MECA0010 - Reliability and stochastic modeling of engineered systems

Notations and review of background material

Maarten Arnst and Marco Lucio Cerquaglia

September 20, 2017

Outline

- System of notation.
- Fundamentals of probability.
- Events and probability.
- Mathematics of probability.
- Stochastic models of random phenomena.
- Random variables and probability distributions.
- Useful probability distributions.
- Multiple random variables.
- Convergence of random variables.

System of notation

- A lowercase letter, for example, x, is a real deterministic variable.
- A boldface lowercase letter, for example, $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$, is a real deterministic vector.
- An uppercase letter, for example, X, is a real random variable. Exceptions: P (probability), Γ (gamma function), and E (expectation operator).
- A boldface uppercase letter, for example, $\boldsymbol{X}=\left(X_{1}, \ldots, X_{n}\right)$, is a real random vector.
- An uppercase letter between square brackets, for example, $[A]$, is a real deterministic matrix.
- A boldface uppercase letter between square brackets, for example, $[\boldsymbol{A}]$, is a real random matrix.

Fundamentals of probability

Events and probability

- Probability triple $(\mathcal{S}, \mathcal{E}, P)$
\mathcal{S} "sample space"
\mathcal{E} "event space"
P "probability"
- Axioms of probability:
(1) $P(\mathcal{A}) \geq 0$
for any event \mathcal{A} in \mathcal{E},
(2) $P(\mathcal{S})=1$
for the "certain event" \mathcal{S},
(3) $P(\mathcal{A} \cup \mathcal{B})=P(\mathcal{A})+P(\mathcal{B}) \quad$ for any two mutually exclusive events \mathcal{A} and \mathcal{B} in \mathcal{E}.

Mathematics of probability

- Addition rule:

$$
P(\mathcal{A} \cup \mathcal{B})=P(\mathcal{A})+P(\mathcal{B})-P(\mathcal{A} \cap \mathcal{B})
$$

Note that $P(\mathcal{A} \cap \mathcal{B})=0$ if \mathcal{A} and \mathcal{B} are mutually exclusive events.

- Complement rule:

$$
P(\overline{\mathcal{A}})=1-P(A)
$$

- Conditional probability:

$$
P(\mathcal{A} \mid \mathcal{B})=\frac{P(\mathcal{A} \cap \mathcal{B})}{P(\mathcal{B})} \quad \text { if } P(\mathcal{B}) \neq 0
$$

- Multiplication rule:

$$
P(\mathcal{A} \cap \mathcal{B})=P(\mathcal{A} \mid \mathcal{B}) P(\mathcal{B})=P(\mathcal{B} \mid \mathcal{A}) P(\mathcal{A}) .
$$

Mathematics of probability

- Conditional probability refers to the probability of an event given/dependent on another event:

$$
P\left(\underset{\substack{\mathcal{A} \mid \mathcal{B} \\ \text { "given" }}}{\downarrow(\mathcal{B})}=\frac{P(\mathcal{A} \cap \mathcal{B})}{P(\mathcal{B})} \quad \text { if } P(\mathcal{B}) \neq 0\right.
$$

$P(\mathcal{A} \mid \mathcal{B})$ is interpreted as the probability of a sample being in \mathcal{A} given that it is in \mathcal{B}. Thus, the conditional probability pertains to the samples in \mathcal{A} relative to those of \mathcal{B}, and it must thus be normalized with respect to \mathcal{B}.

Mathematics of probability

- Two events \mathcal{A} and \mathcal{B} are statistically independent if the occurrence of \mathcal{A} does not affect the probability of \mathcal{B} occurring and vice versa. Thus, \mathcal{A} and \mathcal{B} are statistically indepdendent if

$$
\left\{\begin{array}{l}
P(\mathcal{A} \mid \mathcal{B})=P(\mathcal{A}), \\
P(\mathcal{B} \mid \mathcal{A})=P(\mathcal{B}),
\end{array} \quad \text { that is, } \quad P(\mathcal{A} \cap \mathcal{B})=P(\mathcal{A}) P(\mathcal{B})\right.
$$

- Multiplication rule:

$$
P(\mathcal{A} \cap \mathcal{B})= \begin{cases}P(\mathcal{A} \mid \mathcal{B}) P(\mathcal{B})=P(\mathcal{B} \mid \mathcal{A}) P(\mathcal{A}) & \text { general case } \\ P(\mathcal{A}) P(\mathcal{B}) & \text { if } \mathcal{A} \text { and } \mathcal{B} \text { are statistically independent }\end{cases}
$$

Stochastic models of random phenomena

Single random variables

Random variables and probability distributions

- Definition of a (real) random variable:
- Let us consider a (real) random variable denoted by X (uppercase letter).
- Sample space $\mathcal{S}=\mathbb{R}$, that is, the sample space is the real line.
- Event space \mathcal{E} collects events, for example,

$$
\begin{aligned}
& \mathcal{A}=\{a<X<b\} \\
& \mathcal{B}=\{c<X<d\} \\
& \overline{\mathcal{A}}=\{X \leq a\} \cup\{b \leq X\} \\
& \mathcal{C}=\{X=a\}
\end{aligned}
$$

- Probability P assigns probabilities to events. It satisfies the axioms of probability.

Random variables and probability distributions

- The probability P can be described by the cumulative distribution function

- For a (real) random variable X, the cumulative distribution function c_{X} is a function from \mathbb{R} into $[0,1]$, which possesses the following properties owing to the axioms of probabilty:
- $c_{X}(x) \geq 0$,
c_{X} is monotonically increasing,
$-c_{X}(-\infty)=0$ and $c_{X}(+\infty)=1$.

Random variables and probability distributions

- A discrete random variable can assume only a finite or listable infinite number of real values, e.g.,
- rolling a dice: possible samples $\{1,2,3,4,5,6\}$,
- numer of microbes on a kitchen table: possible samples $\{0,1,2,3, \ldots\}=\mathbb{N}$.

■ The probability assigned to an elementary event can be nonzero for a discrete random variable, e.g.,

- rolling a dice: $P(\{1\})=1 / 6$.
- A continuous random variable can assume a range of values, e.g.,
- velocity of a car: possible samples $\left[0,+\infty\left[=\mathbb{R}^{+}\right.\right.$.

■ The probability assigned to an elementary event is zero for a continuous random variable, e.g.,

- velocity of a car: $P(\{75\})=0$ (probability that velocity is precisely $75 \mathrm{~km} / \mathrm{h}$).
- The probability assigned to an interval can be nonzero for a continuous random variable, e.g.,
- velocity of a car: $P([25,30])=\ldots \geq 0$ (probability that velocity is between 25 and $30 \mathrm{~km} / \mathrm{h}$).

Random variables and probability distributions

DISCRETE

probability mass function (PMF)

$$
\begin{gathered}
P_{X} \\
P\left(X=x_{i}\right)=P_{X}\left(x_{i}\right) \\
\text { relation to CDF: } \\
c_{X}(x)=P(X \leq x) \\
=\sum_{x_{i} \leq x} P\left(X=x_{i}\right) \\
=\sum_{x_{i} \leq x} P_{X}\left(x_{i}\right)
\end{gathered}
$$

properties:

$$
\begin{aligned}
& 0 \leq P_{X}\left(x_{i}\right) \leq 1 \\
& \sum_{x_{i}} P_{X}\left(x_{i}\right)=1
\end{aligned}
$$

relation to CDF:
CONTINUOUS
probability density function (PDF)

$$
\begin{gathered}
\rho_{X} \\
P(a \leq X \leq b)=\int_{a}^{b} \rho_{X}(x) d x
\end{gathered}
$$

$$
\begin{aligned}
c_{X}(x) & =P(X \leq x) \\
& =P(-\infty \leq X \leq x) \\
& =\int_{-\infty}^{x} \rho_{X}(\xi) d \xi \\
& \frac{d c_{X}}{d x}(x)=\rho_{X}(x) .
\end{aligned}
$$

properties:

$$
\begin{gathered}
\rho_{X}(x) \geq 0 \\
\int_{-\infty}^{+\infty} \rho_{X}(x) d x=1 .
\end{gathered}
$$

Random variables and probability distributions

Random variables and probability distributions

- Mean (expected value, average):

$$
\bar{x}=m_{X}=E\{X\}= \begin{cases}\sum_{x_{i}} x_{i} P_{X}\left(x_{i}\right), & \text { (DISCRETE) } \\ \int_{-\infty}^{+\infty} x \rho_{X}(x) d x, & \text { (CONTINUOUS) }\end{cases}
$$

■ Variance (measure of dispersion):

$$
\sigma_{X}^{2}=E\left\{\left(X-m_{X}\right)^{2}\right\}= \begin{cases}\sum_{x_{i}}\left(x_{i}-m_{X}\right)^{2} P_{X}\left(x_{i}\right), & \text { (DISCRETE) } \\ \int_{-\infty}^{+\infty}\left(x-m_{X}\right)^{2} \rho_{X}(x) d x, & \text { (CONTINUOUS) } .\end{cases}
$$

■ " E " is the expectation operator:

$$
E\{g(X)\}= \begin{cases}\sum_{x_{i}} g\left(x_{i}\right) P_{X}\left(x_{i}\right), & \text { (DISCRETE) }, \\ \int_{-\infty}^{+\infty} g(x) \rho_{X}(x) d x, & \text { (CONTINUOUS) } .\end{cases}
$$

Random variables and probability distributions

- Coefficient of variation:

$$
\delta_{X}=\frac{\sigma_{X}}{m_{X}}
$$

- Coefficient of skewness

$$
E\left\{\left(X-m_{X}\right)^{3}\right\} .
$$

- Coefficient of kurtosis

$$
E\left\{\left(X-m_{X}\right)^{4}\right\} .
$$

- n-th moment:

$$
E\left\{X^{n}\right\} .
$$

- n-th central moment:

$$
E\left\{\left(X-m_{X}\right)^{n}\right\} .
$$

Useful probability distributions

- The Gaussian PDF is the PDF of a continuous random variable given by

$$
\rho_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{1}{2}\left(\frac{x-m}{\sigma}\right)^{2}\right)
$$

where m and σ are parameters of the PDF; in fact, m and σ are the mean and the standard deviation, respectively, that is, $E\{X\}=m$ and $E\left\{(X-E\{X\})^{2}\right\}=\sigma^{2}$.

Useful probability distributions

- The Poisson PMF is the PMF of a discrete random variable given by

where λ is a parameter of the PMF; in fact, λ is equal to the mean and the variance, that is, $E\{X\}=E\left\{(X-E\{X\})^{2}\right\}=\lambda$.

Useful probability distributions

■ The gamma PDF is the PDF of a continuous random variable given by

$\rho_{X}(x)=\left\{\begin{array}{ll}\frac{1}{\Gamma(\alpha) \beta^{\alpha}} x^{\alpha-1} \exp \left(-\frac{x}{\beta}\right) & \text { if } x \geq 0, \\ 0 & \text { ortherwise, }\end{array} \quad\right.$ with $\quad \Gamma(\alpha)=\int_{0}^{+\infty} x^{\alpha-1} \exp (-x) d x$,
where α and β are parameters of the PDF; in fact, α and β are related to the mean and the standard deviation as follows: $E\{X\}=\alpha \beta$ and $E\left\{(X-E\{X\})^{2}\right\}=\alpha \beta^{2}$.

Useful probability distributions

- The exponential PDF is the PDF of a continuous random variable given by

where λ is a parameter of the PDF; in fact, λ is related to the mean and the standard deviation as follows: $E\{X\}=\lambda^{-1}$ and $E\left\{(X-E\{X\})^{2}\right\}=\lambda^{-2}$.

Useful probability distributions

■ The chi-squared PDF is the PDF of a continuous random variable given by

where n is a parameter of the PDF; in fact, n is related to the mean and the standard deviation as follows: $E\{X\}=n$ and $E\left\{(X-E\{X\})^{2}\right\}=2 n$.

Useful probability distributions

- There are many other useful probability distributions:
- uniform PDF,
- Weibull PDF,
- One can establish various relationships among these probability distributions:
- A gamma PDF with parameters $\alpha=1$ and β is an exponential PDF with parameter $\lambda=\beta^{-1}$.
- A gamma PDF with parameters $\alpha=n / 2$ and $\beta=2$ is a chi-squared PDF with parameter n.
- The sum of n statistically independent Gaussian random variables with mean 0 and standard deviation 1 is a chi-squared random variable with parameter n.

Multiple random variables

Multiple random variables

- For a pair of (real) random variables X and Y, the joint probability P can be described using the joint cumulative distribution function

$$
c_{X, Y}(x, y)=P(X \leq x, Y \leq y)
$$

- For a pair of (real) random variables X and Y, the cumulative distribution function $c_{X, Y}$ is a function from $\mathbb{R} \times \mathbb{R}$ into $[0,1]$, which possesses the following properties:
- $c_{X, Y}(x, y) \geq 0$,
- $c_{X, Y}$ is monotonically increasing,
- $c_{X, Y}(-\infty,-\infty)=0, c_{X, Y}(-\infty, y)=0, c_{X, Y}(x,-\infty)=0, c_{X, Y}(+\infty, y)=c_{Y}(y)$, $c_{X, Y}(x,+\infty)=c_{X}(x)$, and $c_{X, Y}(+\infty,+\infty)=1$.

Multiple random variables

DISCRETE

probability mass function (PMF)

$$
\begin{gathered}
P_{X, Y} \\
P\left(X=x_{i}, Y=y_{j}\right)=P_{X, Y}\left(x_{i}, y_{j}\right)
\end{gathered}
$$

relation to CDF:
$c_{X, Y}(x, y)=P(X \leq x, Y \leq y)$
$=\sum_{x_{i} \leq x} \sum_{y_{j} \leq y} P_{X, Y}\left(x_{i}, y_{j}\right)$.

$$
\begin{gathered}
\text { properties: } \\
0 \leq P_{X, Y}\left(x_{i}, y_{j}\right) \leq 1, \\
\sum_{x_{i}} \sum_{y_{j}} P_{X, Y}\left(x_{i}, y_{j}\right)=1 .
\end{gathered}
$$

CONTINUOUS

probability density function (PDF)

$$
P(a \leq X \leq b, c \leq Y \leq d)=\int_{a, Y}^{b} \int_{c}^{d} \rho_{X, Y}(x, y) d x d y
$$

relation to CDF:

$$
\begin{aligned}
c_{X, Y}(x, y) & =P(X \leq x, Y \leq y) \\
& =\int_{-\infty}^{x} \int_{-\infty}^{y} \rho_{X, Y}(\xi, \zeta) d \xi d \zeta, \\
\frac{\partial^{2} c_{X, Y}}{\partial x \partial y}(x, y) & =\rho_{X, Y}(x, y) .
\end{aligned}
$$

properties:

$$
\begin{gathered}
\rho_{X, Y}(x, y) \geq 0 \\
\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \rho_{X, Y}(x, y) d x d y=1 .
\end{gathered}
$$

Multiple random variables

- For a pair of discrete random variables X and Y, we obtain conditional PMFs as

$$
\begin{aligned}
& P_{X \mid Y}\left(x_{i} \mid y_{j}\right)=\frac{P_{X, Y}\left(x_{i}, y_{j}\right)}{P_{Y}\left(y_{j}\right)} \quad \text { if } P_{Y}\left(y_{j}\right) \neq 0 \\
& P_{Y \mid X}\left(y_{j} \mid x_{i}\right)=\frac{P_{X, Y}\left(x_{i}, y_{j}\right)}{P_{X}\left(x_{i}\right)} \quad \text { if } P_{X}\left(x_{i}\right) \neq 0
\end{aligned}
$$

- For a pair of discrete random variables X and Y, we obtain the marginal PMFs as

$$
\begin{aligned}
P_{X}\left(x_{i}\right) & =\sum_{y_{j}} P_{X, Y}\left(x_{i}, y_{j}\right) \\
P_{Y}\left(y_{j}\right) & =\sum_{x_{i}} P_{X, Y}\left(x_{i}, y_{j}\right)
\end{aligned}
$$

- If two discrete random variables X and Y are statistically independent, then we have

$$
\begin{aligned}
& P_{X, Y}\left(x_{i} \mid y_{j}\right)=P_{X}\left(x_{i}\right), \quad \text { hence } \quad P_{X, Y}\left(x_{i}, y_{j}\right)=P_{X}\left(x_{i}\right) P_{Y}\left(y_{j}\right) . \\
& P_{Y \mid X}\left(y_{j} \mid x_{i}\right)=P_{Y}\left(y_{j}\right),
\end{aligned}
$$

Multiple random variables

- For a pair of continuous random variables X and Y, we obtain conditional PMFs as

$$
\begin{aligned}
& \rho_{X \mid Y}(x \mid y)=\frac{\rho_{X, Y}(x, y)}{\rho_{Y}(y)} \text { if } \rho_{Y}(y) \neq 0 \\
& \rho_{Y \mid X}(y \mid x)=\frac{\rho_{X, Y}(x, y)}{\rho_{X}(x)} \text { if } \rho_{X}(x) \neq 0
\end{aligned}
$$

■ For a pair of continuous random variables X and Y, we obtain the marginal PMFs as

$$
\begin{aligned}
\rho_{X}(x) & =\int_{-\infty}^{+\infty} \rho_{X, Y}(x, y) d y \\
\rho_{Y}(y) & =\int_{-\infty}^{+\infty} \rho_{X, Y}(x, y) d x
\end{aligned}
$$

- If two continuous random variables X and Y are statistically independent, then we have

$$
\begin{aligned}
& \rho_{X, Y}(x \mid y)=\rho_{X}(x), \quad \text { hence } \quad \rho_{X, Y}(x, y)=\rho_{X}(x) \rho_{Y}(y) . \\
& \rho_{Y \mid X}(y \mid x)=\rho_{Y}(y),
\end{aligned}
$$

Multiple random variables

- The joint second moment of two random variables X and Y is defined as

$$
E\{X Y\}= \begin{cases}\sum_{x_{i}} \sum_{y_{j}} x_{j} y_{j} P_{X, Y}\left(x_{i}, y_{j}\right), & \text { (DISCRETE), } \\ \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x y \rho_{X, Y}(x, y) d x d y, & \text { (CONTINUOUS). }\end{cases}
$$

■ The joint second central moment of two random variables X and Y is defined as

$$
E\left\{\left(X-m_{X}\right)\left(Y-m_{Y}\right)\right\}= \begin{cases}\sum_{x_{i}} \sum_{y_{j}}\left(x_{j}-m_{X}\right)\left(y_{j}-m_{Y}\right) P_{X, Y}\left(x_{i}, y_{j}\right), & \text { (DISCRETE), } \\ \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty}\left(x-m_{X}\right)\left(y-m_{Y}\right) \rho_{X, Y}(x, y) d x d y, & \text { (CONTINUOUS). }\end{cases}
$$

■ The correlation coefficient of two random variables X and Y is defined as

$$
\rho=\frac{E\left\{\left(X-m_{X}\right)\left(Y-m_{Y}\right)\right\}}{\sigma_{X} \sigma_{Y}} \quad \text { with }-1 \leq \rho \leq 1 .
$$

Multiple random variables

- This can be extended from pairs of (real) random variables to n-uples of (real) random variables.

■ Let us consider a random vector \boldsymbol{X} with values in \mathbb{R}^{n}.
■ The mean vector of $\boldsymbol{X}=\left(X_{1}, \ldots, X_{n}\right)$ is the vector $\boldsymbol{m}_{\boldsymbol{X}}$ in \mathbb{R}^{n} defined as

$$
\boldsymbol{m}_{\boldsymbol{X}}=E\{\boldsymbol{X}\}=\left[\begin{array}{c}
E\left\{X_{1}\right\} \\
\vdots \\
E\left\{X_{n}\right\}
\end{array}\right] .
$$

- The correlation matrix of \boldsymbol{X} is the $(n \times n)$-dimensional real matrix $\left[R_{\boldsymbol{X}}\right]$ defined as

$$
\left[R_{\boldsymbol{X}}\right]=E\left\{\boldsymbol{X} \boldsymbol{X}^{\mathrm{T}}\right\}=\left[\begin{array}{ccc}
E\left\{X_{1} X_{1}\right\} & \ldots & E\left\{X_{1} X_{n}\right\} \\
\vdots & & \vdots \\
E\left\{X_{n} X_{1}\right\} & \ldots & E\left\{X_{n} X_{n}\right\}
\end{array}\right]
$$

- The covariance matrix of \boldsymbol{X} is the $(n \times n)$-dimensional real matrix $\left[C_{\boldsymbol{X}}\right]$ defined as

$$
\left[C_{\boldsymbol{X}}\right]=E\left\{\left(\boldsymbol{X}-\boldsymbol{m}_{\boldsymbol{X}}\right)\left(\boldsymbol{X}-\boldsymbol{m}_{\boldsymbol{X}}\right)^{\mathrm{T}}\right\}=\left[\begin{array}{ccc}
E\left\{\left(X_{1}-m_{X_{1}}\right)\left(X_{1}-m_{X_{1}}\right)\right\} & \ldots & E\left\{\left(X_{1}-m_{X_{1}}\right)\left(X_{n}-m_{X_{n}}\right)\right\} \\
\vdots & & \vdots \\
E\left\{\left(X_{n}-m_{X_{n}}\right)\left(X_{1}-m_{X_{1}}\right)\right\} & \ldots & E\left\{\left(X_{n}-m_{X_{n}}\right)\left(X_{n}-m_{X_{n}}\right)\right\}
\end{array}\right] .
$$

Multiple random variables

■ The n-variate Gaussian PDF is the PDF of a continuous random vector given by

where the vector \boldsymbol{m} in \mathbb{R}^{n} and the ($n \times n$)-dimensional real matrix $[C]$ are parameters of the PDF; in fact, \boldsymbol{m} and $[C]$ are the mean vector and the covariance matrix, respectively, that is, $E\{\boldsymbol{X}\}=\boldsymbol{m}$ and $E\left\{(\boldsymbol{X}-E\{\boldsymbol{X}\})(\boldsymbol{X}-E\{\boldsymbol{X}\})^{\mathrm{T}}\right\}=[C]$.

Convergence of random variables

Convergence of random variables

- Probability theory offers several ways in which a sequence of random variables can be considered to converge, namely, convergence almost surely, convergence in distribution, convergence in mean square, and convergence in probability among other ways.
- Let us consider a sequence of random vectors $\left\{\boldsymbol{X}_{\nu}\right\}_{\nu=0}^{+\infty}$ with values in \mathbb{R}^{n} and a random vector \boldsymbol{X} with values in \mathbb{R}^{n}. Then, we have that
$\bullet \lim _{\nu \rightarrow \infty} \boldsymbol{X}_{\nu} \stackrel{\text { a.s. }}{=} \boldsymbol{X}$ if and only if $\left.P\left(\lim _{\nu \rightarrow \infty} \boldsymbol{X}_{\nu}=\boldsymbol{X}\right\}\right)=1$.
$\bullet \lim _{\nu \rightarrow \infty} \boldsymbol{X}_{\nu} \stackrel{\text { distr. }}{=} \boldsymbol{X}$ if and only if $\lim _{\nu \rightarrow \infty} P_{\boldsymbol{X}_{\nu}}=P_{\boldsymbol{X}}$.
- $\lim _{\nu \rightarrow \infty} \boldsymbol{X}_{\nu} \stackrel{\text { m.s. }}{=} \boldsymbol{X}$ if and only if $\lim _{\nu \rightarrow \infty} E\left\{\left\|\boldsymbol{X}_{\nu}-\boldsymbol{X}\right\|^{2}\right\}=0$.
$\bullet \lim _{\nu \rightarrow \infty} \boldsymbol{X}_{\nu} \stackrel{\text { prob. }}{=} \boldsymbol{X}$ if and only if for every $\left.\epsilon>0, \lim _{\nu \rightarrow \infty} P\left(\left\|\boldsymbol{X}_{\nu}-\boldsymbol{X}\right\| \geq \epsilon\right\}\right)=0$.
- These modes of convergence are related as follows:

References

Suggested reading material

■ L. Wehenkel. Eléments du calcul des probabilités. ULg, 2013.

Additional references also consulted to prepare this lecture

- A. Ang and W. Tang. Probability concepts in engineering. John Wiley \& Sons, 2007.

■ C. Soize. The Fokker-Planck equation for stochastic dynamical systems and its explicit steady state solutions. World Scientific Publishing, 1994.

