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Single point incremental forming

A sheet metal is deformed by a small tool.

The tool could be guided by a CNC (milling machine, robot).

Dieless, with high sheet formability.

For rapid prototypes, small batch productions, etc.

[Henrard et al., 2010]
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Motivations

Geometrical inaccuracy.

Process mechanics.

Increased formability.

[Behera et al., 2011]
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Motivations

Geometrical inaccuracy.

Process mechanics.

Increased formability.

Through the thickness
gradient are important.

2D constitutive laws
cannot be used.

New advances on
element formulation in
FE codes.

[Behera et al., 2011]
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Simulations

Material: DC01 ferritic steel (1 mm thickness).

Two slope pyramid:
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Constitutive modeling

Isotropic elasto-plastic constitutive law.

Voce and Armstrong-Frederick isotropic/kinematic hardening.

σY = σY 0 + K
(
1− exp

(
−nεP

))
Ẋ = Cx

(
Xsat ε̇P − ˙εPX

)

Material parameters:

σY 0 = 158 MPa Cx = 257
K = 255 MPa Xsat = 4 MPa
n = 13

Identification through classical (tensile, monotonic/Bauschinger
shear) tests.
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Mesh and boundary conditions

FE code: LAGAMINE.

Displacement-controlled implicit
simulation.

One layer with 2248 (coarse) and 4282
(fine) elements.

Symmetry and rotational boundary
conditions:
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Solid-shell element

SSH3D

Enhanced assumed strain (EAS).

Assumed natural strain (ANS).

In-plane full integration and 5 IP through-the-thickness.
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Assumed natural strain

U εcom

εANS

B

linear interpolation
BANS

Sampling points (transverse shear and transverse normal strains):
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Enhanced assumed strain

Enhanced strain field

ε = εcom + εEAS

εcom = ∆su = B(r , s, t)U

εEAS = G(r , s, t)α =
|J0|

|J(r , s, t)|
F−T

0 M(r , s, t)α

[M] =
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03 EAS modes
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Shape results

Numerical/experimental (DIC) comparison Y = 0
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EAS and mesh influence

Strong EAS mode influence.

Small mesh influence.
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Force evolution

Both EAS modes and mesh influence.
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Conclusions

EAS modes influence the accuracy of the results.

The elements are subjected to deformation modes reproduced only
using the EAS technique.

ANS version has no effect on both the shape and the force.

Material identification procedure important.

Future work

Identify the most important EAS modes.

Improve identification procedure to consider out-of-plane stresses.
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