 2-D case

9. Conclusions

Up to now, it has not been possible to test the presented kernels. However, the results
obtained by arbitrary kernels are explained, since

e for zero degree element stresses, any radial kernel leads to a weighted average where
the weights are the angular extensions of the adjacent elements.

e for higher degree elements, the result depends on the kernel, and the best result was
obtained for R — 0, in conformity with our consistency analysis.

The question of boundary nodes remains somewhat open since our truncated convolution is
questionable. Other ways are possible, such as equilibrium verification.

It should also be mentioned that the convolution procedure may be used for 3-D
problems without requiring any superconvergence result.
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