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■ Stochastic expansion method:
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■ Stochastic expansion method:
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■ In this lecture, we assume that we deal with a problem of uncertainty quantification that involves a

numerical simulation that is computationally costly to run.

■ We will address the problem of constructing a surrogate model to serve as a computationally

inexpensive substitute for the numerical simulation in the uncertainty quantification.

■ A surrogate model, sometimes also called metamodel, is a model that mimics the relationship that

the numerical simulation establishes between its input and output variables while being

computationally less expensive.

■ For the accessibility of the presentation, we will consider a problem with only a single input variable:

y
︸︷︷︸

output variable

= g
︸︷︷︸

numerical simulation

( gxg
︸︷︷︸

input variable

) with g : R → R;

we assume that the input variable has been assigned a probability density function ρX ; in this

context, we will describe in the following the well-known nonintrusive stochastic projection

method for obtaining a surrogate model.

■ The method can be extended to problems with many input variables, as we will see at the end.
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■ The nonintrusive stochastic projection method involves the use of a polynomial surrogate model.

■ Conceptually, this polynomial surrogate model, which we denote by gp where the superscript p is

not an exponent but serves to distinguish the surrogate model from the numerical simulation as well

as to indicate its polynomial degree, is obtained by seeking the degree-p polynomial that approxi-

mates the numerical simulation as accurately as possible in ρX -weighted least-squares sense:

min
c0,c1,...,cp

1

2

∫

R

∣
∣
∣
∣
g(x)−

p
∑

α=0

cαx
α

∣
∣
∣
∣

2

ρX(x)dx,

gp(x) =

p
∑

α=0

cαx
α = c0 + c1x+ . . .+ cpx

p.

The presence of the probability density function ρX can be expected to result in the approximation

tending to be better for more highly probable values of the input variable.

■ However, the relationship that the numerical simulation establishes between the input and output

variables is typically not available in the form of a closed-form expression so that the integral in the

objective function cannot be evaluated exactly, thus calling for a numerical integration.
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■ A numerical integration, also called quadrature, is an approximation of an integral of a function over

a domain of integration that is usually taken as [−1, 1], usually in the form of a weighted sum of

evaluations of this function at specified points, also called nodes, in the domain of integration.

■ This notion of quadrature can be generalized by introducing a probability density function ρX , or

conceivably a more general weight function, into the integrand and by allowing the domain of

integration to be more general than [−1, 1]:
∫

R

f(x)ρX(x)dx ≈
λ∑

ℓ=1

wℓf(x
(ℓ)),

in which x(1), . . . , x(λ) denote the nodes and w1, . . . , wλ the corresponding weights. Please note

that only the function itself is evaluated at the nodes and the presence of the probability density

function is taken into account through the values of the nodes and the corresponding weights.

Different choices of the probability density function lead to different quadrature rules.

■ A λ-node Gauss quadrature for a PDF ρX is a quadrature in which the nodes and weights are set

up such that the quadrature is exact for all polynomials up to degree 2λ− 1:
∫

R

xαρX(x)dx =
λ∑

ℓ=1

wℓ(x
(ℓ))α, α = 0, . . . , 2λ− 1.
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■ Gauss quadrature rules can be read from tables in the literature for many “labeled” probability

density functions (uniform, Gaussian,. . . ) or computed otherwise (by solving the nonlinear system

of equations expressing the polynomial exactness to obtain the sought nodes and weights).

■ Nodes and weights of Gauss quadratures with 1, 3, 5, and 7 nodes for integration with respect to

PDF of uniform random variable with values in [−1, 1], also called Gauss–Legendre quadrature:
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■ Nodes and weights of Gauss quadratures with 1, 3, 5, and 7 nodes for integration with respect to

PDF of standard Gaussian random variable, also called Gauss–Hermite quadrature:
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■ Please note that the nodes are not equidistant.
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■ In the nonintrusive stochastic projection method, the integral in the objective function in the

least-squares polynomial approximation problem is approximated by means of Gaussian

quadrature to obtain the following discrete least-squares polynomial approximation problem:

min
c0,c1,...,cp

1

2

λ∑

ℓ=1

wℓ

∣
∣
∣
∣
g(x(ℓ))−

p
∑

α=0

cα(x
(ℓ))α

∣
∣
∣
∣

2

,

gp,λ(x) =

p
∑

α=0

cαx
α = c0 + c1x+ . . .+ cpx

p,

in which the minimization problem can be rewritten equivalently as follows:

min
c=(c0,c1,...,cp)

1

2
(y − [M ]c)T[W ](y − [M ]c),

with

y =






g(x(1))
...

g(x(λ))




 , [M ] =






1 (x(1)) (x(1))2 . . . (x(1))p

...
...

...
...

1 (x(λ)) (x(λ))2 . . . (x(λ))p




 , [W ] =






w1

. . .

wλ






■ Thus, in the nonintrusive stochastic projection method, the numerical simulation must be run for

those values of the input variable that correspond to the nodes of the Gaussian quadrature.
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■ The equivalent reformulation involving matrices and vectors paves the way for a numerical solution

by using computational linear algebra methods. The most widely used method is the method of

normal equations, in which the expression of the stationarity of the objective function,

1

2
(−[M ]δc)T[W ](y − [M ]c) +

1

2
(y − [M ]c)T[W ](−[M ]δc) = 0, for all δc in R

p+1,

leads to the so-called system of normal equations

[M ]T[W ][M ]c = [M ]T[W ]y,

which is then solved by using the Cholesky factorization of the system matrix as follows:

form the normal equations [M ]T[W ][M ]c = [M ]T[W ]y;

compute the Cholesky factorization [M ]T[W ][M ] = [R]T[R];

first solve [R]Td = [M ]T[W ]y and then solve [R]c = d.

Recall that the Cholesky factorization is a factorization of a positive definite matrix into the product

of the transpose of an upper triangular matrix and this upper triangular matrix. And recall that a

linear system involving a triangular matrix can be readily solved by using back-substitution.

■ To ensure well-posedness (positive definiteness of [M ]T[W ][M ]), the number of nodes in the

Gauss quadrature must be greater than or equal to the number of coefficients to be determined, that

is, λ ≥ p+ 1. Thus, when there is only a single input variable, the numerical simulation must

be run at least p+ 1 times in order to fit a polynomial surrogate model of degree p to it.
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■ It is interesting to analyze the aforementioned solution method more deeply because a deeper

analysis allows to make a link with an orthogonalization principle.

■ In fact, let us denote by [A] the inverse of the upper triangular matrix [R], that is,

[A] = [R]−1.

The matrix [A] is upper triangular. Since [M ]T[W ][M ] = [R]T[R], we have

[A]T[M ]T[W ][M ][A] = [I],

in which [I] is the identity matrix, an equation that can be rewritten equivalently as follows:

λ∑

ℓ=1

( α∑

α̃=0

(x(ℓ))α̃Aα̃α

)

wℓ

( β
∑

β̃=0

(x(ℓ))β̃Aβ̃β

)

= δαβ , 0 ≤ α, β ≤ p,

in which δαβ is the Kronecker delta equal to 1 if α = β and 0 otherwise. Assuming that λ ≥ p+ 1,

it follows from the polynomial exactness of the Gauss quadrature that
∫

R

α∑

α̃=0

Aα̃αx
α̃

β
∑

β̃=0

Aβ̃βx
β̃ρX(x)dx = δαβ , 0 ≤ α, β ≤ p.

In conclusion, the entries of [A] = [R]−1, that is, {Aαβ , 0 ≤ α ≤ β, 0 ≤ β ≤ p}, define a

collection of ρX -orthonormal polynomials of increasing degree as follows:

ψβ(x) =

β
∑

α=0

Aαβx
α

with

∫

R

ψα(x)ψβ(x)ρX(x)dx = δαβ , 0 ≤ α, β ≤ p.



Polynomial chaos expansion

ULg, Liège, Belgium Uncertainty quantification – Lecture 4 13 / 22

■ Since [R]c = d, we have cα =
∑p

β=0Aαβdβ , 1 ≤ α ≤ p, and therefore

gp,λ(x) =

p
∑

α=0

cαx
α =

p
∑

α=0

p
∑

β=0

Aαβdβ =

p
∑

β=0

dβ

p
∑

α=0

Aαβx
α =

p
∑

β=0

dβψβ(x).

This representation of the surrogate model, that is, its representation as an expansion in

polynomials that are of increasing degree and orthonormal in the inner product weighted with

respect to the probability density function of the input variable(s), is also called a polynomial chaos

expansion. The solution of [R]Td = [M ]T[W ]y provides precisely the coefficients d0, . . . , dp.

■ One of the advantages of the polynomial chaos expansion is that because the polynomials involved

in it are of increasing degree and ρX -orthonormal and thus

ψ0 = 1,

∫

R

ψβ(x)ρX(x)dx = 0, 1 ≤ β ≤ p,

∫

R

ψα(x)ψβ(x)ρX(x)dx = δαβ , 1 ≤ α, β ≤ p,

its coefficients provide approximations to the mean and the variance of the output variable:

y ≈ yp,λ =

∫

R

gp,λ(x)ρX(x)dx = d0,

σ2
Y ≈ (σp,λ

Y )2 =

∫

R

(
gp,λ(x)− yp

)2
ρX(x)dx =

p
∑

β=1

d2β .

In the multivariate case, the coefficients provide approximations to the variance-based sensitivity

indices.
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■ Another advantage of the polynomial chaos expansion is that for certain “labeled” probability density

functions (uniform, Gaussian,. . . ), the sequence of polynomials that are of increasing degree and

orthonormal in the inner product weighted with respect to it can be read from tables in the literature.

Examples are cases wherein X is a standard Gaussian random variable (Hermite polynomials) or

X is a uniform random variable with values in [−1, 1] (Legendre polynomials):

−5 −2.5 0 2.5 5
−5

−2.5

0

2.5

5

x [−]

ψ
α(x

) 
[−

]

Hermite polynomials

ψ0 = 1
ψ1 = x

ψ2 = 1√
2
(x2 − 1)

−1 −0.5 0 0.5 1
−5

−2.5

0

2.5

5

x [−]

ψ
α(x

) 
[−

]

Legendre polynomials

ψ0 = 1
ψ1 =

√
3x

ψ2 =
√
5
(
3
2x

2 − 1
2

)

■ If a closed form expression is available for the polynomials ψ0, . . . , ψp, the coefficients d0, . . . , dp
can be evaluated by rewriting the equation [R]Td = [M ]T[W ]y equivalently as follows:

dβ =

p
∑

α=0

Aαβ

λ∑

ℓ=1

(x(ℓ))αwℓg(x
(ℓ)) =

λ∑

ℓ=1

wℓg(x
(ℓ))ψβ(x

(ℓ)), 0 ≤ β ≤ p.
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■ The numerical solution of discrete least-squares polynomial approximation problems can be

sensitive to numerical errors (notorious issue of ill-conditioning of the Vandermonde matrix, the

normal equations,. . . ). The accuracy of the numerical solution can be improved through a

normalization that involves constructing the surrogate model in terms of a normalized input variable

obtained by subtracting from the input variable its mean and dividing by its standard deviation:

min
c0,c1,...,cp

1

2

λ∑

ℓ=1

wℓ

∣
∣
∣
∣
g(x(ℓ))−

p
∑

α=0

cα

(
x(ℓ) − x

σX

)α∣
∣
∣
∣

2

,

gp,λ(x) =

p
∑

α=0

cαx
α = c0 + c1

(
x− x

σX

)

+ . . .+ cp

(
x− x

σX

)p

.

■ An alternative method for obtaining a polynomial surrogate model is the so-called stochastic

collocation method, which uses Lagrange polynomial interpolation:

gλ(x) =
λ∑

ℓ=1

g(x(ℓ))lℓ(x), lℓ(x) =
∏

1≤k≤λ
k 6=ℓ

x− x(k)

x(ℓ) − x(k)
, 1 ≤ ℓ ≤ λ,

where x(1), . . . , x(λ) still denote the nodes of the λ-node Gauss quadrature. When there is only a

single input variable and a Gauss quadrature with λ = (p+ 1) nodes is used in order to fit a

polynomial surrogate model of degree p, the nonintrusive stochastic projection method and the

stochastic collocation method coincide (up to errors stemming from the numerical implementation).
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■ The nonintrusive stochastic projection method and the stochastic collocation method can be

extended to problems involving multiple input variables through the use of multivariate polynomials

and the use of tensorized Gauss quadrature:

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x1,ℓ [-]

x
2
,ℓ

[-
]

Full tensorization.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x1,ℓ [-]

x
2
,ℓ

[-
]

Sparse-grid tensorization.

Thus, when there are d input variables and a fully tensorized Gauss quadrature is used, the

numerical simulation must be run at least (p+ 1)d times in order to fit a polynomial surrogate

model of degree p to it. We can see that in the multivariate case, the computational cost of the

construction of the surrogate model grows exponentially with the number of input variables. This

issue is known in multivariate approximation theory as the so-called curse of dimensionality.

■ Within the present state of the art, the Monte Carlo method is used for problems with high number

of input variables (high dimension) and stochastic expansion methods involving surrogate models

for problems with low to moderate number of input variables (low to moderate dimension).
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■ Simple implementation for g(x) = 1/(1+25x2) and ρX PDF of uniform r.v. with values in [−1, 1]:

p=2; % lambda=p+1

% https://en.wikipedia.org/wiki/Gaussian
−
quadrature

xell=[-sqrt(3/5);0;sqrt(3/5)];

well=[2.5/9;4/9;2.5/9];

M=repmat(xell,[1 p+1]).ˆrepmat([0:p], [p+1 1]);
G=M’*diag(well)*M;

R=chol(G);

d=R’\(M’*diag(well)*(1./(1+25*xell.ˆ2)));
c=R\d;

figure;hold on;

plot([-1:0.01:1],1./(1+25*[-1:0.01:1].ˆ2),’g-’);
plot([-1:0.01:1],polyval(c(end:-1:1),[-1:0.01:1]),’r-’);
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Here we are now. . .
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GF ED@A BCProblem
definition

��
Sensitivity analysis.
Design optimization.

Model validation.

GF ED@A BCAnalysis
of uncertainty

33

✕

✍

✆

②
♦

❤

UQ
GF ED@A BCCharacterization

of uncertainty

uu

Mechanical modeling.
Statistics.

GF ED@A BCPropagation
of uncertainty

TT

Monte Carlo sampling.
Stochastic expansion (polynomial chaos).

·

·
• Intervals.

• Gaussian.

• Γ distribution.

. . .

blanc

blanc

The computational cost of stochastic methods can be lowered

via the use of a surrogate model as a substitute for a numerical simulation or real tests.
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