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Abstract

In both elasticity and poroelasticity, the nucleus of strain is usually used to refer to a singular
solution such as the point force, the force dipole, the centers of rotation and dilation, etc. These
fundamentals solutions constitute the building blocks for various problems of practical importance
and are, therefore, relatively well understood. However, a comparison of the original elastic solution
for the center of dilation with the classic Lamé solution reveals an unexpected dependence of the
center of dilation solution on the Poisson’s ratio. This inconsistency is investigated by means of
two alternative representations of the singularity and leads to the identification of a compressed
zone inside the singularity. The poroelastic equivalent to this nucleus of strain is shown to be the
superposition of the elastic one with drained material parameters and an instantaneous point fluid
source associated with a finite volume of fluid that is expelled from the compressed region inside
the singularity and is injected in the porous medium.

1 Introduction

In elasticity, the classic solution obtained by Kelvin (1882) for a point force acting in a solid of infinite
extent is the building block of what Boussinesq (1885) first called a nucleus of strain. Various nuclei of
strain exist; all can be derived from Kelvin solution. For instance, the classic solutions for the double
force with and without moment can be obtained by differentiation of the point force solution and, in
turn, combined to form other nuclei such as the center of dilatation and the center of rotation. The
solutions of these two particular nuclei of strain appear to have been first obtained by Dougall (1897)
and were later quoted by Love (1920).

Interpreting the center of dilation as the insertion of an isotropic eigenstrain of strength V (of
dimension [L3] in space and [L2] in plane strain) at one point of an infinite elastic solid, Dougall
solution can equivalently be build by superposition of dislocation dipoles. An examination of the
resulting solution reveals that the displacement and stress fields vary in 1/r2 and 1/r3, respectively.
This general behavior is in accordance with the classic Lamé solution (1852) and Love’s intuition who
stated that “The point must be in a cavity within the body [...]” (1920). However, while Dougall
solution for the center of dilation depends on both shear modulus G and Poisson ratio ⌫, a solution
derived from Lamé solution for a spherical cavity would result in a displacement field independent of
Poisson’s ratio, consistent with the zero volumetric strain associated with the 1/r2 decay of the radial
displacement. This unexpected dependence of Dougall solution on ⌫ can equally be observed in plane
strain.

Furthermore, it is well known that a certain parallelism exists between poroelasticity and elasticity;
nuclei of strain are no exception. They are, therefore, build on the poroelastic analogue of Kelvin solu-
tion which has been derived by Cleary (1977) and later corrected by Rudnicki (1981, 1986). However,
because of the inherent diffusive process that takes place in the porous medium, the nucleus of strain
build by superposition of double forces exhibits a decaying strength and one must resort to dislocation
dipoles to build a center of dilation with constant strength V .
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The corresponding solution is seen to be the superposition of an elastic center of dilation with a
drained Poisson ratio (Dougall solution), and a point fluid source associated with a finite volume of
fluid instantaneously injected in the porous medium V

f

= 4 ⌘ V/3 (where ⌘ is a poroelastic constant
defined in the range 0 to 1/2). At large time, the poroelastic solution reduces to Dougall elastic solution
only. This is again an unexpected behavior, if the nucleus of strain is viewed as a degenerated Lamé
solution, which is the same in elasticity and in poroelasticity. Similar results are obtained for the plane
strain center of dilation with, for this particular loading, V

f

= ⌘ V .
The objectives of this paper are to (i) clarify the unexpected dependance of Dougall solution on

Poisson ratio, and (ii) identify the origin of the fluid seemingly injected in the porous medium by the
insertion of the center of dilation. The complexity concealed by the apparent simplicity this nucleus of
strain was not the unique motivation that drove the authors. Indeed, the extensive use of the center
of dilation in diverse fields even though its interpretation is unclear or debatable is remarkable; some
of them are introduced in the following paragraphs.

The center of dilation and its opposite, the center of compression, have been widely used to describe
lattice defects in crystals such as vacant sites or interstitial and impurity atoms (Eshelby, 1954, 1956;
Kröner, 1959). Agglomeration of these points defect, e.g. precipitates, or more complex systems have
been modeled by integration of the solution for the center of dilation over regions of various shapes;
the resulting displacement and stress fields have been compared with those from the corresponding
dislocation loops and slight differences have been revealed (Koehler, 1966; Groves and Bacon, 1969).

In volcanology, Anderson (1936) was the first to propose an analytical model to explain the for-
mation or collapse of calderas. His representation of the magma chamber by a center of dilation was
eventually followed by Mogi (1958) who concluded that geodetically measured elevation change and
horizontal displacements associated with eruptions in Japan and Hawaii resulted from inflation and
deflation of magma bodies within the volcanoes. What later became Mogi’s model is now the most
widely used method to predict the stresses and displacements generated by the pressure changes in
a relatively deep-seated, spherical magma chamber (Gudmundsson, 1998; Lisowski, 2006). Relatively
more complex distributions of centers of dilation have also been used to approximate various shapes
of magmatic chambers (Segall, 2010).

In rock mechanics and in petroleum engineering, a similar idea initially introduced by McCann
and Wilts (1951) has later been extended by Geertsma (1966, 1973a,b) to evaluate land subsidence
provoked by fluid extraction or pressure changes in a subsurface reservoir. Distributions of centers of
dilation have not only been used in the contexts of hydrocarbon production and storage but have been
applied, with the same relevance, to aquifer management and carbon sequestration. More recently,
Segall (1989, 1992); Segall et al. (1994) evaluated the effects of fluid extraction on the occurrence of
seismicity using similar distributions of centers of dilation.

2 Center of Dilation

To answer these questions, both elastic and poroelastic solutions for the center of dilation are first
closely examined. The convention for the superscripts used to designate the various singularities on
which this nucleus of strain is build is given in Table 1.

2.1 Elasticity

As it has already been emphasized in the introduction, the center of dilation is a classic nucleus of strain
that can be obtained from Kelvin (1882) fundamental solution by differentiation and superposition. It
is, however, recognized that singular solutions can equivalently be obtained by integration of Navier
elastic equation in which proper Dirac delta functions have been inserted. For instance, the introduction
of the singularity F

i

= �
ik

� (x) for the body force in Navier equations generates Kelvin solution for
a point force acting in the x

k

-direction. According to the nomenclature introduced in Table 1, the
corresponding displacement field is referred to as uF

ik

.
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Table 1: Convention for naming singular solutions

Singularity type Elastic Instantaneous Continuous
Fluid source (�) � si sc

Fluid dipole (�
i

) � pi pc

Ring fluid source � ai ac

Ring fluid dipole � bi bc

Total force (F
i

) F Fi Fc

Displacement discontinuity (E
ij

) d di dc

Edge dislocation e ei ec

Ring dislocation r ri rc

Center of dilation c ci cc

Following Cheng and Detournay (1998) developments, one can also define the singularity E
ij

for
the displacement discontinuity such that its introduction in Navier equations leads to

Gu
i,jj

+
G

1� 2 ⌫
u
j,ji

= �F
i

+ 2GE
ij,j

+ 2G
⌫

1� 2 ⌫
E

jj,i

(1)

with the displacement discontinuity fourth-order tensor defined as

E
ijkl

= �1

2
(�

ik

�
jl

+ �
jk

�
il

) � (x) (2)

where �
ij

is the Kronecker delta and � (·) the Dirac delta function. Combining these two equations
and identifying the derivative of a delta function �

ik

�
,l

(x) with a double force uF

ik,l

, it can be shown
that

ud

ikl

= G
�
uF

ik,l

+ uF

il,k

�
+ 2G

⌫

1� 2 ⌫
�
kl

uF

im,m

(3)

where ud

ikl

is the solution for the dislocation dipole. This relation, which is exactly the constitutive
relation of an isotropic elastic solid, expresses the link that exists between dislocation dipoles and
double forces (Cheng and Detournay, 1998).

From Eq. (3), it also appears that Dougall original solution for the 3D center of dilation is equivalent
to the superposition of three mutually orthogonal dislocation dipoles, each producing a normal opening
of magnitude V/3. In the particular configuration of plane strain loading, the center of dilation is
obtained by superposition of two mutually orthogonal dislocation dipoles of magnitude V/2 such that
the total strength of the singularity is again V . The resulting displacement fields

uc

i

=
V (1 + ⌫)

12⇡ (1� ⌫)

r
,i

r2
for 3D (4)

=
V

4⇡ (1� ⌫)

r
,i

r
for 2D (5)

clearly exhibit the former mentioned dependence on Poisson ratio.
As emphasized in the introduction, alternative singularities associated with the same decay of the

displacement field can be derived from the classic Lamé solution (1852) for spherical and cylindrical
cavities. One can, indeed, imagine the limiting process consisting in the application of a radial dis-
placement of magnitude V/4⇡ a2 (resp. V/2⇡ a) at the boundary of a spherical (resp. cylindrical)
cavity of radius a, with a tending to zero. Consistently with the zero volumetric strain associated with
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these solutions, the resulting displacement fields

u
i

=
V

4⇡

r
,i

r2
for 3D

=
V

2⇡

r
,i

r
for 2D

are independent of any material parameters.

2.2 Poroelasticity

The linear, isotropic, theory of poroelasticity, as originally proposed by Biot (1941), relies on a con-
ceptual model consisting of a pore fluid moving freely in a coherent solid skeleton and three key
assumptions: (i) linearity between stresses and strain, (ii) reversibility under small strain (meaning
that no energy is dissipated during a closed loading cycle), and (iii) isotropy and homogeneity of the
porous solid. Adopting a stress-strain formulation similar to the one initially introduced by Biot, the
total stress �

ij

and the pore pressure p are chosen to be the basic dynamical variables of the consti-
tutive equations. A positive normal stress implies tension while a positive pore pressure is treated as
compressive. The corresponding kinematical variables are the solid strain "

ij

and the variation of fluid
content ⇣, defined as the variation of fluid volume per unit volume of porous solid.

As shown by Detournay and Cheng (1993) for instance, the equations governing this linear,
isotropic, theory of poroelasticity can be combined to obtain a set of four field equations expressed in
terms of the solid displacement u

i

and the variation of fluid content ⇣. Doing so, a poroelastic version
of Navier equations is derived

Gu
i,jj

+
G

1� 2 ⌫
u

u
j,ji

= �F
i

+ 2GE
ij,j

+ 2G
⌫

1� 2 ⌫
E

jj,i

+
G (⌫

u

� ⌫)

⌘ (1� ⌫) (1� 2 ⌫
u

)
⇣
,i

(6)

where F
i

is the body force per unit volume of the bulk material and ⌘ is the poroelastic stress coefficient
defined as

⌘ =
↵ (1� 2 ⌫)

2 (1� ⌫)
(7)

with ⌫
u

the undrained Poisson ratio and ↵ the Biot stress coefficient. The coupling term, which acts
as an additional body force, is governed by the following diffusion equation

@⇣

@t
� cr2⇣ =

⌘ c

G
F
i,i

+ � �  f
i,i

� 2 ⌘ c
�
E

ij,ji

�r2E
jj

�
(8)

where c is the diffusivity and � is the fluid source density.
In the particular configuration of infinite domain, a certain uncoupling of these equations can

be achieved. This uncoupling allows to express the solution as the sum of two components: (i) an
undrained one, u0

i

, which is time-independent and corresponds to the instantaneous displacement field
induced at t = 0+, and (ii) an irrotational component, �u

i

, which incorporates the diffusion process.
At the instant of loading, the poroelastic medium behaves as an elastic one with undrained material
parameters and the instantaneous response u0

i

is therefore entirely governed by Navier equations with
undrained material parameters. This particularly useful result enables one to deduce the instantaneous
solution for poroelastic nuclei of strain from their elastic homologue by substitution of the undrained
Poisson ratio ⌫

u

for the drained one. On the other hand, as t ! 1, the diffusion process dissipates
and the classic elastic solution is recovered.

Following the reasoning exposed in the previous section, one can build the continuous poroelas-
tic center of dilation by superposition of dislocation dipoles. Using either the solution of Carvalho
and Curran (1998) or Cheng and Detournay (1998) for the continuous dislocation dipole1 (see Ap-
pendix A.1), the solution is seen to be the superposition of the elastic center of dilation Eq. (4) and

1
The plane strain solution for the dislocation dipole has independently been obtained by Curran and Carvalho (1987)

and Detournay and Cheng (1987).

4



an instantaneous point fluid source
ucc

i

= uc

i

+ V
f

usi

i

Similarly, the variation of fluid content resulting from the insertion of the center of dilation is given by

⇣cc = V
f

⇣si

where the volume of fluid that appears to be instantaneously injected in the porous medium is V
f

=
4 ⌘ V/3 for the general 3D loading and V

f

= ⌘ V for plane strain loading. This result, that leads to an
apparent increase of the total fluid content inside the porous medium, is relatively surprising since no
fluid has actually been injected in the medium. At large time, the excess of pore pressure induced by
the fluid source dissipates and the displacement field reduces to the elastic center of dilation given by
Eq. (4) or (5) depending on the nature of the loading.

3 Exploded View of the Singularity

To understand the mechanism behind the poroelastic center of dilation and reveal where the seemingly
injected fluid comes from, we look “inside” the singularity and consider an exploded view of it. The
physics of the problem is first investigated under the assumption of plane strain loading, and then
extended to the more general 3D center of dilation.

3.1 Plane Strain Solution

In plane strain, the displacement discontinuity dyad shown in Figure 1 is substituted for the center of
dilation and the two dislocation dipoles are seen as the limit of two orthogonal dislocation segments
of length 2 a and displacement discontinuity D

n

= V/4 a (with D
n

> 0 for an opening discontinuity)
such that the volume instantaneously created by the singularity is V . Both displacement discontinuity
segments forming the DD-dyad are created by superposition of two edge dislocations and the solution
therefore results from the superposition of four edge dislocations

u
i

=
V

4 a
[uec

i1

(x
1

+ a, x
2

)� uec

i1

(x
1

� a, x
2

) + uec

i2

(x
1

, x
2

+ a)� uec

i2

(x
1

, x
2

� a)]

where uec

ij

is the displacement field due to a continuous edge dislocation aligned with x
j

-axis. For
brevity, we introduce the operator Da

k

such that the previous expression can be rewritten as

u
i

=
V

2
Da

k

uec

ik

(9)

with the particularity that
lim
a!0

Da

k

= @
k

(10)

where @
k

is the partial derivative with respect to x
k

.
Form this definition, it can easily be shown that the solution for the center of dilation is recovered

by shrinking the DD-dyad, i.e. passing to the limit for a tending to 0,

ucc
i =

V
2

lim
a!0

Da
ku

ec
ik

=
V
2
uec
ik,k

=
V
2
udc
ikk

where the relation uec
ik,k = udc

ikk has been used (Detournay and Cheng, 1987).
The definition of the exploded singularity presented in Figure 1 reveals that the solution manifests

a 4-fold rotational symmetry; meaning that any quantity remains unchanged by a rotation of ⇡/2
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Figure 1: Definition of the displacement discon-
tinuity dyad

Figure 2: The two pairs of equal and opposite
dipoles

radian. This definition also reveals that the circle circumscribed to the displacement discontinuity
dyad divides the domain in two regions: (i) an inner one, corresponding to the disc of radius a and
which is not actually visible in the original representation of the centre of dilation, and (ii) an outer
one, consisting of the infinite porous medium complementary to the disk. Finally, two characteristic
parameters are naturally identified: the length scale r⇤ = a and the time scale t⇤ = a2/4 c.

As already emphasized, the solution (9) can be decomposed in two components: (i) an undrained
one, u0

i

, which is time-independent and corresponds to the initial displacement induced at time t = 0+,
and (ii) a time-dependent component, �u

i

, which incorporates the diffusion process.

3.1.1 Instantaneous Response

At the instant of loading, the poroelastic medium behaves as an elastic one with undrained material
parameters and the instantaneous response u0

i

is therefore entirely governed by Navier equation with
undrained material parameters. Adopting a notation similar to the one introduced previously, yields

u0

i

=
V

2
Da

k

uec,0

ik

(11)

where uec,0

ik

is the classic elastic solution for an edge dislocation (Dundurs, 1969) with undrained
Poisson’s ratio. Both radial and angular components of the instantaneous displacement field are
presented in Figure 3. This solution, being the superposition of four singularities, is not conveniently
manipulable and will not be explicitly given here. A concise expression for the instantaneous volumetric
strain ✏0 can, however, be obtained by taking advantage of the 4-fold rotational symmetry and switching
to polar coordinates

✏0 = � V (1� 2 ⌫
u

)

2⇡ a2 (1� ⌫
u

)

1� ⇢4 cos (4 ✓)

1 + ⇢8 � 2 ⇢4 cos (4 ✓)
(12)

where ⇢ = r/a and ✓ is the polar angle, which has a branch cut along the positive x
1

-axis (0  ✓  2⇡),
see Figure 1. The instantaneous volumetric strain ✏0 is presented in Figure 4, the light blue region
lying between the ✏0 = 0 level curves corresponds to compression while the darker region lying outside
these curves correspond to dilation of the porous solid.
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(a) Radial displacement u

0
r, inner region (b) Angular displacement u

0
✓, inner region

(c) Radial displacement u

0
r, outer region (d) Angular displacement u

0
✓, outer region

Figure 3: Instantaneous displacement field

It can be shown, by integration of the previous expression, that a volume of solid �V 0

c

is instanta-
neously compressed in the inner region due to the insertion of the DD-dyad

ˆ
a

0

ˆ
2⇡

0

✏0 r d✓ dr = � 1� 2 ⌫
u

2 (1� ⌫
u

)
V

= ��V 0

c

On the contrary and as expected from the symmetry of Figure 4, the outer region is characterized by
a null mean volumetric strain

⌦
✏0
↵

⌦
✏0
↵
=

1

2⇡ r

ˆ
2⇡

0

✏0 r d✓

= ��V 0

c

⇡ a2
(1 + sign (a� r))

The 4-fold rotational symmetry of the solution is emphasized by writing the asymptotic expansion
of the displacement field (11). In the outer region, i.e. for ⇢ � 1, we have

u0

r

=
V

4⇡ (1� ⌫
u

) r
+

V

8⇡ a

n�1X

k=1

Pr

k

⇢4 k+1

cos (4 k ✓) +O �
⇢�4n+1

�
(13)

u0

✓

=
V

8⇡ a

n�1X

k=1

P✓

k

⇢4 k+1

cos (4 k ✓) +O �
⇢�4n+1

�
(14)

where the Pr

k

and P✓

k

are binomials of ⇢. When the DD-dyad is shrunk to a center of dilation, or
equivalently at large distance of it, only the first term of Eq. (13) remains and the classic elastic
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(a) In the inner region (b) In the outer region

Figure 4: Instantaneous volumetric strain ✏0 = "0
r

+ "0
✓

. The solid is compressed inside the ✏0 = 0 level
curve (light blue), and is dilated outside.

solution with undrained material parameters is recovered. Expressions similar to Eqs. (13) and (14)
can be obtained for the inner region, i.e. for ⇢ ⌧ 1.

The volume of solid instantaneously displaced in the outer region �V 0

s

= V ��V 0

c

can equivalently
be obtained by integration of the radial displacement over a circle of radius r. Using the asymptotic
expansion (13) for u0

r

and expanding the sum to infinity, one can show that this volume is independent
of the radius at which it is observed (for r � a)

�V 0

s

=

ˆ
2⇡

0

u0

r

r d✓

=
V

2 (1� ⌫
u

)

Actually, it appears that only the first term of the expansion, which also corresponds to the classic
elastic solution with undrained Poisson’s ratio, contributes to this integral.

These results express that only a fraction of the singularity strength is perceived in the outer region
and that a finite volume of porous solid is instantaneously compressed in the inner region. Since these
results are independent of a, they remain valid when the DD-dyad is shrunk to the center of dilation
and, therefore, explain the appearance of Poisson ratio in the classic Dougall solution. Furthermore,
because the pore pressure is allowed to return to its initial state, the compression of the inner region
naturally results in the expulsion of interstitial fluid which, by continuity, is injected in the outer
region. This diffusive precess, taking place for t > 0+, is investigated in the next section.

3.1.2 Transient Response

The instantaneous compression of the porous solid due to the insertion of the DD-dyad generates a non-
uniform increase of pore pressure and, therefore, leads to an interstitial flow. This diffusion process
is fully incorporated in the irrotational component �u

i

of the complete solution (9). According to
Detournay and Cheng (1987), the time-dependent part of the poroelastic edge dislocation is created
by the spatial derivative of a fluid source, also known as fluid dipole. Consequently, the transient part
of the solution for the DD-dyad results from the superposition of two pairs of equal and opposite fluid
dipoles, each characterized by an intensity equal to 2 ⌘ cD

n

and located at the tip of the DD-dyad,
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see Figure 2. The displacement field can, therefore, be expressed as

u
i

= u0

i

+�u
i

= u0

i

+ ⌘ c V Da

k

upc

ik

where u0

i

is the instantaneous part of the displacement, c.f. Eq. (11), and upc

ik

is the displacement due
to a continuous fluid dipole aligned with the x

k

-axis, see Appendix A.3.
Again, both the volume of solid displaced in the outer region and the volume of solid compressed

in the inner one can be evaluated. Because the undrained material is stiffer than the drained one,
the compressed volume �V

c

progressively increases while, simultaneously, the displaced volume �V
s

decreases in the same proportion such that V = �V
c

+�V
s

remains constant; eventually leading to

�V 1
c

=
1� 2 ⌫

2 (1� ⌫)
V

�V 1
s

=
V

2 (1� ⌫)

at large time, i.e. for t ! 1.
The variation of fluid content in the porous medium is given by

⇣ = ⌘ c V Da

k

⇣pc
k

(15)

and presented in Figure 5 for various values of the dimensionless time ⌧ = t/t⇤. Interstitial fluid is
expelled from the light blue regions lying between the ⇣ = 0 level curves, and absorbed by the darker
regions lying outside these curves. As the dimensionless time ⌧ increases, the region corresponding to
negative variation of fluid content grows progressively and, in time, covers entirely the regions that
were instantaneously compressed by the insertion of the DD-dyad, see Figure 4.

As seen in Figure 5, interstitial fluid is also gradually expelled from the inner region and, by
continuity, injected in the outer one. The corresponding volume of fluid V

f

, which can be be obtained
by integration of ⇣ over the disc of radius a, and the volume of solid �V

s

are presented in Figure 6 as
functions of ⌧ = t/t⇤. Beyond the fact that they exhibit a very similar time-dependency, we note that
the volume of fluid V

f

is bounded. Indeed, since the pore pressure is allowed to diffuse and regain its
initial state, the fluid volume gained (or lost) in a material element is related to the volume change of
that element by the relation ⇣1 = ↵ ✏1 for t ! 1. Therefore, we have

lim
t!1

V
f

= �
ˆ

2⇡

0

ˆ
a

0

⇣1 r dr d✓

= �↵

ˆ
2⇡

0

ˆ
a

0

✏1 r dr d✓

= ↵�V 1
c

(16)

which can also be written as V 1
f

= ⌘ V by definition of the poroelastic stress coefficient ⌘, see Eq. (7).
When the DD-dyad is shrunk to the center of dilation, the characteristic time t⇤ = a2/4 c goes to

zero and this volume of fluid appears to be instantaneously injected in the outer region. Mathematically,
this shrinking operation, obtained by taking the length a to zero, is equivalent to the application of
the Laplace operator to a continuous point fluid source. Indeed, considering for instance the variation
of fluid content given by Eq. (15), yields

⇣cc = ⌘ c V lim
a!0

Da

k

⇣pc
k

= ⌘ c V ⇣sc
,kk

since a fluid dipole is the spatial derivative of a fluid source, i.e. ⇣pc
k

= ⇣sc
,k

. Additionally, the variation of
fluid content must satisfies the diffusions equation ⇣sc

,t

�c ⇣sc
,kk

= � with � = � (x) H (t) for a continuous
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(a) ⌧ = 1 (b) ⌧ = 10 (c) ⌧ ! 1

(d) ⌧ = 1 (e) ⌧ = 10 (f) ⌧ ! 1

Figure 5: Variation of fluid content ⇣ in the inner and outer regions of the porous medium; interstitial
fluid is expelled from the light gray regions lying between the ⇣ = 0 level curves, and absorbed by the
darker regions lying outside these curves

point fluid source. Considering, moreover, that an instantaneous forcing function is the time derivative
of a continuous one (Cheng and Detournay, 1998), the former relation reduces to

⇣cc = V
f

�
⇣si � �

�
(17)

which expresses that the fluid V
f

= ⌘ V thought to be injected in the medium is actually withdrawn
from the point at which the center of dilation is introduced, thus preserving the volume of fluid present
in the porous medium.

3.2 Three-dimensional Solution

In 3D, the ring dislocation triad shown in Figure 7 is substituted for the center of dilation and the three
dislocation dipoles are seen as the limit of three, mutually orthogonal, continuous ring dislocations of
diameter 2 a and displacement discontinuity D

n

= V/3⇡ a2 (with D
n

> 0 for an opening discontinuity)
such that the volume instantaneously created by the singularity is V . The corresponding solution can,
therefore, be written as

u
i

=
V

3⇡ a2
(urc

i1

+ urc

i2

+ urc

i3

) (18)

where urc

ik

is the displacement field due to a continuous ring dislocation of radius a characterized by a
Burger vector parallel to the x

k

-axis. Again, the solution for the center of dilation can be recovered
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Figure 6: Volume of solid displaced by the DD-dyad in the outer region, V
s

, and total volume of fluid
expelled from the inner region, V

f

from this definition by shrinking the RD-triad, i.e. tending the length a to zero. It can indeed be
shown that the following relation holds

ucc

i

=
V

3
lim
a!0

1

⇡ a2
(urc

i1

+ urc

i2

+ urc

i3

)

=
V

3

�
udc

i11

+ udc

i22

+ udc

i33

�

by considering that the solution for a ring dislocation can be obtained by integration of a normal
displacement discontinuity over the disk circumscribed to this circle, see Appendix B.

Figure 7: Definition of the ring dislocation triad Figure 8: The three rings fluid dipole

By analogy to what has been done for the plane strain problem and from the definition of the
exploded singularity presented in Figure 7, two regions are identified: (i) an inner one, corresponding
to the sphere of radius a and which is not actually visible in the original representation of the centre of
dilation, and (ii) an outer one, consisting of the infinite porous medium complementary to the sphere.
This definition also preserve the two characteristic parameters r⇤ = a and t⇤ = a2/4 c.

Finally, the solution (18) is again decomposed in two components u0

i

and �u
i

, corresponding,
respectively, to the undrained response of the medium and the time-dependent component associated
with the diffusive process.
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3.2.1 Instantaneous Response

As it has already been emphasized, the instantaneous response of the medium is governed by Navier
equation with undrained material parameters and can, therefore, be obtained from the elastic solution
by substituting the Poisson’s ratio ⌫ with the undrained one ⌫

u

. Using the influence functions for
a circular dislocation loop originally derived by Paynter et al. (2007) in terms of Papkovich-Neuber
displacement potentials and then corrected by Gordeliy and Detournay (2011), the instantaneous
displacement field due to the insertion of the RD-triad is given by

u0

i

=
V

3⇡ a2

⇣
urc,0

i1

+ urc,0

i2

+ urc,0

i3

⌘
(19)

where urc,0

ik

is the elastic solution for a ring dislocation of radius a characterized by a Burger vector
parallel to the x

k

-axis. This solution being expressed in terms of the generalized Lipschitz-Hankel
integrals P

m,n,p

is not conveniently manipulable and will not be explicitly given here.
Similarly to what has been done for the plane strain configuration, one can identify a finite volume

of solid �V 0

c

, which is instantaneously compressed in the inner region by considering the volumetric
strain ✏0, see Figure 9. Indeed, switching to spherical coordinates (r, ✓,�) and considering the inner
asymptotic expansion of ✏0, we have

✏0 = � V (1� 2 ⌫
u

)

2⇡ a3 (1� ⌫
u

)
+

n�1X

k=1

⇢2 kF
k

(✓,�) +O �
⇢2n

�

where ⇢ = r/a ⌧ 1 and the coefficients F
k

are functions of the azimuthal and zenith angles ✓ =
arctan (x

2

/x
1

) and � = arccos (x
3

/r), only. It actually appears that the symmetry of the problem
guarantee these coefficients to be such that

ˆ
⇡

0

ˆ
2⇡

0

F
k

sin� d✓ d� = 0

for all k. The volume of solid instantaneously compressed in the inner region due to the insertion of
the RD-triad can, therefore, be obtained by expanding the series to infinity and integrating over the
sphere of radius a

�V 0

c

= �
ˆ

a

0

ˆ
⇡

0

ˆ
2⇡

0

✏0 a2 sin� d✓ d� dr

=
2 (1� 2 ⌫

u

)

3 (1� ⌫
u

)
V

The complement to this volume �V 0

s

= V ��V 0

c

, which represents the volume of solid displaced
by the singularity in the outer outer region, is again smaller than V meaning that only a fraction of
the singularity strength is perceived in the outer region. As already emphasized for the plane strain
problem, since these results are independent of a, they remain valid when the RD-triad is shrunk to
the center of dilation and, therefore, explain the appearance of Poisson ratio in the classic Dougall
solution.

3.2.2 Transient Response

In plane strain, it was mentioned that the time-dependent part of the poroelastic dislocation segment
is created by a pair of equal and opposite fluid dipoles. Similarly, it can be shown that the time-
dependent part of the poroelastic ring dislocation is created by a ring fluid dipole (Appendix B).
Consequently, the transient part of the solution for the RD-triad results from the superposition of
three, mutually orthogonal, rings fluid dipole characterized by an intensity equal to 2 ⌘ cD

n

, see
Figure 8. The displacement field can, therefore, be expressed as

u
i

= u0

i

+ 2 ⌘ cD
n

�
ubc

i1

+ ubc

i2

+ ubc

i3

�
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(a) Three-dimensional view of the re-

gion ✏

0
> 0

(b) Plane x1 = 0 (c) Plane x1 = a/2

(d) Plane x1 = a (e) Plane x1 = 3 a/2 (f) Plane x1 = 2 a

Figure 9: Instantaneous volumetric strain ✏0. The solid is compressed inside the ✏0 = 0 level curve
(light blue), and is dilated outside.

where u0

i

is the instantaneous part of the displacement, c.f. Eq. (19), and ubc

ik

is the displacement due
to a continuous ring fluid dipole of radius a with normal in the x

k

-direction.
The analogy with the plane strain problem is total, one can show that the volume �V

c

of compressed
solid increases progressively as interstitial fluid is expelled from the inner region, causing the volume
�V

s

of solid displaced in the outer region to decrease correspondingly. At large time, the excess of
pore pressure diffuse and these two volumes of solid eventually attain

�V 1
c

=
2 (1� 2 ⌫)

3 (1� ⌫)
V

�V 1
s

=
1 + ⌫

3 (1� ⌫)
V

for t ! 1. The variation of fluid content is again related to the volumetric strain by the relation
⇣1 = ↵ ✏1 and the volume of fluid expelled from the inner region can be evaluated using Eq. (16)
leading to V 1

f

= 4 ⌘ V/3.
When the RD-triad is shrunk to the center of dilation, this volume of fluid appears to be instan-

taneously expelled from the inner region and, by continuity, injected in the outer one. It can actually
be shown that this shrinking operation is, again, equivalent to the application of the Laplace operator

13



to a continuous point fluid source (see Appendix (B)) such that

⇣cc =
2

3
⌘ c V lim

a!0

1

⇡ a2
�
⇣bc
1

+ ⇣bc
2

+ ⇣bc
3

�

=
4

3
⌘ c V ⇣sc

,kk

and, therefore, leads to a relation similar to Eq. (17) with, in this configuration, V
f

= 4 ⌘ V/3. For
reasons similar to the one introduced in the previous section, one can conclude that the interstitial
fluid thought to be injected in the medium originates from the point at which the center of dilation is
introduced, the volume of fluid present in the porous solid remaining constant.

4 Cylindrical & Spherical Cavities

In the previous sections, it has been emphasized that a fraction of the singularity strength is “lost” by
compression of the inner region and that the volume of fluid seemingly injected in the medium is, in
fact, expelled from this region due to its compression. The limiting process that was used to derive
the solution for the center of dilation starting from Lamé solution for a circular or spherical cavity is,
therefore, inadequate and one must slightly adjust it in order to account for this behavior.

As an alternative to the original limiting process, one can impose a displacement discontinuity of
magnitude D

n

= V/4⇡ a2 at the interface between the sphere of radius a and the complementary
infinite medium presented in Figure 10, with a tending to zero. For the plane strain configuration,
a similar process can be applied to the disk and the complementary infinite medium presented in
Figure 11; the magnitude of the displacement discontinuity being D

n

= V/2⇡ a in this configuration.
For brevity and because the analogy between these two configurations is total, the details of this
process are only presented for the three-dimensional configuration.

Figure 10: Spherical cavity and the embedded
sphere (3D)

Figure 11: Cylindrical cavity and the embedded
cylinder (plane strain)

The inner and outer problems, respectively associated with the sphere and the spherical cavity, have
been considered individually and solved, in the Laplace domain, by superposition of two fundamental
loading modes: (i) a step change in radial stress �

rr

(a, t) = P
a

H (t) while maintaining the pore
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pressure constant, and (ii) a step change in pore pressure p (a, t) = p
a

H (t) while maintaining constant
radial stress. The details are presented in Appendix C. The solution associated with a constant
displacement discontinuity is, therefore, build by superposition of the two loading modes and both
radial stress P

a

and pore pressure p
a

are adjusted such that

ũe

r

(a, s)� ũi

r

(a, s) =
V s�1

4⇡ a2

where the tilde stand for the Laplace transform while the superscripts e and i refer to the outer and
inner solution, respectively. To close this problem, one must consider an additional condition; namely
that interstitial fluid expelled from the inner sphere is injected in the complementary infinite medium
through the surface of the spherical cavity

q̃e (a, s)� q̃i (a, s) = 0

where the radial flux is derived from Darcy’s law q̃ = � p̃
,r

with the permeability .
Solving this system of two equations for the radial stress P

a

and the pore pressure p
a

, the outer
solution exhibits a zero volumetric strain at both short and large time which is in accordance with the
classic Lamé solution. The time-dependence of the solution as well as its reliance on Poisson’s ratios
⌫ and ⌫

u

are, however, representative of a diffusive process that arises from the compression of the
sphere. This compression of the sphere, which is uniform at both short and long time

lim
s!0 or+1

s ✏̃i = � V
4

3

⇡ a3
2 (1� 2 ⌫̄)

3 (1� ⌫̄)

with ⌫̄ = ⌫
u

as s ! 1 and ⌫̄ = ⌫ as s ! 0, eventually leads to the expulsion of a finite volume of fluid
V
f

= 4 ⌘ V/3.
As the sphere is shrunk to a point, i.e. its radius a tends to zero, this volume of fluid appears to be

instantaneously injected in the complementary infinite medium and the sphere acts as an instantaneous
point fluid source. The compression of the sphere also explains the fact that only a fraction of the
singularity strength is perceived in the outer region and, therefore, the dependence of the solution for
the center of dilation on the Poisson’s ratios ⌫ and ⌫

u

. These conclusions are transposable to the plane
strain configuration for which the volume of fluid expelled from the inner region is V

f

= ⌘ V .

5 Summary & Conclusion

In this paper, the elastic center of dilation and its poroelastic counterpart have been investigated in
both three-dimensional and plane strain configurations. Comparison of the elastic nuclei of strain with
the classic Lamé solutions for cylindrical and spherical cavities lead to detect an apparent inconsistent
dependence on Poisson’s ratio of Dougall’s original solutions. In poroelasticity, the center of dilation
was seen to be associated with the unexpected injection of a finite volume of fluid at the instant of
loading.

To clarify these apparent paradoxes, two exploded views of this nucleus of strain have been consid-
ered and a compressed region was identified inside the singularity. As these alternative representations
of the singularity are contracted to one point, the influence of the compressed zone on the outer do-
main remains and is revealed by the presence of Poisson’s ratio in Dougall solution. This conclusion is
in contradiction with Love’s original intuition who stated that “The point must be in a cavity within

the body [...]” (1920) which would result in a solution similar to the degenerated Lamé solution and,
therefore, be independent of Poisson’s ratio.

In poroelasticity, this compression has an additional effect on the solution. A finite volume of fluid
is indeed expelled from the inner region and, by continuity, injected in the outer one. It is essential to
understand that the volume of interstitial fluid present in the porous medium is not increased by the
insertion of the center of dilation.
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Appendix

A Poroelastic Singularities

In this Appendix, some of the Green’s functions presented by Cheng and Detournay (1998) for quasi-
static isotropic poroelasticity are given. The following notations have been adopted

r = |x� �|
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and use of erf and erfc, respectively, to denote the error function and the complementary error function,
while E

1

(⌘) is the exponential integral (Olver et al., 2010)
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A.3 Continuous Fluid Dipole
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B Poroelastic Dislocation Loop

In both elasticity and poroelasticity, the solution for a dislocation loop can be obtained by integration
of the corresponding dislocation dipole over the region delimited by the loop. Let, for instance, consider
the poroelastic climb dislocation corresponding to the planar region D characterized by x

3

= cst. and
delimited by the curve @D. If the displacement jump is constant and equal to D

n

, one can express the
solution as

u
i

= D
n

¨
D
udc

i33

dA

where udc

ikl

is the displacement field due to the dislocation dipole E
ijkl

, see Appendix A.1.
The instantaneous component of the solution, u0

i

, is given by the undrained part of the dislocation
dipole and corresponds therefore to the elastic solution for the dislocation with undrained material
parameters. The time-dependent part of the solution, �u

i

, incorporates the diffusion process and is
given by the irrotational part of the dislocation dipole. At large time, i.e. as t ! 1, the diffusion
process dissipates and the elastic solution is recovered.

Plugging the definition (2) of the displacement discontinuity E
ijkl

in the diffusion equation (8) and
identifying the second derivative of a delta function �

,kl

(x) with a point fluid quadrupole ⇣sc
,kl

, it can
be shown that

⇣dc
kl

= 2 ⌘ c
�
⇣sc
,kl

� �
kl

⇣sc
,jj

�

such that the variation of fluid content due to the climb dislocation under consideration is given by

⇣ = �2 ⌘ cD
n

¨
D
⇣sc
,11

+ ⇣sc
,22

dA (B.1)

Using the divergence theorem, this surface integral can be converted to a contour integral

⇣ = �2 ⌘ cD
n

ˆ
@D

n ·r⇣sc ds

= �2 ⌘ cD
n

ˆ
@D

@⇣sc

@n
ds (B.2)
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where n = (n
1

, n
2

, 0) is the unit normal to the curve @D. Similarly, the transient part of the dislocation
dipole can be expressed in terms of point fluid quadrupoles such that

�u
i

= �2 ⌘ cD
n

ˆ
@D

@usc

@n
ds (B.3)

The last two equalities (B.2) and (B.3), which remain valid for any planar region D, express that
transient part of a poroelastic climb dislocation is equivalent to a loop of continuous point fluid dipoles
aligned with the normal n to the contour @D of the dislocation. Considering now these two equalities
in the plane strain context, it is straightforward that the time-dependent part of the poroelastic
dislocation segment is created by a pair of equal and opposite points fluid dipole of intensity 2 ⌘ c.

B.1 Ring Dislocation

We are interested in the poroelastic solution for the climb dislocation corresponding to the inner disk
cut % < a lying in the plane x

3

= 0 and characterized by the displacement jump

urc

33

�
%, 0+

�� urc

33

�
%, 0�

�
= D

n

H(a� %)

where %2 = x2

1

+ x2

2

and urc

ik

is the displacement field due to a continuous ring dislocation of radius a
characterized by a Burger vector parallel to the x

k

-axis.

Instantaneous Response Gordeliy and Detournay (2011) treated the elastic counterpart of this
Volterra dislocation; one can therefore obtain the instantaneous component of the solution by substi-
tuting the Poisson’s ratio ⌫ with the undrained one ⌫

u

. The volumetric strain instantaneously induced
by the opening of the ring dislocation is given by
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(B.4)

where K (z) and E (z) are the complete elliptic integrals of the first and second kind, respectively. At
the instant of loading, the variation of fluid content is zero and the pore pressure therefore reduces to
prc,0
3

= �↵M ✏rc,0
3

where M is the Biot modulus (Detournay and Cheng, 1993).

Transient Response From Eq. (B.2), it appears that the variation of fluid content due to a ring
dislocation is equivalent to the one induced by a ring fluid dipole of same radius. One can circumvent
the apparent absence (to the authors knowledge) of an explicit solution for the continuous ring fluid
dipole by considering its instantaneous counterpart and, then, use the fact that an instantaneous forcing
function is the time derivative of its continuous homologue. Using the solution for the instantaneous
point fluid source given in Appendix A.2 and following the integration path presented in Figure B.1
with r2 = x2

3

+ %2 + a2 � 2 a % cos ✓, yields
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where I
⌫

(z) is the modified Bessel function of the first kind of order ⌫.
Integration of the former expression with respect to time yields the solution for the continuous ring

fluid dipole such that

⇣rc
3

= 2 ⌘ cD
n

ˆ
t

0

⇣bi
3

dt

which, to the authors knowledge, does not have a closed form. Since the pore pressure induced by the
ring dislocation must eventually dissipates, it appears that the pore pressure due to the continuous
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Figure B.1: Integration path for the ring fluid dipole

ring fluid dipole pbc
3

=  ⇣bc
3

/c tends to counterbalance prc,0
3

, the one instantaneously induced by the
opening of the dislocation. The large time asymptotic of the ring fluid dipole is therefore given by

lim
t!1



c
⇣rc
3

= ↵M ✏rc,0
3

where ✏rc,0
3

is the volumetric strain instantaneously induced by the opening of the ring dislocation, see
Eq. B.4.

Considering now the limiting behavior, for a tending to zero, of a ring dislocation associated with
an opening D

n

= 1/⇡ a2 inversely proportional to the dislocation area. From Eqs. (B.1) and (B.2), it
appears that the ring fluid dipole tends to a set of two orthogonal point fluid quadrupoles

lim
a!0

1

⇡ a2
⇣bc
3

= ⇣sc
,11

+ ⇣sc
,22

Similar relations can be obtained for ring dislocation with Burger vectors parallel to the x
1

and x
2

-axis
such that

lim
a!0

1

⇡ a2
�
⇣bc
1

+ ⇣bc
2

+ ⇣bc
3

�
= 2 ⇣sc

,kk

C Cylindrical & Spherical Cavities

The approach presented here to solve the sphere and spherical cavity problems is similar to the one
followed by Detournay and Cheng (1993) to solve the cylinder and borehole problems in plane strain.
Both inner and outer problem are considered individually and solved, in the Laplace domain, by
superposition of two fundamental loading modes: (i) a step change in radial stress �

rr

(a, t) = P
a

H (t)
while maintaining the pore pressure constant, and (ii) a step change in pore pressure p (a, t) = p

a

H (t)
while maintaining constant radial stress. The solution obtained by Detournay and Cheng in plane strain
are also given in this appendix.

C.1 Interior

Due to the symmetry of the problem, the displacement field is irrotational and characterized by the
only non-zero component u

r

(r, t). The pressure and radial stress, given by

p = 2G
⌫
u

� ⌫

↵2 (1� 2 ⌫
u

) (1� 2 ⌫)
(⇣ � ↵ ✏) (C.1)

�
rr

= 2G "
rr

+ 2G
⌫
u

1� 2 ⌫
u

✏� ↵M ⇣ (C.2)
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respectively, are therefore functions of the the radius r, only. The volumetric strain reduces to

✏ =
@u

r

@r
+ 2

u
r

r

=
1

r2
@

@r

�
r2u

r

�
(C.3)

Moreover, if no fluid sources or body forces are present, the variation of fluid content satisfies the
homogeneous diffusion equation

@⇣

@t
� c

1

r2
@

@r

✓
r2

@⇣

@r

◆
= 0

and can be related to the volumetric strain through

@✏

@r
= �

@⇣

@r
(C.4)

where the loading efficiency is defined as

� =
⌫
u

� ⌫

↵ (1� 2 ⌫) (1� ⌫
u

)

Application of the Laplace transformation to the diffusion equation for ⇣ (to eliminate the time
derivative operator) yields

d2⇣̃

dr2
+

2

r

d⇣̃

dr
� s

c
⇣̃ = 0 (C.5)

where the tilde denotes the Laplace transform

⇣̃ (r, s) = L [⇣ (r, t)] =

ˆ 1

0

⇣ (r, t) e�s tdt

and s is the transform parameter. This differential equation has a general solution in terms of the
modified spherical Bessel functions of the first and second kinds. Introducing the two dimensionless
variables ⇢ = r/a and � = a

p
s/c where a is the radius of the cavity, we have

⇣̃ = C
1

i
0

(') + C
2

k
0

(')

where ' = ⇢ �, i
0

(z) and k
0

(z) are the modified spherical Bessel functions of first and second kind,
respectively, of order 0 (Olver et al., 2010). Due to the singular behavior of the functions k

⌫

(z) at the
origin, the constant C

2

must be set to zero for the inner problem.
The volumetric strain can, therefore, be deduced by integration of Eq. (C.4)

✏̃ = � C
1

i
0

(') + C
3

and the radial displacement is finally obtained by integration of Eq. (C.3)

ũ
r

=
a �

�
C

1

i
1

(') +
C

3

3
r +

C
4

r2

where i
1

(z) is the modified spherical Bessel functions of the first kind of order 1. The constant C
4

must be set to zero so that the displacement field is bounded at the origin while the constants C
1

and
C

3

are determined to satisfy the boundary conditions associated with the loading mode considered.

C.1.1 Mode 1 Loading

�
rr

(a, t) = P
a

and p (a, t) = 0
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is the uniform increase of pore pressure at t = 0+
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C.1.2 Mode 2 Loading
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C.2 Exterior

Because of the vanishing stress condition at infinity, the pore pressure uncouples from the stresses and,
therefore, satisfies a homogeneous diffusion equation. The Laplace transform of this equation is similar
to the diffusion equation for variation of fluid content Eq. C.5

d2p̃

dr2
+

2

r

dp̃

dr
� s

c
p̃ = 0
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The general solution is, therefore, again expressed in terms of the modified spherical Bessel functions
of the first and second kinds

p̃ = C
1

i
0

(') + C
2

k
0

(')

where ' = ⇢ �. Due to the unbounded behavior of the function i
0

(') for large ', the constant C
1

must be set to zero for the outer problem.
The volumetric strain can be deduced from the pore pressure field by integration of the relation
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⌘

G

@p

@r

which leads to
✏̃ =

⌘

G
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2

k
0

(') + C
3

Finally, the radial displacement can be obtained by integration of Eq. C.3
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= � a ⌘

�G
C

2

k
1

(') +
C

3

3
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where k
1

(z) is the modified spherical Bessel functions of the second kind of order 1. The constant C
3

must be set to zero so that the displacement field is bounded at large radius while the constants C
2

and
C

4

are determined to satisfy the boundary conditions associated with the loading mode considered.

C.2.1 Mode 1 Loading
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This mode of loading corresponds to the classic Lamé solution in elasticity which is associated with
a zero volumetric strain. Therefore, no diffusive process is generated and, consequently, the resulting
solution is independent of time.

C.2.2 Mode 2 Loading
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