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■ Models for minimal repair:

◆ Poisson process.

◆ Homogeneous Poisson process.

◆ Nonhomogeneous Poisson process.

■ Statistical inference:

◆ Role of statistical inference.

◆ Point estimation.

◆ Confidence-interval estimation.



Models for minimal repair

ULg, Liège, Belgium MECA0010 – Lecture 7 3 / 27



Poisson process
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■ Poisson process {N(t), t ≥ 0} with mean function m:

t
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◆ N(0) = 0.

◆ {N(t), t ≥ 0} has independent increments.

◆ for any 0 ≤ s < t, N(t)−N(s) is a r.v. with Poisson distribution with mean m(t)−m(s).
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■ The Poisson process {N(t), t ≥ 0} is homogeneous if the mean function m is of the form

m(t) = λt with λ a positive constant, that is, if the average number of failures occurring increases

linearly with the time interval under consideration.

■ For a homogeneous Poisson process {N(t), t ≥ 0} with mean function m, we have:

◆ the first time to failure obeys an exponential distribution with parameter λ.

◆ more generally, the lengths of time between consecutive failures {Xn, n ≥ 1} are statistically

independent and identically distributed with exponential distribution with parameter λ.

◆ the conditional probability distribution of the instants (T1, . . . , Tn) at which the system

suffers its first n failures given {N(t) = n} admits as a density

ρ(T1,...,Tn|N(t))(t1, . . . , tn|n) =
n!

t
1 (0 < t1 < . . . < tn < t) .
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■ Let {N(t), t ≥ 0} be a Poisson process with mean function m. If m is not of the form m(t) = λt
with λ a positive constant, then {N(t), t ≥ 0} is a nonhomogeneous Poisson process.

■ Let {N(t), t ≥ 0} be a nonhomogeneous Poisson process with mean function m. If there exists a

continuous function λ from R
+ into R

+ such that

m(t) =

∫ t

0

λ(s)ds,

then this function λ is called the (instantaneous) intensity.
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Nonhomogeneous Poisson process
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■ For a nonhomogeneous Poisson process {N(t), t ≥ 0} with (instantaneous) intensity λ, the first

time to failure T1 admits as a probability density function

ρT1
(t1) = exp

(
−
∫ t1

0

λ(s)ds

)
λ(t1).

Proof:

P (T1 > t1) = P (N(t1) = 0) = exp

(
−
∫ t1

0

λ(s)ds

)
(∫ t1

0

λ(s)ds

)0

0!

P (T1 ≤ t1) = 1− exp

(
−
∫ t1

0

λ(s)ds

)

ρ (t1) = exp

(
−
∫ t1

0

λ(s)ds

)
λ(t1).
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■ It can be shown that for a nonhomogeneous Poisson process {N(t), t ≥ 0} with (instantaneous)

intensity λ, the joint probability distribution of the instants (T1, . . . , Tn) at which the system

suffers its first n failures admits as a density

ρ(T1,...,Tn) (t1, . . . , tn) = exp

(
−
∫ tn

0

λ(s)ds

) n∏

i=1

λ (ti) 1 (0 < t1 < . . . < tn).

■ It can be shown that for a nonhomogeneous Poisson process {N(t), t ≥ 0} with (instantaneous)

intensity λ, the conditional probability distribution of the instants (T1, . . . , Tn) at which the

system suffers its first n failures given {N(t) = n} admits as a density

ρ(T1,...,Tn|N(t)) (t1, . . . , tn|n) =
n!(

−
∫ t

0
λ(s)ds

)n
n∏

i=1

λ (ti) 1 (0 < t1 < . . . < tn).
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■ Example: Duane’s power law model:

λ(t) =
β

αβ
tβ−1,

where it should be noted that λ is continuous on R
+ only if β ≥ 1.

The first time to failure obeys the probability density

ρT1
(t1) = exp

(
−
∫ t1

0

λ(s)ds

)
λ(t1)

= exp

(
− tβ1
αβ

)
β

αβ
tβ−1
1

=
β

α

(
t1
α

)β−1

exp

(
−
(
t1
α

)β
)
,

that is, a Weibull probability density function with parameters α and β.
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Role of statistical inference
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■ Previously, we looked at ways of stochastic modeling occurrences of failures, e.g., homogeneous

and nonhomogeneous Poisson processes.

■ What if we have data measured from the system failures and must infer a description of the

occurrences of failures in terms of a stochastic model?

■ This requires that we choose a stochastic model (e.g. homogeneous vs. nonhomogeneous

Poisson process) and determine the best choice of the parameters (e.g. parameter λ of

homogeneous Poisson process or parameters α and β of Duane’s power law model for

nonhomogeneous Poisson process).
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Role of statistical inference
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■ We will look at two parameter-estimation methods:

◆ point estimation by using method of maximum likelihood,

◆ confidence-interval estimation.

■ We will look at two model-selection methods:

◆ goodness-of-fit testing,

◆ trend testing.
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ULg, Liège, Belgium MECA0010 – Lecture 7 15 / 27

■ Within the following setting:

◆ data: samples x1, . . . , xν ,

◆ candidate stochastic model: probability density function ρX (x; θ1, . . . , θm), where

θ1, . . . , θm are the unknown parameters that must be estimated,

the method of maximum likelihood measures the plausability of the parameters given the data

samples by the likelihood

ℓ (θ1, . . . , θm) =
ν∏

i=1

ρX (xi; θ1, . . . , θm);

the point estimate (θ̂1, . . . , θ̂m) is then the value of the parameters that maximizes the likelihood:

(θ̂1, . . . , θ̂m) = arg max
(θ1,...,θm)

ℓ (θ1, . . . , θm)



Point estimation
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■ The maximum-likelihood point estimate (θ̂1, . . . , θ̂m) can be computed by solving

∂ℓ

∂θi
(θ̂1, . . . , θ̂m) = 0, 1 ≤ i ≤ m;

sometimes, it is easier to maximize the "loglikelihood"

∂ log ℓ

∂θi
(θ̂1, . . . , θ̂m) = 0, 1 ≤ i ≤ m.

■ It can be shown that the method of maximum likelihood has good properties in terms of

unbiasedness, consistency, efficiency, sufficiency, . . .
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■ For example, let us consider the following setting:

◆ data: samples x1, . . . , xν ,

◆ candidate stochastic model: Gaussian probability density function with unknown mean µ
and standard deviation σ that must be estimated ;

in this case, the likelihood reads as

ℓ (µ, σ) =

ν∏

i=1

1√
2πσ

exp

(
−1

2

(
xi − µ

σ

)2
)
,

so that the point estimate (µ̂, σ̂) is obtained by solving

∂ log ℓ

∂µ
(µ̂, σ̂) =

ν∑

i=1

(xi − µ̂)

σ̂2
= 0 and

∂ log ℓ

∂σ
(µ̂, σ̂) =

1

σ̂2

ν∑

i=1

(xi − µ̂)
2 − ν

σ̂
= 0,

thus leading to µ̂ =
1

ν

ν∑

i=1

xi and σ̂ =

√√√√1

ν

ν∑

i=1

(xi − µ̂)
2
.
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■ Suppose that we observe up to time t a trajectory of a homogeneous Poisson process. Then, the

setting is as follows:

◆ data: n, the number of failures in the interval [0, t], and t1, . . . , tn, the time instants at which

the system suffered these failures,

◆ candidate stochastic model: homogeneous Poisson process {N(t), t ≥ 0} with

unknown parameter λ to be estimated;

in this case, the likelihood reads as

ℓ (λ) = P (N(t) = n)ρ(T1,...,Tn|N(t)) (t1, . . . , tn|n)

= exp(−λt)
(λt)n

n!

n!

tn
1 (0 < t1 < . . . < tn < t) ,

so that with log ℓ(λ) = −λt+ n log (λt), the point estimate λ̂ is obtained by solving

∂ log ℓ

∂λ

(
λ̂
)
= −t+

n

λ̂
= 0,

thus leading to λ̂ =
n

t
·
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■ Suppose that we observe up to time t a trajectory of a nonhomogeneous Poisson process

whose (instantaneous) intensity follows a Duane power law. Then, the setting is as follows:

◆ data: n, the number of failures in the interval [0, t], and t1, . . . , tn, the time instants at which

the system suffered these failures,

◆ candidate stochastic model: nonhomogeneous Poisson process with unknown

parameters α and β to be estimated ;

in this case, the likelihood reads as

ℓ (λ) = P (N(t) = n)ρ(T1,...,Tn|N(t)) (t1, . . . , tn|n)

= exp

(
−
(
t

α

)β
)
(
t

α

)βn

n!

n!
(
t

α

)βn

n∏

i=1

β

α

(
ti
α

)β−1

so that the point estimate is obtained by solving
∂ log ℓ

∂α

(
α̂, β̂

)
= 0 and

∂ log ℓ

∂β

(
α̂, β̂

)
= 0,

which ultimately leads to
1

β̂
= log t− 1

n

n∑

i=1

log ti and log α̂ = log t− 1

β̂
log n.
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■ Within the following setting:

◆ data: samples x1, . . . , xν ,

◆ candidate stochastic model: probability density function ρX (x; θ1, . . . , θm), where

θ1, . . . , θm are the unknown parameters to be estimated,

the method of confidence interval estimation consists in setting a confidence level α and then

inferring from the data intervals

[
θ̂−1 , θ̂

+
1

]
, . . . ,

[
θ̂−m, θ̂+m

]
,

which are such that if the data samples were independent and identically distributed samples from

ρX (x; θ1, . . . , θm) with "true values" θ1, . . . , θm of the parameters, then these intervals would be

more than γ-likely to contain θ1, . . . , θm, that is,

P
(
θ1 ∈

[
Θ̂−

1 , Θ̂
+
1

]
, . . . , θm ∈

[
Θ̂−

m, Θ̂+
m

])
≥ γ.



Confidence interval estimation
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■ For example, let us consider the following setting:

◆ data: samples x1, . . . , xν ,

◆ candidate stochastic model: Gaussian probability density function with unknown

mean µ and known standard deviation σ;

in this case, the following interval is a γ-confidence interval for the unknown mean:

[
1

ν

ν∑

i=1

xi − c−1
N

(
1− γ

2
; 0, 1

) σ√
ν
,
1

ν

ν∑

i=1

xi + c−1
N

(γ
2
; 0, 1

) σ√
ν

]

where c−1
N ( · ; 0, 1) is the inverse of the cumulative distribution function of a Gaussian random

variable with mean 0 and standard deviation 1. Indeed, denoting ν statistically independent copies

of a Gaussian random variable with mean µ and standard deviation σ by X1, . . . , Xν , we have

that
1

ν

ν∑

i=1

Xi is a Gaussian random variable with mean µ and standard deviation
σ√
ν

, so that

P

(
1

ν

ν∑

i=1

Xi − c−1
N

(
1− γ

2
; 0, 1

) σ√
ν
≤ µ ≤ 1

ν

ν∑

i=1

Xi + c−1
N

(γ
2
; 0, 1

) σ√
ν

)
≥ γ.
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1

ν

ν
∑

i=1

xi − µ

σ/
√

ν

Probability density

c−1

N

(

1−

γ

2
; 0, 1

)

c−1

N

(γ

2
; 0, 1

)

γ

P

(
1

ν

ν∑

i=1

Xi − c−1
N

(
1− γ

2
; 0, 1

) σ√
ν
≤ µ ≤ 1

ν

ν∑

i=1

Xi + c−1
N

(γ
2
; 0, 1

) σ√
ν

)
≥ γ.
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■ Suppose that we observe up to time t a trajectory of a homogeneous Poisson process. Then, the

setting is as follows:

◆ data: n, the number of failures in the interval [0, t], and t1, . . . , tn, the time instants at which

the system suffered these failures,

◆ candidate stochastic model: homogeneous Poisson process {N(t), t ≥ 0} with

unknown parameter λ to be estimated ;

in this case, the following intervals are γ-confidence intervals:

[
0,

1

2t
c−1
χ2 (γ; 2(n+ 1))

]
,

[
1

2t
c−1
χ2 (1− γ; 2n) ,+∞

]
,

[
1

2t
c−1
χ2 ((1− γ)/2; 2n) ,

1

2t
c−1
χ2 ((1 + γ)/2; 2(n+ 1))

]
,

where c−1
χ2 ( · ;n) is the inverse of the cumulative distribution function of a χ2 random variable with

n degrees of freedom.
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Proof:

γ
?
≤ P

(
0 ≤ λt ≤ t

2t
c−1
χ2

(
γ; 2(N(t) + 1)

))

γ
?
≤ P

(
c(N(t);λt) ≥ c

(
N(t);

t

2t
c−1
χ2

(
γ; 2(N(t) + 1)

)))

γ
?
≤ P

(
c(N(t);λt) ≥ 1− cχ2

(
c−1
χ2

(
γ; 2(N(t) + 1)

)
; 2(N(t) + 1)

))

γ
!
≤ P

(
c(N(t);λt) ≥ 1− γ

)
,

where c( · ;m) is the cumulative distribution function of a Poisson random variable with parameter m ;

please note that the passage from the first to the second inequality holds because c(n; · ) is

monotically decreasing.
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Proof (continued):

c(n;m) = P (X ≤ n) where X is a Poisson random variable with

parameter m,

= 1− P (X ≥ n+ 1)

= 1− P (Tn+1 ≤ m) where Tn+1 is the time of the (n+ 1)-th

failure in a homogeneous Poisson process

with parameter 1,

= 1−
∫ m

0

1

n!
exp (−tn+1) (tn+1)

n

︸ ︷︷ ︸
gamma pdf with parameter n + 1 and 1

dtn+1

= 1−
∫ 2m

0

1

n!

1

2n+1
exp

(
−y

2

)
yndy

= 1− cχ2 (2m; 2(n+ 1)) ;

here, the fourth equality follows from the fact that the sum of n+ 1 statistically independent exponential

random variables with parameter 1 is a gamma random variable with parameters n+ 1 and 1.
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■ Suppose that we observe up to time t a trajectory of a nonhomogeneous Poisson process

whose (instantaneous) intensity follows a Duane power law. Then, the setting is as:

◆ data: n, the number of failures in the interval [0, t], and t1, . . . , tn, the time instants at which

the system suffered these failures,

◆ candidate stochastic model: nonhomogeneous Poisson process with unknown

parameters α and β to be estimated ;

in this case, the following intervals are γ-confidence intervals for β:

[
0,

β̂

2n
c−1
χ2 (γ; 2n)

]
,

[
β̂

2n
c−1
χ2 (1− γ; 2n) ,+∞

]
,

[
β̂

2n
c−1
χ2 ((1− γ)/2; 2n) ,

β̂

2n
c−1
χ2 ((1 + γ)/2; 2n)

]
;

it is more difficult to establish similar intervals for α.
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