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Example: Robust design and optimization in aerospace and mechanical engineering

From: A. Karl, B. Farris, L. Brown, and N. Metzger (Rolls-Royce). Robust design and optimization: Key
methods and applications. Stanford, 2011.
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Example: Manufacturing tolerances in metal forming processes

Raw materials variability:
• Material properties.
. . .

Process variability:
• Blank holder force.
• Initial dimensions.
• Friction.
. . .

Modeling limitations:
• Constitutive model.
• FE discretization.
. . .

Input variables.

→ →

Product variability:
• Final dimensions.
• Springback.
. . .

Prediction limitations:
• Numerical noise.
. . .

Output variables.

From: M. Arnst and J.-P. Ponthot. Characterization, propagation, and management of uncertainties in
metal forming applications. COMPLAS, Barcelona, Spain, 2013.
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Motivating example: Bending of a clamped beam

ℓ

p

u =
pℓ3

3yj
with







u : tip displacement,

p : tip load,

ℓ : beam length,

y : Young’s modulus,

j : moment of inertia.

Let p, ℓ, y, and j be uncertain (e.g., imperfect knowledge at design time, imperfect manufacturing when
compared to the design,. . . ). Given a probabilistic characterization of p, ℓ, y, and j in terms of a
probability distribution, what is the probability distribution of the tip displacement u?
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Model problem

y
︸︷︷︸

output variable

= g
︸︷︷︸

function

( gxg
︸︷︷︸

input variable

) with g : R → R.

Let x be uncertain (e.g., imperfect knowledge at design time, imperfect manufacturing when compared
to the design,. . . ). Given a probabilistic characterization of the input variable x in terms of a probability
distribution, what is the probability distribution of the output variable y?
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Random variables with values in R

■ The probability distribution PZ of a random variable Z with values in R is the function that
associates to any meaningful subset B of R the probability that the value taken by Z is in B, that is,

PZ(B) = P (Z ∈ B).
The probability distribution takes values in [0, 1] and is normalized in that PZ(R) = 1.

■ The probability density function ρZ of a probability distribution PZ with respect to dz, if it exists,
is the function from R with values in R

+ such that for any meaningful subset B of R, we have

PZ(B) =
∫

B

ρZ(z)dz.

The probability density function is normalized in that PZ(R) =
∫

R
ρZ(z)dz = 1.

■ The cumulative distribution function cZ of a random variable Z with probability distribution PZ

and probability density function ρZ is the function cZ from R with values in [0, 1] such that

cZ(z) = PZ(]−∞, z]) =

∫
z

−∞

ρZ(z̃)dz̃.

The cumulative distribution function is nondecreasing and satisfies limz→−∞ = 0 and
limz→+∞ = 1. By Leibniz’s formula, the cumulative distribution function cZ is related to the
probability density function ρZ as follows:

dcZ
dz

(z) = ρZ(z).
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Random variables with values in R (continued)

■ The characteristic function φZ of a random variable Z with PDF ρZ is the inverse Fourier
transform of this PDF ρZ :

φZ(ξ) =
1

2π
E
(
exp(iξZ)

)
=

1

2π

∫

R

exp(iξz)ρZ(z)dz with φZ : R → C.

Because the PDF ρZ is integrable, the characteristic function φZ is continuous and bounded.

■ A random variable Z with PDF ρZ is of the second order if

E(Z2) =

∫

R

z2ρZ(z)dz < +∞.

The mean z of a second-order random variable Z with PDF ρZ is defined by

z = E(Z) =

∫

R

zρZ(z)dz.

The variance σ2
Z

of a second-order random variable Z with PDF ρZ is defined by

σ2
Z
= E

(
(Z − z)2

)
=

∫

R

(z − z)2ρZ(z)dz.

We have σ2
Z
= E

(
(Z − z)2

)
= E(Z2)− z2.
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Random variables with values in R (continued)

■ For example, a random variable Z with values in R is a Gaussian random variable with mean z
and variance σ2

Z
if it admits the probability density function

ρZ(z) =
1√
2πσZ

exp

(

− (z − z)2

2σ2
Z

)

.

The corresponding cumulative distribution function reads as

cZ(z) =

∫
z

−∞

1√
2πσZ

exp

(

− (z̃ − z)2

2σ2
Z

)

dz̃.

And the corresponding characteristic function reads as

φZ(ξ) =
1

2π

∫ +∞

−∞

exp(iξz)
1√
2πσZ

exp

(

− (z̃ − z)2

2σ2
Z

)

dz̃ = exp
(
izξ − 1

2
σ2
Z
ξ2
)
.

A Gaussian r.v. Z with z = 0 and σZ = 1 is called a standard Gaussian r.v. The PDF, the CDF,
and the characteristic function of a standard Gaussian r.v. take the following form:

z

ρZ

z

cZ

ξ

Re(φZ)

ξ

Im(φZ)
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Case of strictly increasing function

■ If the function g is strictly increasing, we can establish the following relationship between the

cumulative distribution functions cX and cY of the input and output variables:

x

y

x

ρX

ρY

y

y = g(x)

P
(
Y ≤ y

)
= P

(
X ≤ g−1(y)

)
hence cY

(
y
)
= cX

(
g−1(y)

)
.
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Case of strictly increasing function (continued)

■ If cX , cY , and g are differentiable, using the chain rule, we can deduce the following relationship

between the probability density functions ρX and ρY of the input and output variables:
dcY

dy

(

y
)

=
dcX

dx

(

g
−1(y)

)dg−1

dy

(

y
)

hence ρY
(

y
)

= ρX
(

g
−1(y)

)

(

dg

dx

(

g
−1(y)

)

)−1

.

■ Using the change-of-variables formula, we can deduce the following relationship between the

probability distributions PX and PY of the input and output variables:

PY (B) =
∫

B

ρY (y)dy =

∫

B

ρX
(

g
−1(y)

)

(

dg

dx

(

g
−1(y)

)

)−1

dy

=

∫

g−1(B)

ρX(x)

(

dg

dx
(x)

)−1
dg

dx
(x)dx =

∫

g−1(B)

ρX(x)dx = PX

(

g
−1(B)

)

.

■ For example, if the input variable has the Gaussian probability density function

ρX(x) =
1√

2πσX

exp

(

− (x− x)2

2σ2
X

)

and the function is the exponential function

y = g(x) = exp(x),

then the output variable has the following lognormal probability density function:

ρY (y) =
1√

2πσX

exp

(

− (log(y)− x)2

2σ2
X

)

1

y
.
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Case of strictly increasing function (continued)

■ Provided that the output variable is of the second order, using the change-of-variables formula, we
can deduce the following expression for the mean y:

y =

∫

R

yρY (y)dy =

∫

R

yρX
(

g−1(y)
)

(

dg

dx

(

g−1(y)
)

)−1

dy

=

∫

R

g(x)ρX(x)

(

dg

dx
(x)

)−1 dg

dx
(x)dx =

∫

R

g(x)ρX(x)dx,

and we can deduce the following expression for the variance σ2
Y

:

σ2
Y =

∫

R

(y − y)2ρY (y)dy =

∫

R

(y − y)2ρX
(

g−1(y)
)

(

dg

dx

(

g−1(y)
)

)−1

dy

=

∫

R

(g(x)− y)2ρX(x)

(

dg

dx
(x)

)−1 dg

dx
(x)dx =

∫

R

(g(x)− y)2ρX(x)dx.

■ Similarly, we can deduce the following expression for the characteristic function φY :

φY (ξ) =
1

2π

∫

R

exp(iξy)ρY (y)dy =

∫

R

exp(iξy)ρX
(

g−1(y)
)

(

dg

dx

(

g−1(y)
)

)−1

dy

=

∫

R

exp
(

iξg(x)
)

ρX(x)

(

dg

dx
(x)

)−1 dg

dx
(x)dx =

∫

R

exp
(

iξg(x)
)

ρX(x)dx.
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Case of strictly increasing function (continued)

■ If the function is an affine function, that is,

y = g(x) = ax+ b with a and b constants,

then we can immediately apply the expressions obtained previously for a strictly increasing function
if a > 0 and the extension of these expressions to a strictly decreasing function if a < 0.

We obtain the following expressions for the mean y:

y =

∫

R

yρY (y)dy =

∫

R

(ax+ b)ρX(x)dx = a

∫

R

xρX(x)dx+ b

∫

R

ρX(x)dx = ax+ b.

We obtain the following expressions for the variance σ2
Y

:

σ2
Y
=

∫

R

(y−y)2ρY (y)dy =

∫

R

(
ax+b−(ax+b)

)2
ρX(x)dx = a2

∫

R

(x−x)2ρX(x)dx = a2σ2
X
.

In conclusion, for a transformation through an affine function, knowledge of the mean and variance
of the input variable suffices to determine the mean and variance of the output variable.
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Case of strictly increasing function (continued)

■ For example, affine function with stronger slope:

x

y

x

ρX

ρY

y

y = ax+ b
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Case of strictly increasing function (continued)

■ For example, affine function with weaker slope:

x

y

x

ρX

ρY

y

y = ax+ b
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Case of strictly increasing function (continued)

■ If the function is the cumulative distribution function of the input variable,

y = g(x) = cX(x),

we obtain

ρY
(
y
)
= ρX

(
c−1

X
(y)

)
(
dcX
dx

(
c−1

X
(y)

)
)−1

= ρX
(
c−1

X
(y)

)
ρX

(
c−1

X
(y)

)−1
= 1.

x

y

x

ρX

ρY

y

y = cX(x)

Thus, the transformation of a random variable through its own cumulative distribution function
results in a uniform random variable with values in the interval [0, 1]. This result is known in
probability theory as the isoprobability transform.
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Case of general function

■ For a general function g, where we mean by “general” that this function is not necessarily strictly
increasing, probability theory still allows to establish a relationship between the probability
distributions PX and PY of the input and output variables:

PY

(
B
)
= PX

(
{x ∈ R : g(x) ∈ B}

)
.

However, whereas we were able to establish explicit relationships between the probability density
functions ρX and ρY and between the cumulative distribution functions cX and cY for a strictly
increasing function g, we cannot in general obtain such explicit relationships for a general function g.

■ For a general function g, probability theory provides a change-of-variables theorem that asserts that
∫

R

h
(
y
)
PY

(
dy

)
=

∫

R

h
(
g(x)

)
PX

(
dx

)
,

that is, if PX and PY admit PDFs ρX and ρY ,
∫

R

h
(
y
)
ρY

(
y
)
dy =

∫

R

h
(
g(x)

)
ρX

(
x
)
dx,

for any integrand h for which either integral exists. This formula is consistent with the change-of-
variables formulas applied previously in our study of the case of a strictly increasing function g.

■ A detailed treatment of the case of a general function requires recourse to measure and probability
theory. For details, please refer, for example, to [Dudley, 2002] or [Wehenkel, 2013].
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Case of general function (continued)

■ Provided that the output variable is of the second order, using the change-of-variables formula, we
can deduce the following expression for the mean y:

y =

∫

R

yPY (dy) =

∫

R

g(x)PX(dx), that is, if PX admits PDF ρX , y =

∫

R

g(x)ρX(x)dx,

and we can deduce the following expression for the variance σ2
Y

:

σ
2
Y =

∫

R

(y−y)2PY (dy)=

∫

R

(

g(x)−y
)2
PX(dx), that is, if PX admits PDF ρX , σ

2
Y =

∫

R

(

g(x)−y
)2
ρX(x)dx.

In conclusion, for a transformation through a general function, knowledge of the mean and variance
of the input variable does not suffice to determine the mean and variance of the output variable!
Knowledge of the probability distribution of the input variable is required!

■ Similarly, we can deduce the following expression for the characteristic function φY :

φY (ξ)=

∫

R

exp(iξy)PY (dy)=

∫

R

exp
(

iξg(x)
)

PX(dx), that is, if PX admits PDF ρX , φY (ξ)=

∫

R

exp
(

iξg(x)
)

ρX(x)dx.
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ISO 98: Guide to the expression of uncertainty in measurement.



ISO 98

ULg, Liège, Belgium Uncertainty quantification – Lecture 1 22 / 31

Introduction

■ ISO 98 states that when reporting a measurement, it is obligatory that some quantitative indication
of the quality of the result be given so that those who use it can assess its reliability.

Without such an indication, measurement results cannot be compared, either among themselves or
with reference values given in a specification or standard.

It is therefore necessary that there be a readily implemented, easily understood, and generally
accepted procedure for characterizing the quality of a result of a measurement, that is, for
evaluating and expressing its uncertainty.

■ ISO 98 states that the ideal method for evaluating and expressing uncertainty should be:

◆ universal,
◆ internally consistent,
◆ transferable.
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Definitions and basic concepts

■ Measurable quantity: attribute of a phenomenon, body, or substance that may be distinguished
qualitatively and determined quantitatively.

■ Measurand: particular quantity subject to measurement.

■ Measurement value: value attributed to a measurand, obtained by measurement.

■ Standard uncertainty: uncertainty of the result of a measurement expressed as a standard
deviation.

■ Expanded uncertainty: quantity defining an interval about the result of a measurement that may
be expected to encompass a large fraction of the distribution of values that could reasonably be
attributed to the measurand.

■ Random error: random error arises from unpredictable or stochastic temporal and spatial
variations of influence quantities. The effects of such variations, termed random effects, give rise to
variations in repeated observations of the measurand.

■ Systematic error: systematic error arises from a recognized effect of an influence quantity on a
measurement result.

■ Uncertainty of a measurement: the uncertainty reflects the lack of knowledge of the value of the
measurand due to random effects and from imperfect correction of the result for systematic effects.
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Evaluating standard uncertainty

■ ISO 98 is concerned with scalar uncertain quantities.

■ ISO 98 uses the following descriptors of uncertainty:

x− ku(x) x+ ku(x)
x

u(x)

◆ “best available estimate” x (we can make a link with mean value),
◆ “standard uncertainty” u(x) (we can make a link with standard deviation),
◆ “expanded uncertainty” x± U with U = ku(x) (we can make a link with confidence interval).
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Evaluating standard uncertainty (continued)

■ As ISO 98 sees it, in most cases, a measurand is not measured directly, but is determined from
other quantities through a functional relationship:

Y = g(X1, X2, . . . , XN ),

in which X1, X2, . . . , XN are input variables upon which the output variable Y depends.

■ To obtain a best available estimate y and a standard uncertainty uc(y) associated with the output
variable from best estimates x1, x2,. . . , xN and standard uncertainties uc(x1), uc(x2),. . . ,
uc(xN ) associated with the input variables, ISO 98 proposes to proceed as follows:

y = g(x1, x2, . . . , xN ),

(
uc(y)

)2
=

N∑

k=1

(
dg

dX
(xk)

)2
(
uc(xk)

)2
.

We can interpret these formulas as the ones that probability theory would provide for determining
the mean and standard deviation of the output variable from the mean values and standard
deviations of the input variables if the function g was approximated by a first-order Taylor series

Y = g(X1, X2, . . . , XN ) ≈ g(x1, x2, . . . , xN ) +
N∑

k=1

(
dg

dX
(xk)

)

(Xk − xk).

■ Please note that ISO 98 also includes extensions of these formulas to the case wherein one may
want to account for dependence among the input variables.
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Evaluating standard uncertainty (continued)

■ ISO 98 distinguishes between type A and type B methods for obtaining best available estimates and
standard uncertainties associated with input variables.

■ Type A evaluation of uncertainty is based on the statistical analysis of series of observations.

To obtain a best available estimate of a quantity which varies randomly and for which n independent
observations x1, . . . , xn have been obtained under the same conditions of measurement, ISO 98
proposes to use the arithmetic mean or avarage of these n independent observations:

x =
1

n

n∑

k=1

xk.

To obtain a standard uncertainty associated with this best available estimate, ISO 98 proposes:

(
uc(xk)

)2
=

s2(x)

n
with s2(x) =

1

n− 1

n∑

k=1

(xk − x)2.

We can interpret these formulas in terms of the ones that probability theory would provide for the
unbiased estimate of the mean, the variance of the unbiased estimator of the mean, and the
unbiased estimate of the variance, respectively.
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Evaluating standard uncertainty (continued)

■ Type B evaluation of uncertainty is any evaluation by means other than the statistical analysis of
series of observations.

■ For an estimate of an input quantity that has not been obtained from repeated observations, the
associated standard uncertainty can be evaluated by scientific judgement based on all of the
available information on the possible variability. The pool of information may include:

◆ previous measurement data,
◆ experience with or general knowledge of the behaviour and properties of relevant materials and

instruments,
◆ manufacturer specifications,
◆ data provided in calibration and other certificates,
◆ uncertainties assigned to reference data taken from handbooks,
◆ . . .

■ Information may be provided in the form of:

◆ expanded uncertainty without the associated coverage factor,
◆ expanded uncertainty with the associated coverage factor,
◆ probability density function,
◆ . . .
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Evaluating expanded uncertainty

■ The expanded uncertainty U is obtained by multiplying the standard uncertainty uc(y) by a
coverage factor k:

U = kuc(y).

■ The result of a measurement is then conveniently expressed as Y = y ± U , which ISO 98
interprets as meaning that the best estimate of the value attributed to the measurand is y and that
y−U to y+U is an interval that may be expected to encompass a large fraction of the distribution
of values that could reasonably be attributed to the measurand.

■ ISO 98 bases the choice of the coverage factor on the basis of sampling distributions.
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Reporting uncertainty

■ When reporting the result of a measurement, and when the measure of uncertainty is the standard
uncertainty, ISO 98 states that one should:

◆ give a full description of how the measurand is defined,
◆ give the best available estimate y of the measurand and its standard uncertainty uc(y); the

units should always be given,
◆ include the relative standard uncertainty uc(y)/y, when appropriate.

■ When reporting the result of a measurement, and when the measure of uncertainty is the expanded
uncertainty U = kuc(y), one should:

◆ give a full description of how the measurand is defined,
◆ state the result of the measurement as Y = y ± U and give the units of y and U ,
◆ include the relative expanded uncertainty U/|y|, when appropriate,
◆ give the value of k used to obtain U ,
◆ give the approximate level of confidence associated with the interval Y = y ± U , and state

how it was obtained.
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Examples

■ ISO 98 contains many examples that users can work through in preparation of putting the ISO 98
principles into practice in their own work:

◆ end-gauge calibration,

◆ simultaneous resistance and reactance measurement,

◆ calibration of a thermometer,

◆ measurement of activity,

◆ analysis of variance,

◆ measurement on a reference scale.
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