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18Departamento de Astronomiá y Astrof́ısica, Universidad de Valencia, E-46100 Burjassot, Valencia, Spain

19College of Optical Sciences, University of Arizona, 1630 E. University Blvd, Tucson Arizona, 85721, USA

20Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya, 464-8601, Japan

21Department of Physics, University of Notre Damey, Notre Dame, IN 46556, USA

22Institute of Information and Mathematical Sciences, Massey University, Private Bag 102-904, North Shore Mail Centre,

Auckland, New Zealand

23Department of Physics, University of Auckland, Private Bag 92019, Auckland, New Zealand

24University of Canterbury, Department of Physics and Astronomy, Private Bag 4800, Christchurch 8020, New Zealand

25Mt. John Observatory, P.O. Box 56, Lake Tekapo 8770, New Zealand

26School of Chemical and Physical Sciences, Victoria University, Wellington, New Zealand

27Department of Physics, Konan University, Nishiokamoto 8-9-1, Kobe 658-8501, Japan

28Nagano National College of Technology, Nagano 381-8550, Japan

29Tokyo Metropolitan College of Industrial Technology, Tokyo 116-8523, Japan

30Department of Earth and Space Science, Osaka University, Osaka 560-0043, Japan

31Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa, Poland

32Universidad de Concepción, Departamento de Fisica, Casilla 160-C, Concepción, Chile

33Institute of Astronomy Cambridge University, Madingley Road, CB3 0HA Cambridge, UK

34Institut d’Astrophysique de Paris, UMR7095 CNRS–Université Pierre & Marie Curie, 98 bis boulevard Arago, 75014 Paris,
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ABSTRACT

Microlensing can provide a useful tool to probe binary distributions down to low-mass limits of

binary companions. In this paper, we analyze the light curves of 8 binary lensing events detected

through the channel of high-magnification events during the seasons from 2007 to 2010. The

perturbations, which are confined near the peak of the light curves, can be easily distinguished

from the central perturbations caused by planets. However, the degeneracy between close and

wide binary solutions cannot be resolved with a 3σ confidence level for 3 events, implying that

the degeneracy would be an important obstacle in studying binary distributions. The dependence

of the degeneracy on the lensing parameters is consistent with a theoretic prediction that the

degeneracy becomes severe as the binary separation and the mass ratio deviate from the values

of resonant caustics. The measured mass ratio of the event OGLE-2008-BLG-510/MOA-2008-

BLG-369 is q ∼ 0.1, making the companion of the lens a strong brown-dwarf candidate.

Subject headings: gravitational lensing: micro – binaries: general

1. Introduction

Microlensing can be used to probe the distributions of binary companions of Galactic stars as functions of

mass ratio and separation, which provide important observational constraints on theories of star formation.

Being sensitive to low-mass companions that are difficult to be detected by other methods, microlensing

enables to make complete distributions down to the low mass limit of binary companions (Gould 2001).

Despite the importance, the progress of this application of microlensing to the statistical analysis of

binaries has been stagnant. There are two main reasons for this. The first reason arises due to the difficulties

in estimating the detection efficiency of binary lenses. Previously, lensing events caused by binary lenses

were mainly detected through accidental detections of sudden rises and falls of the source flux resulting

from source crossings over caustics formed by binary lenses, e.g. Udalski et al. (1994), Alcock et al. (2000),

Jaroszyński, et al. (2004, 2006, 2010), and Skowron et al. (2007). The caustics represent the positions on

the source plane at which the lensing magnification of a point source becomes infinite. For binary events

detected through this channel, it is difficult to estimate the detection efficiency due to the haphazard nature
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of caustic crossings. The second reason is that microlensing is mainly sensitive to binaries distributed over

a narrow range of separations. The probability of caustic crossings increases with the increase of the caustic

size. The caustic size becomes maximum when the separation between the lens components is of order the

Einstein radius, θE, and decreases rapidly with the increase or decrease of the separation from θE. As a

result, the majority of microlensing binaries have separations distributed within a small range. This limits

especially the study of the distribution of binary separations.

However, under the current observational strategy of microlensing experiments focusing on planet de-

tections, a significant fraction of binary events are detected through a new channel of high-magnification

events. For the detections of short-duration planetary signals in lensing light curves, planetary lensing ex-

periments are being conducted in survey and follow-up mode, where alerts of ongoing events are issued by

survey experiments and intensive observations of these events are conducted by follow-up experiments. In

this mode, high-magnification events are the most important targets for follow-up observations because the

source trajectories of these events always pass close to the central perturbation region induced by the planet

and thus the efficiency of planet detections is very high (Griest & Safizadeh 1998). In addition, the time of

the perturbation can be predicted in advance and thus intensive follow-up can be prepared. This leads to

an observational strategy of intensively monitoring all high-magnification events regardless of whether they

show signals of planets.

In addition to planets, high-magnification events are sensitive to binaries as well, especially those with

separations substantially smaller (close binaries) or larger (wide binaries) than the Einstein radius. For

close binaries, there exist three caustics where one is formed around the center of mass of the binary and

the other two are located away from the barycenter. For wide binaries, on the other hand, there exist two

caustics each of which is located adjacent to the individual lens components. Then, high-magnification events

resulting from the source trajectories passing either close to the center of mass of a close binary or one of

the components of a wide binary are sensitive to binaries. The high sensitivity to close and wide binaries

combined with the strategy of monitoring all high-magnification events imply that binary events detected

through the high-magnification channel are important for the construction of an unbiased sample of binaries

with a wider range of separations and thus for the statistical studies of binaries (Han 2009).

In this paper, we analyze the light curves of 8 binary microlensing events detected through the high-

magnification channel during the seasons from 2007 to 2010. We search for the solutions of binary lensing

parameters by conducting modeling of the light curves. We discuss the characteristics of the binaries.

2. Observation

All 8 tested events analyzed in this work were detected toward the Galactic bulge direction. In Table

1, we list the coordinates of the events. Each event is designated first by the microlensing group who first

discovered the event and then followed by the year when the event was discovered. If an event is discovered

independently by two different groups, they are named separately. For example, the event OGLE-2008-BLG-

510/MOA-2008-BLG-368 was discovered by both OGLE and MOA groups in 2008. For all events, the peak

magnifications are high and thus they are issued as important targets for follow-up observations by the MOA

(Bond et al. 2001; Sumi et al. 2003) and OGLE (Udalski 2003) survey experiments. As a result, the peaks

of the light curves were densely covered by follow-up observations including the µFUN (Gould et al. 2006),

PLANET (Beaulieu et al. 2006), RoboNet (Tsapras et al. 2009), and MiNDSTEp (Dominik et al. 2010). In

Table 2, we list the survey and follow-up groups who participated in the observation of the individual events.
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In Table 3, we also list the telescopes used for observations along with their locations.

The photometry of the data was conducted by using the codes developed by the individual groups. For

some events, we re-reduced data based on the image subtraction method to ensure better photometry. The

error bars of the data sets were rescaled so that χ2/dof becomes unity for the data set of each observatory

where χ2 is computed based on the best-fit model.

In Figure 1 – 8, we present the light curves of the individual events. For all events, the common feature

of the light curves is that most of the light curve is consistent with the standard single-lens light curve

(Paczyński 1986) and the perturbation is confined in a narrow region around the peak.

3. Modeling

For the light curve of each event, we search for solutions of lensing parameters in the space encompassing

both stellar and planetary companions. The light curve of a binary-lens event is characterized by 6 basic

parameters. The first 3 parameters are related to the geometry of the lens-source approach. They are the

Einstein time scale, tE, the time of the closest lens-source approach, t0, and the lens source separation at that

moment, u0. The other 3 parameters are related to the binarity of the lens. These parameters are the mass

ratio between the lens components, q, the projected separation in units of the Einstein radius, s, and the

angle between the source trajectory and the binary axis, α. For all tested events, the perturbations exhibit

features caused either by crossings over or approaches close to caustics and thus it is required to consider the

modification of magnifications caused by the finite-source effect during the perturbation. This requires to

include an additional parameter of the normalized source radius, ρ⋆, which is related to the angular source

radius, θ⋆, and the Einstein radius by ρ⋆ = θ⋆/θE.

For each event, we search for the solution of the best-fit parameters by minimizing χ2 in the parameter

space. We do this by dividing the parameters into two categories. For the parameters in the first category,

grid searches are conducted. For the remaining parameters in the second category are searched by using a

downhill approach. We choose s, q, and α as the grid parameters because these parameters are related to

the features of lensing light curves in a complicated pattern while the other parameters are more directly

related to the features of the light curve. For the χ2 minimization, we use a Markov Chain Monte Carlo

method. Brute-force search over the space of the grid parameters is needed in order to investigate possible

local minima of degenerate solutions. This is important because it is known that there exists a pair of

close/wide solution for binary-lens events, especially for binaries with separations substantially smaller or

larger than the Einstein radius (Dominik 1999). Once local minima are identified, we check all of them by

gradually narrowing down the grid parameter space. When the space is sufficiently confined, we allow the

grid parameters to vary in order to pin down the exact location of the solution.

Computation of magnifications affected by the finite-source effect is based on the ray-shooting method

(Schneider & Weiss 1986; Kayser et al. 1986; Wambsganss 1997). In this numerical method, rays are uni-

formly shot from the image plane, bent according to the lens equation, and land on the source plane. Then,

the finite magnification is computed by comparing the number densities of rays on the image and source

planes. This method requires heavy computation because a large number of rays are needed for accurate

magnification computation. We accelerate the computation by using two major methods. The first method is

applying the “map making” method (Dong et al. 2006). In this method, a map for a given set of (s, q) is used

to produce numerous light curves resulting from different source trajectories instead of shooting rays all over

again. The second method is applying the semi-analytic hexadecapole approximation (Pejcha & Heyrovský
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2009; Gould 2008) for the finite magnification computation when the source is not very close to the caustic.

In computing finite magnifications, we consider the effect of limb-darkening of the source star surface

by modeling the surface brightness by

Sλ =
Fλ

πθ2⋆

[

1 − Γλ

(

1 −
3

2
cosφ

)]

(1)

where Γλ is the linear limb-darkening coefficient, Fλ is the flux from the source star, and φ is the angle

between the line of sight toward the source star and the normal to the source star’s surface. We choose the

coefficients from Claret (2000), where the source type is determined from the location of the source star on

the color-magnitude diagram. In Table 4, we present the coefficients of the individual events.

In addition to the modeling based on standard binary-lensing parameters, we conduct modeling con-

sidering the second-order effects on the light curve. The first effect is the “parallax effect” that is caused

by the change of the observer position induced by the orbital motion of the Earth around the Sun (Gould

1992; Alcock et al. 1995). The second effect is the “orbital effect” caused by the change of the lens position

induced by the orbital motion of the lens (Albrow et al. 2002; Shin et al. 2011; Skowron et al. 2011). Mea-

surement of the parallax effect is important because it allows to determine the physical parameters of the

lens system (Gould 1992). Detecting the orbital effect is important because it can help to characterize the

orbital parameters of the lens system.

4. Results

In Table 5, we present the best-fit parameters found from modeling. For each event, we present the pair

of close and wide binary solutions in order to show the severity of the degeneracy. The best-fit light curves of

the individual events are overplotted on the data in Figure 1 – 8. In Figure 9, we also present the geometry

of the lens systems. For each event, we present two sets of geometry corresponding to the close (left panel)

and wide (right panel) binary solutions. In each panel, the big and small dots represent the locations of the

binary lens components with heavier and lighter masses, respectively. The closed figure with cusps represents

the caustic and the straight line with an arrow represents the source trajectory with respect to the caustic.

The empty circle near the tip of the arrow on the source trajectory represents the source size. The dashed

circle represents the Einstein ring. For the close binary, there exists a single Einstein ring whose radius

corresponds to the total mass of the binary. For the wide binary, on the other hand, there exist two rings

with radii corresponding to the masses of the individual lens components. The small panel on the right side

of each main panel shows the enlargement of the region around the caustic. We find that the perturbations of

the events MOA-2008-BLG-159, MOA-2009-BLG-408, MOA-2010-BLG-349, and MOA-2010-BLG-546 were

produced by the source star’s crossing over the central caustic. For the events MOA-2007-BLG-146, OGLE-

2008-BLG-510/MOA-2008-BLG369, MOA-2010-BLG-266, and MOA-2010-BLG-406, on the other hand, the

perturbations were produced by the approach of the source trajectory close to one of the cusps of the central

caustic.

We find that the modeling including the parallax and orbital effects does not yield solutions with

statistically significant χ2 improvement. Considering that the range of the time scales of the events is

5 days . tE . 30 days, we judge that the difficulties in detecting the second-order effects are due to the

short time scales of the events. Since the lens parallaxes are not measured, we are not able to determine

the physical parameters of lenses. However, for 5 events we are able to measure the Einstein radii, which

is another quantity to constrain the physical lens parameters. The Einstein radius is measured from the
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deviation of the light curve caused by the finite-source effect. By detecting the deviation, the normalized

source radius ρ⋆ is measured from modeling. With the additional information of the source radius, which is

obtained from the location of the source star on the color-magnitude diagram of stars in the field around the

source star, the Einstein radius is determined as θE = θ⋆/ρ⋆ (Yoo et al. 2004). With the measured Einstein

radius, the relative lens-source proper motion is determined by µ = θE/tE. The values of the measured

Einstein radii and the proper motions are presented in Table 5. Among the 5 events for which the Einstein

radius is measured, 4 events are caustic-crossing events. For the case of MOA-2007-BLG-146, the center of

the source star did not cross the caustic but the edge of the source passed over the caustic and thus the

Einstein radius was measurable.

It is known that central perturbations, which are the common features for all analyzed events, can be

produced either by planetary companions or binaries (Albrow et al. 2002; Han & Gaudi 2008; Han 2009;

Han & Kim 2009). We find that the planet/binary degeneracy is easily distinguished and the binary origin

can be firmly identified. The range of the mass ratios is 0.1 . q . 0.73.1 We note that the event OGLE-2008-

BLG-510/MOA-2008-BLG-369 is caused by a binary with a low-mass companion. Although the absolute

value of the lens mass cannot be determined, the measured mass ratio q ∼ 0.1 makes the companion of the

binary a brown-dwarf candidate considering that the time scale of the event tE ∼ 27 days is a typical one

for Galactic bulge events caused by low-mass stars. Therefore, this event demonstrates that microlensing is

a useful tool to study low-mass binary companions including brown dwarfs. By the time of completing this

paper, we learned that Bozza et al. (2011) released the result of analysis for OGLE-2008-BLG-510/MOA-

2008-BLG-369. Their result is very consistent with ours and stated the possibility of the brown dwarf

companion.

Although the binary nature of the lenses is clearly identified, it is found that the degeneracy between

the close and wide binary solutions is severe for some events. The close/wide binary degeneracy, which

results from a symmetry in the lens equation, was first mentioned by Griest & Safizadeh (1998) and further

investigated by Dominik (1999). The events for which the degeneracy cannot be distinguished with a 3σ

confidence level include OGLE-2008-BLG-510/MOA-2008-BLG-369, MOA-2009-BLG-408, and MOA-2010-

BLG-546. The severity of the degeneracy and the correspondence in the lens-system geometry between

the pairs of degenerate solutions can be seen from the comparison of the geometry of the lens system at

the time of perturbation. As predicted by theoretical studies, the close/wide degeneracy is caused by the

similarity of the shape between the caustics of the close and wide binaries The caustic shape results from the

combination of the projected separation and mass ratio. To see how the severity of the degeneracy depends

on these parameters, we plot the locations of the degenerate solutions in the parameter space of s and q

in Figure 10. In the plot, the filled dots denote that the degeneracy is resolved at the 3σ confidence level

and the empty dots symbolize that the degeneracy is not resolved. The area encompassed by dashed lines

represents the region within which the lens forms a single merged large caustic (resonant caustic). From the

plot, it is found that the degeneracy becomes severe as the binary separation is located well away from the

range of resonant caustics. Therefore, the degeneracy would be an important obstacle in studying binary

distributions for binaries with very close or wide separations.

1In Table 5, the value of the mass ratio q > 1 represents the case where the source trajectory approaches the lighter

component of the binary.



– 9 –

5. Conclusion and Discussion

We conducted modeling of light curves of 8 binary lensing events detected through the high-magnification

channel during 2007 – 2010 seasons. We found that the binary/planet degeneracy of the central perturbations

were easily distinguished. However, the degeneracy between the close and wide binary solutions could not be

resolved with confidence for some of the events. We confirmed the theoretic prediction that the degeneracy

becomes severe for binaries with separations substantially smaller or wider than the Einstein radius and thus

the close/wide degeneracy would be an important obstacle in the studies of binary distributions. For one of

the events, the measured mass ratio is in the range of a brown dwarf, demonstrating that microlensing is a

useful tool to study low-mass binary companions.

Although it is difficult to draw meaningful statistical properties of binaries based on the handful events

analyzed in this work, it is expected that the microlensing use of binary statistics would expand. One

way for this improvement is the removal of human intervention in the selection process of a follow-up

campaign. An example of this effort is the SIGNALMEN anomaly detector achieved by the ARTEMiS

system (Dominik et al. 2007). Another way is conducting high-cadence surveys to dispense with follow-up

observations. Recently, the OGLE group significantly increased the observational cadence by upgrading its

camera with a wider field of view to the level of being able to detect short planetary perturbations by the

survey itself. The Korea Microlensing Telescope Network (KMTNet) is a planned survey experiment that

will achieve 10 minute sampling of all lensing events by using a network of 1.6 m telescopes to be located

in three different continents in the Southern hemisphere with wide-field cameras. These new type surveys

will enable not only to densely cover events but also to significantly increase the number of events in binary

samples. Being able to detect and densely cover binary events without human intervention combined with

the increased number of events will enable microlensing to become a useful method to study binary statistics.

Even with the increase of the number of events and the improvement of the process of obtaining sam-

ples, it is still an important issue to resolve the close/wide degeneracy. Han et al. (1999) proposed that

astrometric observation of the centroid motion of a lensed star by using a high-resolution instrument makes

it possible to resolve the ambiguity of the photometric binary-lens fit for most accidentally degenerate cases.

However, it is found that the close/wide binary degeneracy is so severe that it causes the image centroids of

the wide and close solutions to follow a similar pattern of motion although the motions of the image centroid

for the two degenerate cases are displaced from one another long after the event and thus the degeneracy can

eventually be resolvable (Han & Gould 2000). In addition, this method requires space-based astrometric

instrument and thus can not be applicable to events being detected by current lensing experiments. A class

of events for which the degeneracy can be photometrically resolved are repeating events where the source

trajectory passes both the central perturbation region of one of the binary components and the effective

lensing region of the other binary component, e.g. OGLE-2009-BLG-092/MOA-2009-BLG-137 (Ryu et al.

2010). However, this method can be applicable to a small fraction of events. Therefore, devising a general

method resolving this degeneracy would be crucial for the statistical binary studies of microlensing binaries.
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Fig. 1.— Light curve of the microlensing event MOA-2007-BLG-146. The upper panel shows the enlargement

of the region around the peak. The lensing parameters and the lens-system geometry corresponding to the

best-fit model light curve are presented in Table 5 and Fig. 10, respectively.
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Fig. 2.— Light curve of the microlensing event MOA-2008-BLG-159. Notations same as in Fig. 1.



– 14 –

Fig. 3.— Light curve of the microlensing event OGLE-2008-BLG-510/MOA-2008-BLG-369. Notations same

as in Fig. 1.
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Fig. 4.— Light curve of the microlensing event MOA-2009-BLG-408. Notations same as in Fig. 1.
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Fig. 5.— Light curve of the microlensing event MOA-2010-BLG-266. Notations same as in Fig. 1.
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Fig. 6.— Light curve of the microlensing event MOA-2010-BLG-349. Notations same as in Fig. 1.
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Fig. 7.— Light curve of the microlensing event MOA-2010-BLG-406. Notations same as in Fig. 1.
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Fig. 8.— Light curve of the microlensing event MOA-2010-BLG-546. Notations same as in Fig. 1.
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Fig. 9.— Geometry of lens systems responsible for the light curves presented in Fig. 1 – 8. For each event,

we present two geometries corresponding to the close (left panels) and wide (right panels) binary solutions.

The symbol ‘∗’ after the label ‘close’ or ‘wide’ indicates that the model is preferred over the other solution

with 3σ level. In each panel, the big and small filled dots represent the lens components with heavier and

lighter masses, respectively. The red closed figure represents the caustic and the straight line with an arrow

is the source trajectory. The dashed circle represents the Einstein ring. For the close binary, there is a

single ring and its radius is the Einstein radius corresponding to the total mass of the binary. For the wide

binary, on the other hand, there are two circles with their Einstein radii corresponding to the masses of the

individual lens components. The small panel on the right side of each main panel shows the enlargement of

the region around the caustic that caused perturbations.
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Fig. 10.— Binary solutions in the parameter space of (s, q). The filled circles denote that the degeneracy is

resolved with a 3σ confidence level and the empty circles symbolize the degeneracy is not resolved. Among

a pair of solutions with resolved degeneracy, we mark a ‘•’ sign inside a circle to indicate which solution is

preferred. The area encompassed by dashed lines represents the region within which the lens forms a single

merged large caustic.
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Table 1: Coordinates of Events

event RA DEC l b

MOA-2007-BLG-146 18h14m47s.72 -27◦57’26”.9 04◦01’59”.23 -05◦05’03”.08

MOA-2008-BLG-159 18h07m29s.18 -30◦09’49”.1 01◦19’22”.26 -04◦43’46”.96

OGLE-2008-BLG-510/MOA-2008-BLG-369 18h09m37s.65 -26◦02’26”.7 05◦10’23”.63 -03◦09’32”.98

MOA-2009-BLG-408 17h57m08s.01 -30◦44’18”.4 359◦43’27”.80 -03◦04’00”.48

MOA-2010-BLG-266 17h54m50s.84 -34◦15’40”.4 356◦25’32”.88 -04◦24’41”.22

MOA-2010-BLG-349 17h53m27s.65 -28◦24’43”.3 01◦20’01”.50 -01◦12’20”.74

MOA-2010-BLG-406 17h55m27s.52 -31◦38’55”.2 358◦45’20”.56 -03◦12’44”.82

MOA-2010-BLG-546 17h59m57s.69 -31◦35’32”.5 359◦16’57”.50 -04◦00’57”.13
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Table 2: Observatories

event MOA OGLE µFUN PLANET RoboNet MiNDSTEp

MOA-2007-BLG-146 Mt. John CTIO Canopus FTS

Auckland Perth LT

CCAO

FCO

Kumeu

Lemmon

SSO

VLO

MOA-2008-BLG-159 Mt. John CTIO SAAO FTN

Wise Canopus FTS

Bronberg LT

OGLE-2008-BLG-510/ Mt. John LCO CTIO SAAO FTN

MOA-2008-BLG-369 Canopus FTS

Perth LT

MOA-2009-BLG-408 Mt. John CTIO SAAO FTN La Silla

Wise Canopus FTS

Bronberg Perth LT

Lemmon

Teide

MOA-2010-BLG-266 Mt. John LCO CTIO SAAO FTN La Silla

Auckland Canopus FTS

Kumeu LT

MOA-2010-BLG-349 Mt. John LCO CTIO SAAO FTN

FCO Canopus FTS

Kumeu LT

MAO

Possum

Teide

VLO

MOA-2010-BLG-406 Mt. John LCO CTIO SAAO FTN La Silla

Canopus FTS

LT

MOA-2010-BLG-546 Mt. John LCO CTIO Canopus La Silla
LCO: Las Campanas Observatory; CTIO: Cerro Tololo Inter-American Observatory; CCAO: Campo Catino

Austral Observatory; FCO: Farm Cove Observatory; SSO: Southern Stars Observatory; VLO: Vintage Lane

Observatory; MAO: Molehill Astronomical Observatory; SAAO: South Africa Astronomy Astronomical Ob-

servatory; FTN: Faulkes North; FTS: Faulkes South; LT: Liverpool Telescope.
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Table 3: Telescopes

telescope location

MOA 2.0 m Mt. John New Zealand

OGLE 1.3 m Warsaw Las Campanas, Chile

µFUN 1.3 m SMART CTIO Chile

µFUN 0.4 m Auckland New Zealand

µFUN 0.4 m CCAO Chile

µFUN 0.4 m FCO New Zealand

µFUN 0.4 m Kumeu New Zealand

µFUN 1.0 m Lemmon Arizona

µFUN 0.4 m VLO New Zealand

µFUN 0.5 m Wise Israel

µFUN 0.4 m Bronberg South Africa

µFUN 0.8 m Teide Canary Islands, Spain

µFUN 0.3 m MAO New Zealand

µFUN 0.4 m Possum New Zealand

µFUN 0.3 m SSO Tahiti

PLANET 1.0 m SAAO South Africa

PLANET 1.0 m Canopus Australia

PLANET 0.6 m Perth Australia

RoboNet 2.0 m FTN Hawaii

RoboNet 2.0 m FTS Australia

RoboNet 2.0 m LT La Palma, Spain

MiNDSTEp 1.54 m Danish La Silla, Chile

Table 4: Limb-darkening Coefficients

event ΓV ΓR ΓI

MOA-2007-BLG-146 0.74 0.64 0.53

MOA-2008-BLG-159 0.57 0.48 0.40

OGLE-2008-BLG-510/MOA-2008-BLG-369 – – –

MOA-2009-BLG-408 0.65 0.56 0.47

MOA-2010-BLG-266 – – –

MOA-2010-BLG-349 0.65 0.58 0.48

MOA-2010-BLG-406 – – –

MOA-2010-BLG-546 0.68 0.59 0.49
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Table 5: Best-fit Model Parameters

event model χ2/dof t0 u0 tE s q α ρ⋆ θ⋆ θE µ

(HJD’) (days) (µas) (mas) (mas/yr)

MOA-2007-BLG-146 close 1550.7 4249.16 0.049 15.506 0.308 0.729 3.501 0.036 15.512 0.435 10.237

/1560 ±0.004 ±0.001 ±0.077 ±0.002 ±0.032 ±0.004 ±0.001 ±1.343 ±0.040 ±0.932

wide 1855.6 4249.13 0.053 14.081 5.785 3.279 3.480 0.038 16.013 0.433 10.960

/1560 ±0.003 ±0.001 ±0.070 ±0.025 ±0.077 ±0.001 ±0.001 ±1.387 ±0.040 ±0.998

MOA-2008-BLG-159 close 2407.3 4606.74 0.022 29.180 0.368 0.292 4.006 0.010 1.588 0.156 1.950

/2418 ±0.004 ±0.001 ±0.343 ±0.004 ±0.007 ±0.004 ±0.001 ±0.137 ±0.020 ±0.255

wide 2472.1 4606.66 0.020 32.221 4.486 0.747 3.947 0.009 1.545 0.169 1.911

/2418 ±0.005 ±0.001 ±0.379 ±0.056 ±0.029 ±0.004 ±0.001 ±0.134 ±0.022 ±0.250

OGLE-2008-BLG-510 close 1879.2 4688.67 0.057 21.531 0.315 0.099 1.191 – – – –

/MOA-2008-BLG-369 /1918 ±0.007 ±0.002 ±0.641 ±0.023 ±0.030 ±0.007 – – – –

wide 1878.1 4688.65 0.058 21.972 4.100 0.156 1.187 – – – –

/1918 ±0.006 ±0.002 ±0.654 ±0.471 ±0.068 ±0.008 – – – –

MOA-2009-BLG-408 close 1740.8 5041.20 0.006 13.769 0.228 0.493 5.597 0.004 0.955 0.263 6.975

/1729 ±0.002 ±0.001 ±0.543 ±0.006 ±0.037 ±0.009 ±0.001 ±0.083 ±0.076 ±2.013

wide 1740.0 5041.20 0.007 13.886 7.472 1.720 5.616 0.003 0.946 0.266 6.994

/1729 ±0.002 ±0.001 ±0.548 ±0.280 ±0.332 ±0.008 ±0.001 ±0.082 ±0.077 ±2.018

MOA-2010-BLG-266 close 4817.0 5348.85 0.167 14.632 0.583 0.234 1.186 – – – –

/4818 ±0.054 ±0.008 ±0.324 ±0.017 ±0.019 ±0.012 – – – –

wide 4837.4 5348.70 0.183 15.702 2.768 0.514 1.191 – – – –

/4818 ±0.032 ±0.009 ±0.348 ±0.099 ±0.063 ±0.013 – – – –
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Table 6: Table 5 continued

MOA-2010-BLG-349 close 7883.4 5377.92 0.034 24.695 0.299 1.562 3.546 0.010 4.713 0.458 6.775

/7946 ±0.003 ±0.001 ±0.193 ±0.001 ±0.034 ±0.002 ±0.001 ±0.408 ±0.060 ±0.882

wide 7909.6 5377.85 0.033 24.530 6.351 4.391 0.365 0.009 4.617 0.443 6.593

/7946 ±0.003 ±0.001 ±0.192 ±0.029 ±0.278 ±0.002 ±0.001 ±0.400 ±0.058 ±0.858

MOA-2010-BLG-406 close 2108.9 5388.13 0.161 5.359 0.570 0.515 1.024 – – – –

/2030 ±0.005 ±0.001 ±0.057 ±0.002 ±0.007 ±0.004 – – – –

wide 2020.4 5387.53 0.221 5.362 2.787 1.252 0.815 – – – –

/2030 ±0.007 ±0.004 ±0.083 ±0.018 ±0.039 ±0.003 – – – –

MOA-2010-BLG-546 close 462.1 5438.49 0.012 8.814 0.269 0.546 1.455 0.008 1.822 0.219 9.082

/458 ±0.003 ±0.001 ±0.164 ±0.004 ±0.035 ±0.008 ±0.001 ±0.158 ±0.033 ±1.347

wide 458.4 5438.50 0.015 9.305 6.102 1.618 1.411 0.008 1.777 0.214 8.396

/458 ±0.002 ±0.001 ±0.173 ±0.237 ±0.398 ±0.009 ±0.001 ±0.154 ±0.032 ±1.245

HJD′ = HJD − 2450000. For the wide binary solutions, the lensing parameters u0 and ρ⋆ are normalized by the radius of the Einstein

radius corresponding to the mass of the binary lens component that the source trajectory approaches close to. The Einstein time scale, tE,

and the Einstein radius, θE, are similarly normalized. We also note that q < 1 and q > 1 represent the cases where the source trajectory

approaches the heavier and lighter lens components, respectively. The Einstein radius is determined by θE = θ⋆/ρ⋆ where the angular radius

of the source star θ⋆ is measured based on the source brightness and color. For events where the perturbations do not result from caustic

crossings, the values of ρ⋆ and θE cannot be measured and thus are not presented.
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