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■ Recall that if the transformation g is nonlinear, then the probability density function of the uncertain
input variables must be known in order to be able to determine statistical descriptors of the
uncertainty induced in the output variable.

■ The maximum entropy principle is a method for constructing a probability density function for the
input variables on the basis of the information that is available about their uncertainty.
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Entropy of a discrete random variable
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■ Context: Let X be a discrete random variable that can take the values {x1, . . . ,xn}. Let these
values x1, . . . ,xn occur with probabilities p1, . . . , pn, that is,

PX(xj) = pj , 1 ≤ j ≤ n, 0 ≤ p1, . . . , pn ≤ 1, p1 + . . .+ pn = 1.

■ Intuition: If pi = 1 and pj = 0 for i 6= j, there is “no uncertainty.” If p1 = p2 = . . . = pn = 1/n,
there is “maximal uncertainty.”

■ Shannon’s axioms for gauging the “amount of uncertainty:”

(i) (p1, . . . , pn) 7→ sn(p1, . . . , pn) is continuous from [0, 1]n into R.
(ii) If p1 = p2 = . . . = pn = 1

n , then n 7→ sn
(
1
n , . . . ,

1
n

)
is monotonically increasing.

(iii) sn(p1, . . . , pn) is symmetric in p1, . . . , pn.
(iv) sn(p1, . . . , pn) = sn−1(p1 + p2, p3, . . . , pn) + (p1 + p2)s2

(
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■ There exists one and only one function that satisfies the requirements (i)-(iv), namely,

sn(p1, . . . , pn) = −
n∑

j=1

pj log(pj), 0 log(0) = 0.

Here, sn is called the Shannon entropy associated with p1, . . . , pn.

◆ sn(p1, . . . , pn) ≥ 0.

◆ max0≤p1,...,pn≤1 sn(p1, . . . , pn) = log(n).

◆ snm(P(X,Y )) ≤ sn(PX) + sm(PY ).

◆ snm(PX × PY ) = sn(PX) + sm(PY ).

C. Shannon. A mathematical theory of communication. Bell System Technical Journal, 27:379-423, 1948.
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■ Let X be a random variable with values in R
n. Let X admit a probability density function ρX , that

is, for any meaningful subset B of Rn, we have PX(B) =
∫

B
ρX(x)dx. Then, the Shannon

entropy associated with ρX , denoted by s(ρX), is defined as follows:

s(ρX) = −
∫

Rn

ρX(x) log
(
ρX(x)

)
dx.

◆ −∞ < s(ρX) < +∞.
◆ snm(P(X,Y )) ≤ sn(PX) + sm(PY ).
◆ snm(PX × PY ) = sn(PX) + sm(PY ).

The entropy of a continuous random variable is not necessarily positive, and it depends on the
coordinate system.
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Sources of available information
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■ Data in the form of either new experimental results or higher fidelity models.

■ Mechanical and physical constraints imposed by applicable mechanical and physical laws:

◆ positiveness and symmetry of mechanical properties involved in constitutive equations,

◆ positiveness and symmetry of reduced matrices involved in reduced-order models,

◆ causality and stability properties of dynamical systems,

◆ . . .

Consistency with mechanics and physics requires the assignment of a vanishing probability to those
values of the uncertain features that do not satisfy the mechanical and physical constraints.

■ Other sources of information can also contribute to the available information. The combined
information provided by the mechanical and physical constraints and these other sources of
information is often referred to as the prior information.
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General formulation
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■ The maximum entropy principle allows probability distributions to be constructed in a manner that is
consistent with the available information.

■ The maximum entropy principle consists in choosing, out of all probability distributions consistent
with a given set of constraints, the one that has maximum entropy.

■ E. Jaynes. Information theory and statistical mechanics. The Physical Review, 106:620-630, 1957.



Formulation involving moment constraints

ULg, Liège, Belgium Uncertainty quantification – Lecture 3 13 / 41

■ We consider cases wherein

◆ the support of ρX is given, that is, a subset K of Rn is given such that

ρX(x) = 0 for x /∈ K,
◆ m generalized moments are given, written as

∫

Rn

gj(x)ρX(x)dx = gj , j = 1, . . . ,m.

Thus, here, the support K and the m generalized moments described by g1, . . . , gm and
g1, . . . , gm constitute the available information.

■ The probability density function ρX is obtained by solving the optimization problem

max
ρX∈Cad

s(ρX),
subject to: ∫

Rn

ρX(x)dx = 1,

∫

Rn

gj(x)ρX(x)dx = gj , j = 1, . . . ,m,

in which Cad = {ρX : ρX(x) = 0 for x /∈ K}.
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■ This optimization problem can be readily solved using the method of the Lagrange multipliers:

◆ First, the Lagrangian is formed as follows:

L(ρX , λ0,λ1, . . . ,λm) = s(ρX)−(λ0−1)

(∫

Rn
ρX(x)dx−1

)

−

m
∑

j=1

λT
j

(∫

Rn
gj(x)ρX(x)dx−gj

)

.

◆ Subsequently, stationarity is expressed as follows:

δL =

∫

Rn

(

− log
(
ρX(x)

)
− 1− (λ0 − 1)−

m∑

j=1

λT
j gj(x)

)

δρX(x)dx

−
(∫

Rn

ρX(x)dx− 1

)

δλ0 −
(∫

Rn

gj(x)ρX(x)dx− gj

)T

δλj = 0,

thus leading to

(i) − log
(
ρX(x)

)
− 1− (λ0 − 1)−

∑m
j=1 λ

T
j gj(x) = 0,

(ii)
∫

Rn ρX(x)dx− 1 = 0,
(iii)

∫

Rn gj(x)ρX(x)dx− gj = 0.

◆ Finally, the solution to the constrained optimization problem is obtained from (i) as follows:

ρX(x) = 1K(x) exp

(

− λ0 −
m∑

j=1

λT
j gj(x)

)

,

in which λ0 and λ1, . . . ,λm have to be determined in such a way that (ii) and (iii) are fulfilled.
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Examples
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■ Support ]−∞,+∞[, mean given, variance given:

◆ We have to solve the following optimization problem:

max s(ρX),
subject to

∫

R

ρX(x)dx = 1,

∫

R

xρX(x)dx = mX ,

∫

R

(x−mX)2ρX(x)dx = σ2
X .

◆ Applying the method of the Lagrange multipliers, we obtain

ρX(x) = exp
(
− λ0 − λ1x− λ2(x−m2

X)
)
.

◆ After using the constraints to determine the values of λ0, λ1, and λ2, we obtain

ρX(x) =
1√

2πσX
exp

(

− (x−mX)2

2σ2
X

)

,

that is, we obtain the Gaussian probability density function with meanmX and variance σ2
X .
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■ Support ]0,+∞[, mean given, log-mean given:

◆ We have to solve the following optimization problem:

max
ρX∈Cad

s(ρX),

subject to ∫
R

ρX(x)dx = 1,

∫
R

xρX(x)dx = mX ,

∫
R

log(x)ρX(x)dx = cX ,

with Cad = {ρX : ρX(x) = 0 if x /∈ R
+
0 }.

◆ Applying the method of the Lagrange multipliers, we obtain

ρX(x) = 1
R

+
0
(x) exp

(
− λ0 − λ1x− λ2 log(x)

)
.

◆ After using the constraints to determine the values of λ0, λ1, and λ2, we obtain

ρX(x) = 1
R

+
0
(x)

1

mX

(
1

δ2X

) 1

δ2
X 1

Γ( 1
δ2
X

)

(
x

mX

) 1

δ2
X

−1

exp

(

− x

δ2XmX

)

;

we obtain the gamma probability density function with mean mX and dispersion level δX .
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■ Support ]a, b[, mean given:

◆ We have to solve the following optimization problem:

max
ρX∈Cad

s(ρX),

subject to
∫

R

ρX(x)dx = 1,

∫

R

xρX(x)dx = mX ,

with Cad = {ρX : ρX(x) = 0 if x /∈]a, b[}.

◆ Applying the method of the Lagrange multipliers, we obtain

ρX(x) = 1]a,b[(x) exp
(
− λ0 − λ1x

)
,

where λ0 and λ1 have to be determined numerically using the constraints.



Conclusion and references
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■ blanc

■ The maximum entropy principle allows probabilistic models consistent with mechanical and physical
constraints to be constructed in a wide variety of engineering applications, including reduced-order
models for the dynamical behavior of structures, mistuned bladed disks, rigid body mechanics and
robotics, soil structure interaction, fluid dynamics, among others.

■ E. Capiez-Lernout and C. Soize. Nonparametric modeling of random uncertainties for dynamic
response of mistuned bladed disks. Journal of Engineering for Gas Turbines and Power, 2004.

■ M. Arnst, D. Clouteau, H. Chebli, R. Othman, and G. Degrande. A non-parametric probabilistic
model for ground-borne vibrations in buildings. Probabilistic Engineering Mechanics, 2005.

■ A. Batou and C. Soize. Rigid multibody system dynamics with uncertain rigid bodies. Multibody
System Dynamics, 2012.

■ J. Guilleminot and C. Soize. On the Statistical Dependence for the Components of Random
Elasticity Tensors Exhibiting Material Symmetry Properties. Journal of Elasticity, 2012.
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Motivation
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What are the most significant sources of uncertainties and errors?

Where to direct efforts aimed at improving predictions?



Motivation
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Engineering design.

Sensitivity of performance with respect to manufacturing tolerances?
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■ Motivation.

■ Outline.

■ Context.

■ Variance-based sensitivity analysis.

■ Example: Metal forming.

■ References.
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Model problem

z
︸︷︷︸

output variable

= g
︸︷︷︸

function

(gxg, gyg
︸ ︷︷ ︸

input variables

).

Let x and y be uncertain (e.g., imperfect knowledge at design time, imperfect manufacturing when
compared to the design,. . . ).

Let us note that we consider only two input variables only for the sake of the simplicity of the system of
notation. All the methods described later can be extended without difficulty to problems involving an
arbitrary number of input variables.
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Introduction to sensitivity analysis

■ There exist many types of sensitivity analysis:

◆ elementary effects:

g(x+∆x, y)− g(x, y)

∆x
and

g(x, y +∆y)− g(x, y)

∆y
,

◆ differentiation-based sensitivity analysis,

∂g

∂x
(x, y) and

∂g

∂y
(x, y),

◆ regression analysis,

z = g(x, y) ≈ c00 + c10x+ c01y + c20x
2 + c11xy + c02y

2 + . . . ,

◆ correlation analysis,

◆ methods involving scatter plots,

◆ . . .
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Sensitivity analysis of uncertainties

■ In a context wherein the input variables are uncertain, new types of question can be asked.

■ For example, one can ask which one of the uncertain input variables is most significant in inducing
uncertainty in the output variable?

■ Such new questions lead to new types of sensitivity analysis, such as variance-based sensitivity
analysis. . .



Variance-based sensitivity analysis
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Problem setting
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■ Characterization of uncertainty:

◆ Two statistically independent sources of uncertainty modeled as two statistically independent
random variables X and Y with probability distributions PX and PY :

(X,Y ) ∼ PX × PY .
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■ Characterization of uncertainty:

◆ Two statistically independent sources of uncertainty modeled as two statistically independent
random variables X and Y with probability distributions PX and PY :

(X,Y ) ∼ PX × PY .

■ Propagation of uncertainty:

◆ We assume that the relationship between the sources of uncertainty and the predictions is
represented by a nonlinear function g:

Sources of uncertainty
(X,Y )

→ Problem
Z = g(X,Y )

→ Prediction
Z
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Z ∼ PZ = (PX × PY ) ◦ g−1.
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■ Characterization of uncertainty:

◆ Two statistically independent sources of uncertainty modeled as two statistically independent
random variables X and Y with probability distributions PX and PY :

(X,Y ) ∼ PX × PY .

■ Propagation of uncertainty:

◆ We assume that the relationship between the sources of uncertainty and the predictions is
represented by a nonlinear function g:

Sources of uncertainty
(X,Y )

→ Problem
Z = g(X,Y )

→ Prediction
Z

◆ The probability distribution PZ of the prediction is obtained as the image of the probability
distribution PX × PY of the sources of uncertainty under the function g:

Z ∼ PZ = (PX × PY ) ◦ g−1.

■ Sensitivity analysis:

◆ Is either X or Y most significant in inducing uncertainty in Z?



Geometrical point of view
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■ Least-squares-best approximation of function g with function of only one input:

◆ Assessment of the significance of the source of uncertainty X :

g∗X = argmin
f∗

X

∫∫
∣
∣g(x, y)− f∗X(x)

∣
∣
2
PX(dx)PY (dy).

◆ By means of the calculus of variations, it can be readily shown that the solution is given by

g∗X =

∫

g(·, y)PY (dy).

◆ In the geometry of the space of PX× PY -square-integrable functions, g∗X is the orthogonal
projection of function g of x and y onto the subspace of functions of only x:

• E{Z|X}

Z

X
L2
X



Geometrical point of view
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■ Expansion of function g in terms of main effects and interaction effects:

◆ Extension to assessment of significance of both sources of uncertainty X and Y :

g(x, y) = g0 + gX(x)
︸ ︷︷ ︸

main effect of X

+ gY (y)
︸ ︷︷ ︸

main effect of Y

+ g(X,Y )(x, y)
︸ ︷︷ ︸

interaction effect of X and Y

,

where

g0 =

∫∫

g(x, y)PX(dx)PY (dy),

gX(x) = g∗X(x)− g0 =

∫

g(x, y)PY (dy)− g0,

gY (y) = g∗Y (y)− g0 =

∫

g(x, y)PX(dx)− g0.

◆ Because they are obtained via orthogonal projection, the functions g0, gX , gY , and g(X,Y ) are
orthogonal functions.

◆ The property that g0, gX , gY , and g(X,Y ) are orthogonal provides a link with other expansions,
such as the polynomial chaos expansion.



Statistical point of view
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■ Sensitivity indices = mean-square values of main effects and interaction effects:

◆ Quantitative insight into the significance of X and Y in inducing uncertainty in Z :
∫∫

∣
∣g(x, y)− g0|2PX(dx)PY (dy)

︸ ︷︷ ︸

=σ2
Z

=

∫
∣
∣gX(x)

∣
∣
2
PX(dx)

︸ ︷︷ ︸

=sX

+

∫
∣
∣gY (y)

∣
∣
2
PY (dy)

︸ ︷︷ ︸

=sY

+

∫∫
∣
∣g(X,Y )(x, y)

∣
∣
2
PX(dx)PY (dy)

︸ ︷︷ ︸

=s(X,Y )

.

◆ Because gX , gY , and g(X,Y ) are orthogonal, there are no double product terms.

◆ Thus, the expansion of g (geometry) reflects a partitioning of the variance of Z into terms
that are the variances of the main and interaction effects of X and Y (statistics), where:

sX = portion of the variance of Z that is explained as stemming from X ,

sY = portion of the variance of Z that is explained as stemming from Y .



Statistical point of view
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■ By the conditional variance identity, we have

sX = V {E{Z|X}} = V {Z} − E{V {Z|X}},
sY = V {E{Z|Y }} = V {Z} − E{V {Z|Y }},

so that sX and sY may also be interpreted as expected reductions of amount of uncertainty:

sX = expected reduction of variance of Z if there were no longer uncertainty in X ,

sY = expected reduction of variance of Z if there were no longer uncertainty in Y .

In contrast to the expansion of g and the variance partitioning of Z , these expressions and these
interpretations of sX and sY remain valid even if X and Y are statistically dependent.
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■ Let us consider a simple problem wherein X and Y are uniform r.v. with values in [−1, 1],

X ∼ U([−1, 1]),

Y ∼ U([−1, 1]),

and the function g is given by

z = g(x, y) = x+ y2 + xy.
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■ Let us consider a simple problem wherein X and Y are uniform r.v. with values in [−1, 1],

X ∼ U([−1, 1]),

Y ∼ U([−1, 1]),

and the function g is given by

z = g(x, y) = x+ y2 + xy.

■ This problem has the expansion

g(x, y) = g0 + gX(x) + gY (y) + g(X,Y )(x, y),

g(x, y)

=

g0

+

gX(x)

+

gY (y)

+

g(X,Y )(x, y)
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■ Let us consider a simple problem wherein X and Y are uniform r.v. with values in [−1, 1],

X ∼ U([−1, 1]),

Y ∼ U([−1, 1]),

and the function g is given by

z = g(x, y) = x+ y2 + xy.

■ This problem has the expansion

g(x, y) = g0 + gX(x) + gY (y) + g(X,Y )(x, y),

g(x, y)

=

g0

+

gX(x)

+

gY (y)

+

g(X,Y )(x, y)

■ To this expansion corresponds the variance partitioning

σ2
Z = sX + sY + s(X,Y ),

σ2
Z =

28

45
, sX =

1

3
= 53.57%σ2

Z , sY =
8

45
= 28.57%σ2

Z , s(X,Y ) =
1

9
= 17.86%σ2

Z .
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■ Computation by means of a stochastic expansion method:

sX ≈
∑

α 6=0

c2(α,0),

sY ≈
∑

β 6=0

c2(0,β),
with g(x, y) =

∑

(α,β)

c(α,β)ϕα(x)ψβ(y).

■ Computation by means of deterministic numerical integration:

sX ≈ QX

(
|QY g −QXQY g|2

)
,

sY ≈ QY

(
|QXg −QXQY g|2

)
.

■ Computation by means of Monte Carlo integration:

sX ≈ 1

ν

ν∑

ℓ=1

(

g(xℓ, yℓ)−
1

ν

ν∑

k=1

g(xk, yk)

)(

g(xℓ, ỹℓ)−
1

ν

ν∑

k=1

g(xk, ỹk)

)

,

sY ≈ 1

ν

ν∑

ℓ=1

(

g(xℓ, yℓ)−
1

ν

ν∑

k=1

g(xk, yk)

)(

g(x̃ℓ, yℓ)−
1

ν

ν∑

k=1

g(x̃k, yk)

)

.

■ References: [B. Sudret. Reliab. Eng. Syst. Safe., 2008], [Crestaux et al. Reliab. Eng. Syst. Safe.,
2009], [I. Sobol. Math. Comput. Simulat., 2001], and [A. Owen. ACM T. Model. Comput. S., 2013].



Example: Metal forming

ULg, Liège, Belgium Uncertainty quantification – Lecture 3 36 / 41



Example: Metal forming
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Manufacturing tolerances in metal forming

Raw materials variability:
• Material properties.
. . .

Process variability:
• Blank holder force.
• Initial dimensions.
• Friction.
. . .

Modeling limitations:
• Constitutive model.
• FE discretization.
. . .

Input variables.

→ →

Product variability:
• Final dimensions.
• Springback.
. . .

Prediction limitations:
• Numerical noise.
. . .

Output variable.
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Manufacturing tolerances in metal forming (continued)

■ blanc Material properties
(h, s)

// Model
y = g(h, s)

// Springback angle
y

■ Observed samples (hobs
1 , sobs

1 ), (hobs
2 , sobs

2 ), . . . , (hobs
n , sobs

n ).

h [MPa] s [MPa]

1488 375
1485 403
1514 407
1500 377
. . . . . .

300 350 400 450 500
1100

1300

1500

1700

1900

Yield stress [MPa]

H
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de
ni

ng
 m

od
ul

us
 [

M
Pa

]

■ Mechanics and physics impose that h and s be positive.
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Manufacturing tolerances in metal forming (continued)

■ We estimate adequate values for the parameters of the bivariate gamma probability distribution by
using the method of maximum likelihood as follows:

(ĥ, σ̂2
H , ŝ, σ̂

2
S , ρ̂) = solution of max

(h,σ2
H
,s,σ2

S
,ρ)
l(h, σ2

H , s, σ
2
S , ρ),

where the likelihood of the parameters h, σ2
H , s, σ2

S , and ρ is given by

l(h, σ2
H , s, σ

2
S , ρ) =

n∏

ℓ=1

ρ(H,S)(h
obs
ℓ , sobs

ℓ ;h, σ2
H , s, σ

2
S , ρ).

300 350 400 450 500
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1300

1500
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Example: Metal forming
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Manufacturing tolerances in metal forming (continued)
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• solid: PDF of output.
blanc

[0.046 rad, 0.059 rad].
95%-confidence interval.

blanc
blanc

Propagation.

s_H s_S

sH , sS represent significance of inputs
in inducing uncertainties in output.

blanc
blanc
blanc

Sensitivity analysis.
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