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■ System of notation.

■ Fundamentals of probability.

◆ Events and probability.

◆ Mathematics of probability.

■ Stochastic models of random phenomena.

◆ Random variables and probability distributions.

◆ Useful probability distributions.

◆ Multiple random variables.

■ Convergence of random variables.
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■ A lowercase letter, for example, x, is a real deterministic variable.

■ A boldface lowercase letter, for example, x = (x1, . . . , xn), is a real deterministic vector.

■ An uppercase letter, for example, X , is a real random variable. Exceptions: P (probability), Γ
(gamma function), and E (expectation operator).

■ A boldface uppercase letter, for example, X = (X1, . . . , Xn), is a real random vector.

■ An uppercase letter between square brackets, for example, [A], is a real deterministic matrix.

■ A boldface uppercase letter between square brackets, for example, [A], is a real random matrix.
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Events and probability
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■ Probability triple (S, E , P )

S “sample space”

E “event space”

P “probability”

■ Axioms of probability:

(1) P (A) ≥ 0 for any event A in E ,

(2) P (S) = 1 for the “certain event” S,

(3)P (A ∪ B) = P (A) + P (B) for any two mutually exclusive events A and B in E .
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■ Addition rule:

P (A ∪ B) = P (A) + P (B)− P (A ∩ B).

Note that P (A ∩ B) = 0 if A and B are mutually exclusive events.

■ Complement rule:

P (A) = 1− P (A).

■ Conditional probability:

P (A|B) = P (A ∩ B)
P (B) if P (B) 6= 0.

■ Multiplication rule:

P (A ∩ B) = P (A|B)P (B) = P (B|A)P (A).



Mathematics of probability
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■ Conditional probability refers to the probability of an event given/dependent on another event:

P (A|B) = P (A ∩ B)
P (B) if P (B) 6= 0.

↓
“given”

S

“renormalizing”

A B B

A ∩ B

P (A|B) is interpreted as the probability of a sample being in A given that it is in B. Thus, the

conditional probability pertains to the samples in A relative to those of B, and it must thus be

normalized with respect to B.
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■ Two events A and B are statistically independent if the occurrence of A does not affect the

probability of B occurring and vice versa. Thus, A and B are statistically indepdendent if

{

P (A|B) = P (A),

P (B|A) = P (B), that is, P (A ∩ B) = P (A)P (B).

■ Multiplication rule:

P (A ∩ B) =
{

P (A|B)P (B) = P (B|A)P (A) general case,

P (A)P (B) if A and B are statistically independent.
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Single random variables
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Random variables and probability distributions
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■ Definition of a (real) random variable:

◆ Let us consider a (real) random variable denoted by X (uppercase letter).

◆ Sample space S = R, that is, the sample space is the real line.

◆ Event space E collects events, for example,

A = {a < X < b},
B = {c < X < d},
A = {X ≤ a} ∪ {b ≤ X},
C = {X = a}.

◆ Probability P assigns probabilities to events. It satisfies the axioms of probability.



Random variables and probability distributions
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■ The probability P can be described by the cumulative distribution function

cX(x) = P (X ≤ x).

upper case

lower case

■ For a (real) random variable X , the cumulative distribution function cX is a function from R into

[0, 1], which possesses the following properties owing to the axioms of probabilty:

◆ cX(x) ≥ 0,

◆ cX is monotonically increasing,

◆ cX(−∞) = 0 and cX(+∞) = 1.
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■ A discrete random variable can assume only a finite or listable infinite number of real values, e.g.,

◆ rolling a dice: possible samples {1, 2, 3, 4, 5, 6},

◆ numer of microbes on a kitchen table: possible samples {0, 1, 2, 3, . . .} = N.

■ The probability assigned to an elementary event can be nonzero for a discrete random variable, e.g.,

◆ rolling a dice: P ({1}) = 1/6.

■ A continuous random variable can assume a range of values, e.g.,

◆ velocity of a car: possible samples [0,+∞[= R
+.

■ The probability assigned to an elementary event is zero for a continuous random variable, e.g.,

◆ velocity of a car: P ({75}) = 0 (probability that velocity is precisely 75 km/h).

■ The probability assigned to an interval can be nonzero for a continuous random variable, e.g.,

◆ velocity of a car: P ([25, 30]) = . . . ≥ 0 (probability that velocity is between 25 and 30 km/h).
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DISCRETE CONTINUOUS

probability mass function (PMF) probability density function (PDF)

PX ρX

P (X = xi) = PX(xi) P (a ≤ X ≤ b) =
∫ b

a
ρX(x)dx

relation to CDF: relation to CDF:

cX(x) = P (X ≤ x)

=
∑

xi≤x

P (X = xi)

=
∑

xi≤x

PX(xi).

∫ x

−∞

cX(x) = P (X ≤ x)

= P (−∞ ≤ X ≤ x)
∑

xi

=

∫ x

−∞

ρX(ξ)dξ,

dcX
dx (x) = ρX(x).

properties: properties:

0 ≤ PX(xi) ≤ 1, ρX(x) ≥ 0,
∑

xi
PX(xi) = 1.

∫ +∞

−∞
ρX(x)dx = 1.

blancblancblancblancblancblancblancblanc blancblancblancblancblancblancblancblanc
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DISCRETE CONTINUOUS

PMF

• •
• • •

CDF

◦

• ◦

• ◦
• ◦• ◦•1

0

PDF

CDF

1

0
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■ Mean (expected value, average):

x = mX = E{X} =



















∑

xi

xiPX(xi), (DISCRETE),

∫ +∞

−∞

xρX(x)dx, (CONTINUOUS).

■ Variance (measure of dispersion):

σ2
X = E{(X −mX)2} =



















∑

xi

(xi −mX)2PX(xi), (DISCRETE),

∫ +∞

−∞

(x−mX)2ρX(x)dx, (CONTINUOUS).

■ “E” is the expectation operator:

E{g(X)} =



















∑

xi

g(xi)PX(xi), (DISCRETE),

∫ +∞

−∞

g(x)ρX(x)dx, (CONTINUOUS).



Random variables and probability distributions
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■ Coefficient of variation:

δX =
σX

mX
.

■ Coefficient of skewness

E{(X −mX)3}.

■ Coefficient of kurtosis

E{(X −mX)4}.

■ n-th moment:

E{Xn}.

■ n-th central moment:

E{(X −mX)n}.



Useful probability distributions
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■ The Gaussian PDF is the PDF of a continuous random variable given by

x

ρX(x)

ρX(x) =
1√
2πσ

exp

(

−1

2

(

x−m

σ

)2
)

,

where m and σ are parameters of the PDF; in fact, m and σ are the mean and the standard

deviation, respectively, that is, E{X} = m and E{(X − E{X})2} = σ2.
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■ The Poisson PMF is the PMF of a discrete random variable given by

x

PX(x)

• •

•

•
•

PX(x) =
λx

x!
exp(−λ), x = 0, 1, 2, . . . ,

where λ is a parameter of the PMF; in fact, λ is equal to the mean and the variance, that is,

E{X} = E{(X − E{X})2} = λ.
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■ The gamma PDF is the PDF of a continuous random variable given by

x

ρX(x)

ρX(x) =











1

Γ(α)βα
xα−1 exp

(

−x

β

)

if x ≥ 0,

0 ortherwise,

with Γ(α) =

∫ +∞

0

xα−1 exp(−x)dx,

where α and β are parameters of the PDF; in fact, α and β are related to the mean and the

standard deviation as follows: E{X} = αβ and E{(X − E{X})2} = αβ2.
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■ The exponential PDF is the PDF of a continuous random variable given by

x

ρX(x)

ρX(x) =

{

λ exp(−λx) if x ≥ 0,

0 ortherwise,

where λ is a parameter of the PDF; in fact, λ is related to the mean and the standard deviation as

follows: E{X} = λ−1 and E{(X − E{X})2} = λ−2.



Useful probability distributions
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■ The chi-squared PDF is the PDF of a continuous random variable given by

x

ρX(x)

ρX(x) =











1

Γ
(

n
2

)

2n/2
xn/2−1 exp

(

−x

2

)

if x ≥ 0,

0 ortherwise,

where n is a parameter of the PDF; in fact, n is related to the mean and the standard deviation as

follows: E{X} = n and E{(X − E{X})2} = 2n.
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■ There are many other useful probability distributions:

◆ uniform PDF,

◆ Weibull PDF,

◆ . . .

■ One can establish various relationships among these probability distributions:

◆ A gamma PDF with parameters α = 1 and β is an exponential PDF with parameter λ = β−1.

◆ A gamma PDF with parameters α = n/2 and β = 2 is a chi-squared PDF with parameter n.

◆ The sum of n statistically independent Gaussian random variables with mean 0 and standard

deviation 1 is a chi-squared random variable with parameter n.

◆ . . .
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Multiple random variables
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■ For a pair of (real) random variables X and Y , the joint probability P can be described using the

joint cumulative distribution function

cX,Y (x, y) = P (X ≤ x, Y ≤ y).

■ For a pair of (real) random variables X and Y , the cumulative distribution function cX,Y is a

function from R× R into [0, 1], which possesses the following properties:

◆ cX,Y (x, y) ≥ 0,

◆ cX,Y is monotonically increasing,

◆ cX,Y (−∞,−∞) = 0, cX,Y (−∞, y) = 0, cX,Y (x,−∞) = 0, cX,Y (+∞, y) = cY (y),
cX,Y (x,+∞) = cX(x), and cX,Y (+∞,+∞) = 1.
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DISCRETE CONTINUOUS

probability mass function (PMF) probability density function (PDF)

PX,Y ρX,Y

P (X = xi, Y = yj) = PX,Y (xi, yj) P (a ≤ X ≤ b, c ≤ Y ≤ d) =
∫ b

a

∫ d

c
ρX,Y (x, y)dxdy

relation to CDF: relation to CDF:

cX,Y (x, y) = P (X ≤ x, Y ≤ y)

=
∑

xi≤x

∑

yj≤y

PX,Y (xi, yj).

cX,Y (x, y) = P (X ≤ x, Y ≤ y)

=

∫ x

−∞

∫ y

−∞

ρX,Y (ξ, ζ)dξdζ,

∂2cX,Y

∂x∂y (x, y) = ρX,Y (x, y).

properties: properties:

0 ≤ PX,Y (xi, yj) ≤ 1, ρX,Y (x, y) ≥ 0,
∑

xi

∑

yj
PX,Y (xi, yj) = 1.

∫ +∞

−∞

∫ +∞

−∞
ρX,Y (x, y)dxdy = 1.

blancblancblancblancblancblancblancblanc blancblancblancblancblancblancblancblanc
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■ For a pair of discrete random variables X and Y , we obtain conditional PMFs as

PX|Y (xi|yj) =
PX,Y (xi, yj)

PY (yj)
if PY (yj) 6= 0,

PY |X(yj |xi) =
PX,Y (xi, yj)

PX(xi)
if PX(xi) 6= 0.

■ For a pair of discrete random variables X and Y , we obtain the marginal PMFs as

PX(xi) =
∑

yj

PX,Y (xi, yj),

PY (yj) =
∑

xi

PX,Y (xi, yj).

■ If two discrete random variables X and Y are statistically independent, then we have

PX,Y (xi|yj) = PX(xi),

PY |X(yj |xi) = PY (yj),
hence PX,Y (xi, yj) = PX(xi)PY (yj).



Multiple random variables
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■ For a pair of continuous random variables X and Y , we obtain conditional PMFs as

ρX|Y (x|y) =
ρX,Y (x, y)

ρY (y)
if ρY (y) 6= 0,

ρY |X(y|x) = ρX,Y (x, y)

ρX(x)
if ρX(x) 6= 0.

■ For a pair of continuous random variables X and Y , we obtain the marginal PMFs as

ρX(x) =

∫ +∞

−∞

ρX,Y (x, y)dy,

ρY (y) =

∫ +∞

−∞

ρX,Y (x, y)dx.

■ If two continuous random variables X and Y are statistically independent, then we have

ρX,Y (x|y) = ρX(x),

ρY |X(y|x) = ρY (y),
hence ρX,Y (x, y) = ρX(x)ρY (y).



Multiple random variables

ULg, Liège, Belgium MECA0010 – Lecture 1 (part B) 29 / 34

■ The joint second moment of two random variables X and Y is defined as

E{XY } =



















∑

xi

∑

yj

xjyjPX,Y (xi, yj), (DISCRETE),

∫ +∞

−∞

∫ +∞

−∞

xyρX,Y (x, y)dxdy, (CONTINUOUS).

■ The joint second central moment of two random variables X and Y is defined as

E{(X−mX)(Y −mY )} =



















∑

xi

∑

yj

(xj −mX)(yj −mY )PX,Y (xi, yj), (DISCRETE),

∫

+∞

−∞

∫

+∞

−∞

(x−mX)(y −mY )ρX,Y (x, y)dxdy, (CONTINUOUS).

■ The correlation coefficient of two random variables X and Y is defined as

ρ =
E{(X −mX)(Y −mY )}

σXσY
with −1 ≤ ρ ≤ 1.



Multiple random variables
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■ This can be extended from pairs of (real) random variables to n-uples of (real) random variables.

■ Let us consider a random vector X with values in R
n.

■ The mean vector of X = (X1, . . . , Xn) is the vector mX in R
n defined as

mX = E{X} =







E{X1}
...

E{Xn}






.

■ The correlation matrix of X is the (n× n)-dimensional real matrix [RX ] defined as

[RX ] = E{XX
T} =







E{X1X1} . . . E{X1Xn}
...

...

E{XnX1} . . . E{XnXn}






.

■ The covariance matrix of X is the (n× n)-dimensional real matrix [CX ] defined as

[CX ] = E{(X−mX)(X−mX)
T
} =









E{(X1 − mX1
)(X1 − mX1

)} . . . E{(X1 − mX1
)(Xn − mXn )}

.

.

.

.

.

.

E{(Xn − mXn )(X1 − mX1
)} . . . E{(Xn − mXn )(Xn − −mXn )}









.
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■ The n-variate Gaussian PDF is the PDF of a continuous random vector given by

x
1

x
2

ρ X
1,X

2(x
1,x

2)

ρX(x) =
1

√

(2π)ndet[C]
exp

(

−1

2
(x−m)T[C]−1(x−m)

)

,

where the vector m in R
n and the (n× n)-dimensional real matrix [C] are parameters of the PDF;

in fact, m and [C] are the mean vector and the covariance matrix, respectively, that is,

E{X} = m and E{(X − E{X})(X − E{X})T} = [C].
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Convergence of random variables
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■ Probability theory offers several ways in which a sequence of random variables can be considered

to converge, namely, convergence almost surely, convergence in distribution, convergence in mean

square, and convergence in probability among other ways.

■ Let us consider a sequence of random vectors {Xν}+∞
ν=0 with values in R

n and a random vector

X with values in R
n. Then, we have that

◆ limν→∞ Xν
a.s.
= X if and only if P

(

limν→∞ Xν = X}
)

= 1.

◆ limν→∞ Xν
distr.
= X if and only if limν→∞ PXν

= PX .

◆ limν→∞ Xν
m.s.
= X if and only if limν→∞ E{‖Xν −X‖2} = 0.

◆ limν→∞ Xν
prob.
= X if and only if for every ǫ > 0, limν→∞ P

(

‖Xν −X‖ ≥ ǫ}
)

= 0.

■ These modes of convergence are related as follows:

convergence
almost surely

))❙
❙❙

❙❙
❙❙

convergence
in probability

// convergence
in distribution

convergence
in mean square

55❦❦❦❦❦❦❦❦
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