MECA0010 – Reliability and stochastic modeling of engineered systems

Notations and review of background material

Maarten Arnst and Marco Lucio Cerquaglia

September 20, 2017

Outline

- System of notation.
- Fundamentals of probability.
 - Events and probability.
 - Mathematics of probability.
- Stochastic models of random phenomena.
 - Random variables and probability distributions.
 - Useful probability distributions.
 - Multiple random variables.
- Convergence of random variables.

System of notation

A lowercase letter, for example, x, is a real deterministic variable.

A boldface lowercase letter, for example, $\boldsymbol{x} = (x_1, \ldots, x_n)$, is a real deterministic vector.

An uppercase letter, for example, X, is a real random variable. Exceptions: P (probability), Γ (gamma function), and E (expectation operator).

A boldface uppercase letter, for example, $X = (X_1, \ldots, X_n)$, is a real random vector.

An uppercase letter between square brackets, for example, [A], is a real deterministic matrix.

A boldface uppercase letter between square brackets, for example, [A], is a real random matrix.

Fundamentals of probability

Events and probability

- Probability triple $(\mathcal{S}, \mathcal{E}, P)$
 - ${\mathcal S}$ "sample space"
 - ${\mathcal E}$ "event space"
 - P "probability"

- Axioms of probability:
 - (1) $P(\mathcal{A}) \ge 0$ for any event \mathcal{A} in \mathcal{E} , (2) $P(\mathcal{S}) = 1$ for the "certain event" \mathcal{S} , (3) $P(\mathcal{A} \cup \mathcal{B}) = P(\mathcal{A}) + P(\mathcal{B})$ for any two mutually exclusive events \mathcal{A} and \mathcal{B} in \mathcal{E} .

Addition rule:

$$P(\mathcal{A} \cup \mathcal{B}) = P(\mathcal{A}) + P(\mathcal{B}) - P(\mathcal{A} \cap \mathcal{B}).$$

Note that $P(\mathcal{A} \cap \mathcal{B}) = 0$ if \mathcal{A} and \mathcal{B} are mutually exclusive events.

Complement rule:

$$P(\overline{\mathcal{A}}) = 1 - P(A).$$

Conditional probability:

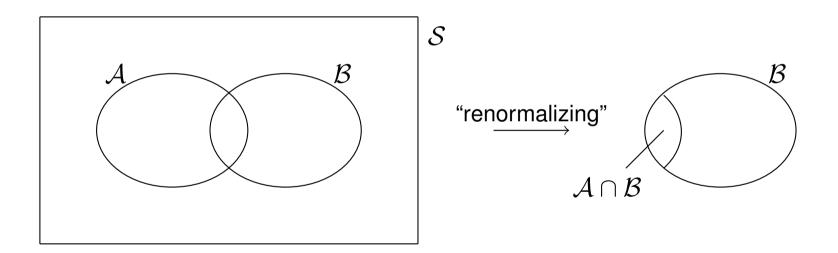
$$P(\mathcal{A}|\mathcal{B}) = \frac{P(\mathcal{A} \cap \mathcal{B})}{P(\mathcal{B})} \quad \text{if } P(\mathcal{B}) \neq 0.$$

$$P(\mathcal{A} \cap \mathcal{B}) = P(\mathcal{A}|\mathcal{B})P(\mathcal{B}) = P(\mathcal{B}|\mathcal{A})P(\mathcal{A}).$$

Mathematics of probability

Conditional probability refers to the probability of an event given/dependent on another event:

$$\begin{split} P(\mathcal{A}|\mathcal{B}) &= \frac{P(\mathcal{A} \cap \mathcal{B})}{P(\mathcal{B})} \quad \text{if } P(\mathcal{B}) \neq 0. \\ & \downarrow \\ \text{"given"} \end{split}$$



 $P(\mathcal{A}|\mathcal{B})$ is interpreted as the probability of a sample being in \mathcal{A} given that it is in \mathcal{B} . Thus, the conditional probability pertains to the samples in \mathcal{A} relative to those of \mathcal{B} , and it must thus be normalized with respect to \mathcal{B} .

Mathematics of probability

Two events \mathcal{A} and \mathcal{B} are statistically independent if the occurrence of \mathcal{A} does not affect the probability of \mathcal{B} occurring and vice versa. Thus, \mathcal{A} and \mathcal{B} are statistically independent if

$$\begin{cases} P(\mathcal{A}|\mathcal{B}) = P(\mathcal{A}), \\ P(\mathcal{B}|\mathcal{A}) = P(\mathcal{B}), \end{cases} \text{ that is, } P(\mathcal{A} \cap \mathcal{B}) = P(\mathcal{A})P(\mathcal{B}). \end{cases}$$

Multiplication rule:

$$P(\mathcal{A} \cap \mathcal{B}) = \begin{cases} P(\mathcal{A}|\mathcal{B})P(\mathcal{B}) = P(\mathcal{B}|\mathcal{A})P(\mathcal{A}) & \text{general case,} \\ P(\mathcal{A})P(\mathcal{B}) & \text{if } \mathcal{A} \text{ and } \mathcal{B} \text{ are statistically independent.} \end{cases}$$

Stochastic models of random phenomena

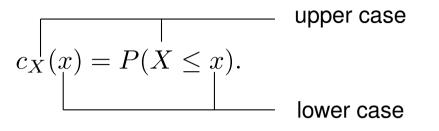
Single random variables

- Definition of a (real) random variable:
 - Let us consider a (real) random variable denoted by X (uppercase letter).
 - Sample space $S = \mathbb{R}$, that is, the sample space is the real line.
 - Event space \mathcal{E} collects events, for example,

$$\mathcal{A} = \{a < X < b\},$$
$$\mathcal{B} = \{c < X < d\},$$
$$\overline{\mathcal{A}} = \{X \le a\} \cup \{b \le X\},$$
$$\mathcal{C} = \{X = a\}.$$

 \diamond Probability P assigns probabilities to events. It satisfies the axioms of probability.

The probability P can be described by the cumulative distribution function



For a (real) random variable X, the cumulative distribution function c_X is a function from \mathbb{R} into [0, 1], which possesses the following properties owing to the axioms of probability:

 $\diamond \quad c_X(x) \ge 0,$

 c_X is monotonically increasing,

•
$$c_X(-\infty) = 0$$
 and $c_X(+\infty) = 1$.

- A discrete random variable can assume only a finite or listable infinite number of real values, e.g.,
 - rolling a dice: possible samples $\{1, 2, 3, 4, 5, 6\}$,
 - numer of microbes on a kitchen table: possible samples $\{0, 1, 2, 3, \ldots\} = \mathbb{N}$.
- The probability assigned to an elementary event can be nonzero for a discrete random variable, e.g.,
 - rolling a dice: $P(\{1\}) = 1/6$.
- A continuous random variable can assume a range of values, e.g.,
 - velocity of a car: possible samples $[0, +\infty[=\mathbb{R}^+]$.
 - The probability assigned to an elementary event is zero for a continuous random variable, e.g.,
 - velocity of a car: $P(\{75\}) = 0$ (probability that velocity is precisely 75 km/h).

The probability assigned to an interval can be nonzero for a continuous random variable, e.g.,

• velocity of a car: $P([25, 30]) = \ldots \ge 0$ (probability that velocity is between 25 and 30 km/h).

DISCRETE

probability mass function (PMF) P_X $P(X = x_i) = P_X(x_i)$

relation to CDF:

$$c_X(x) = P(X \le x)$$

$$= \sum_{x_i \le x} P(X = x_i)$$

$$= \sum_{x_i \le x} P_X(x_i).$$

properties: $0 \le P_X(x_i) \le 1$, $\sum_{x_i} P_X(x_i) = 1$.

CONTINUOUS

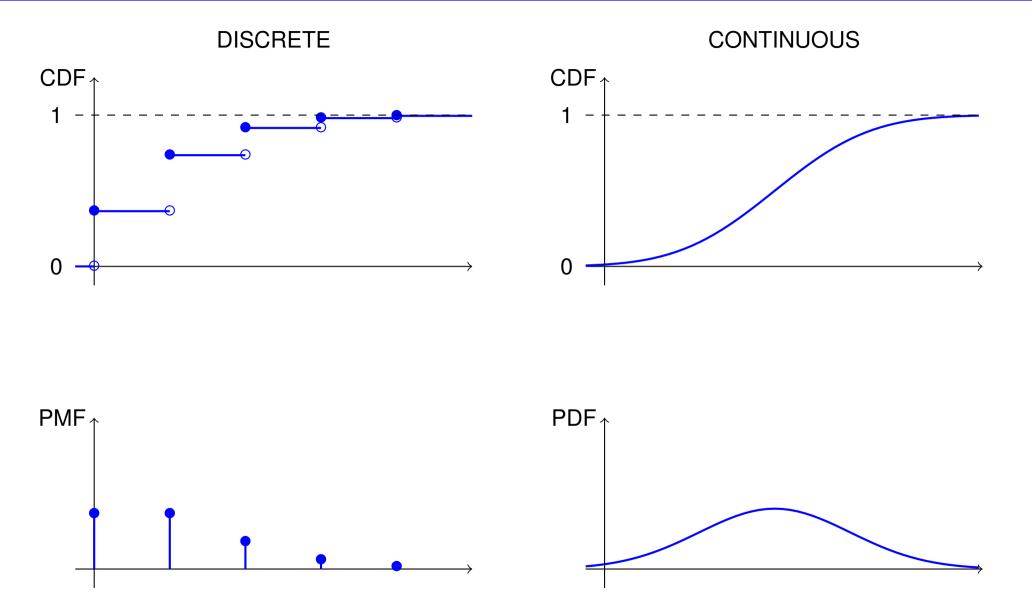
probability density function (PDF) $\begin{array}{c} \rho_X \\ P(a \leq X \leq b) = \int_a^b \rho_X(x) dx \end{array}$

relation to CDF: $c_X(x) = P(X \le x)$ $= P(-\infty \le X \le x)$

$$= \int_{-\infty}^{x} \rho_X(\xi) d\xi,$$

$$\frac{dc_X}{dx}(x) = \rho_X(x).$$

properties: $\rho_X(x) \ge 0,$ $\int_{-\infty}^{+\infty} \rho_X(x) dx = 1.$



Mean (expected value, average):

$$\overline{x} = m_X = E\{X\} = \begin{cases} \sum_{x_i} x_i P_X(x_i), & \text{(DISCRETE)}, \\ \int_{-\infty}^{+\infty} x \rho_X(x) dx, & \text{(CONTINUOUS)} \end{cases}$$

Variance (measure of dispersion):

$$\sigma_X^2 = E\{(X - m_X)^2\} = \begin{cases} \sum_{x_i} (x_i - m_X)^2 P_X(x_i), & \text{(DISCRETE)}, \\ \int_{-\infty}^{+\infty} (x - m_X)^2 \rho_X(x) dx, & \text{(CONTINUOUS)}. \end{cases}$$

"E" is the expectation operator:

$$E\{g(X)\} = \begin{cases} \sum_{x_i} g(x_i) P_X(x_i), & \text{(DISCRETE)}, \\ \int_{-\infty}^{+\infty} g(x) \rho_X(x) dx, & \text{(CONTINUOUS)} \end{cases}$$

ULg, Liège, Belgium

Coefficient of variation:

$$\delta_X = \frac{\sigma_X}{m_X}.$$

Coefficient of skewness

$$E\{(X-m_X)^3\}.$$

Coefficient of kurtosis

$$E\{(X-m_X)^4\}.$$

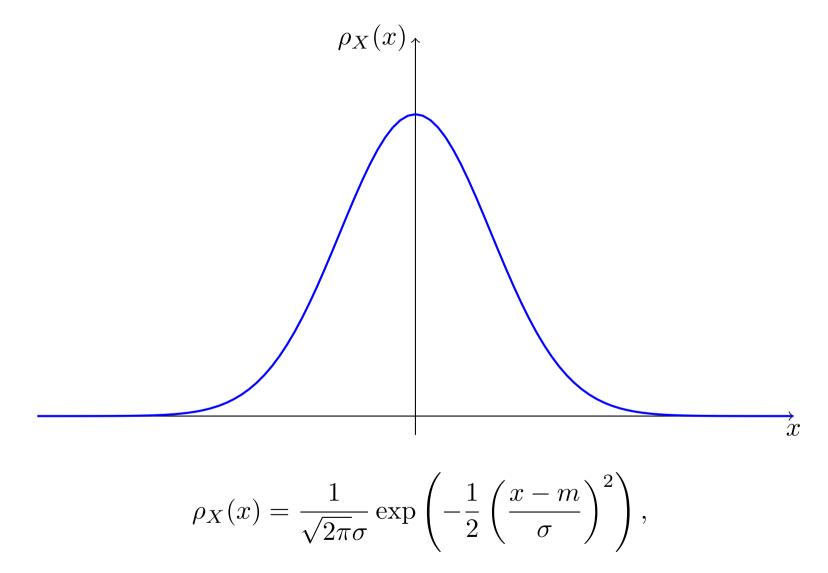
n-th moment:

 $E\{X^n\}.$

n-th central moment:

$$E\{(X-m_X)^n\}.$$

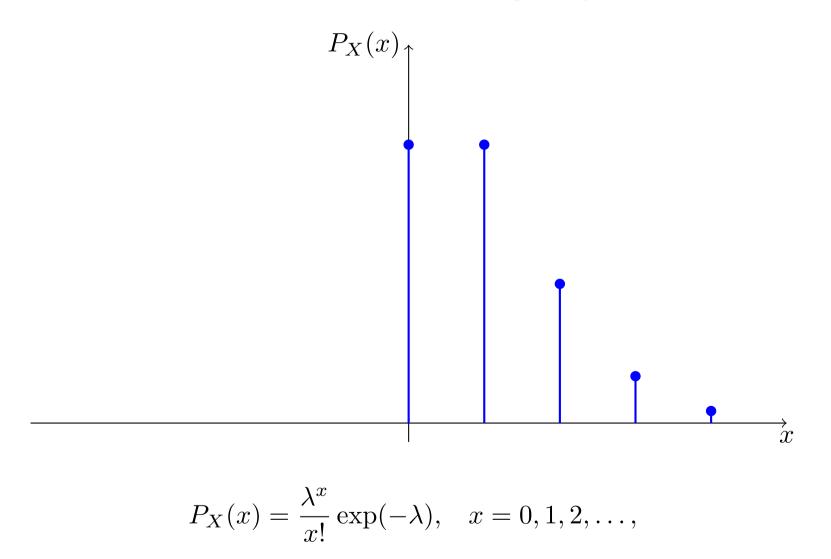
The Gaussian PDF is the PDF of a continuous random variable given by



where m and σ are parameters of the PDF; in fact, m and σ are the mean and the standard deviation, respectively, that is, $E\{X\} = m$ and $E\{(X - E\{X\})^2\} = \sigma^2$.

ULg, Liège, Belgium

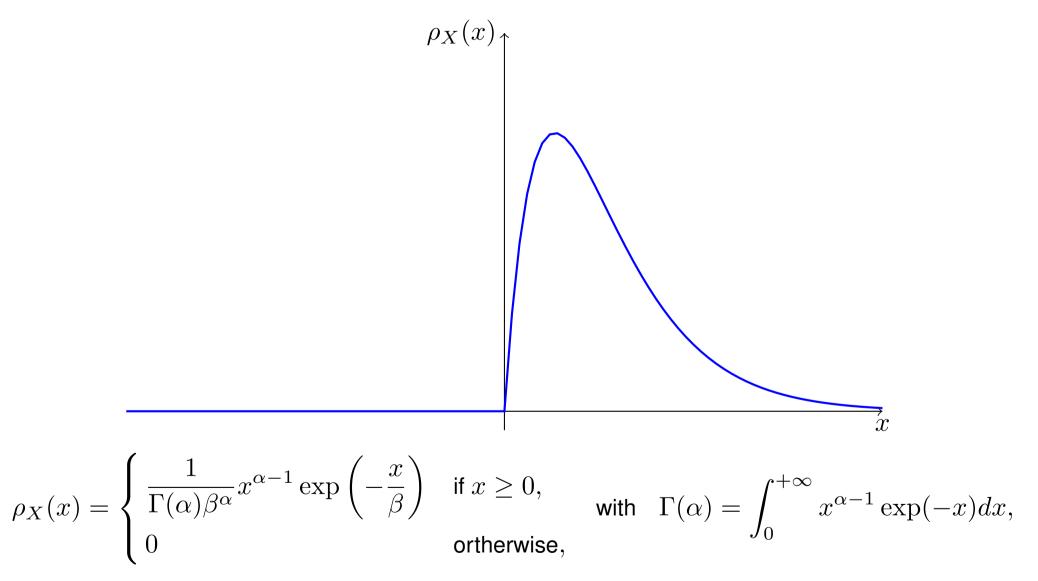
The Poisson PMF is the PMF of a discrete random variable given by



where λ is a parameter of the PMF; in fact, λ is equal to the mean and the variance, that is, $E\{X\} = E\{(X - E\{X\})^2\} = \lambda.$

ULg, Liège, Belgium

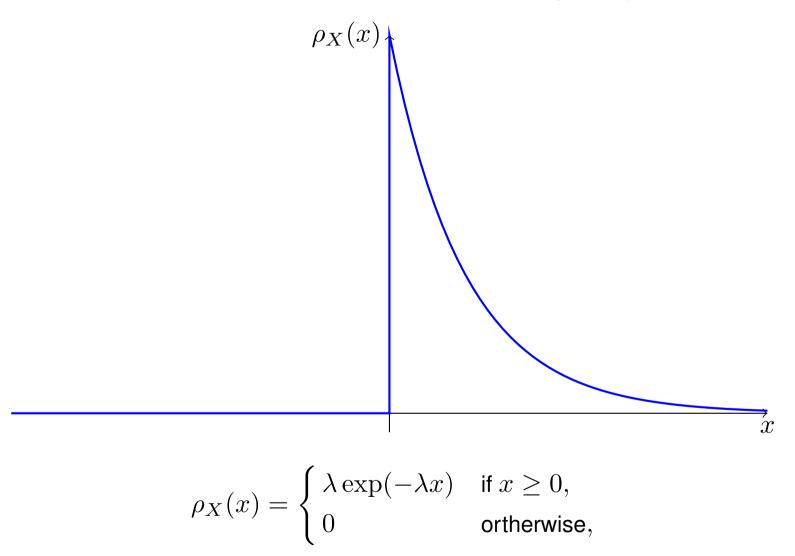
The gamma PDF is the PDF of a continuous random variable given by



where α and β are parameters of the PDF; in fact, α and β are related to the mean and the standard deviation as follows: $E\{X\} = \alpha\beta$ and $E\{(X - E\{X\})^2\} = \alpha\beta^2$.

ULg, Liège, Belgium

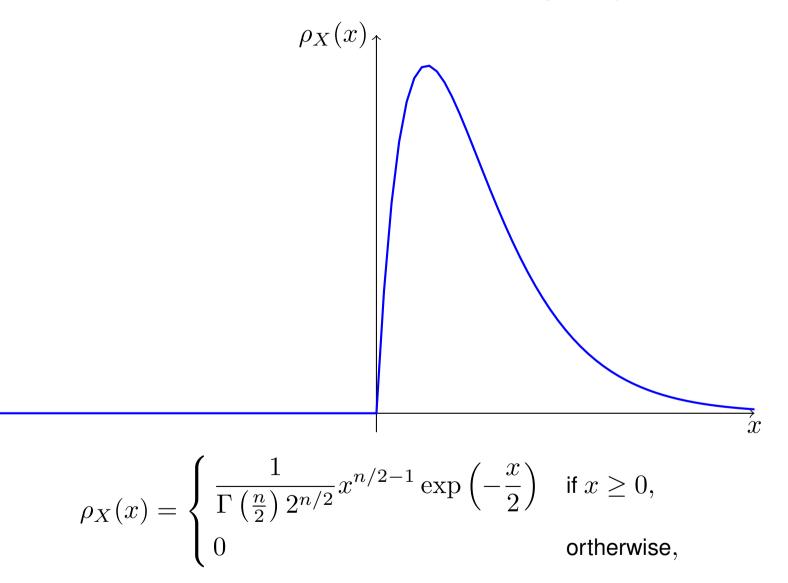
The exponential PDF is the PDF of a continuous random variable given by



where λ is a parameter of the PDF; in fact, λ is related to the mean and the standard deviation as follows: $E\{X\} = \lambda^{-1}$ and $E\{(X - E\{X\})^2\} = \lambda^{-2}$.

ULg, Liège, Belgium

The chi-squared PDF is the PDF of a continuous random variable given by



where *n* is a parameter of the PDF; in fact, *n* is related to the mean and the standard deviation as follows: $E\{X\} = n$ and $E\{(X - E\{X\})^2\} = 2n$.

ULg, Liège, Belgium

There are many other useful probability distributions:

• uniform PDF,

• Weibull PDF,

One can establish various relationships among these probability distributions:

- A gamma PDF with parameters $\alpha = 1$ and β is an exponential PDF with parameter $\lambda = \beta^{-1}$.
- A gamma PDF with parameters $\alpha = n/2$ and $\beta = 2$ is a chi-squared PDF with parameter n.
- The sum of n statistically independent Gaussian random variables with mean 0 and standard deviation 1 is a chi-squared random variable with parameter n.

For a pair of (real) random variables X and Y, the joint probability P can be described using the joint cumulative distribution function

$$c_{X,Y}(x,y) = P(X \le x, Y \le y).$$

For a pair of (real) random variables X and Y, the cumulative distribution function $c_{X,Y}$ is a function from $\mathbb{R} \times \mathbb{R}$ into [0, 1], which possesses the following properties:

$$\diamond \quad c_{X,Y}(x,y) \ge 0,$$

• $c_{X,Y}$ is monotonically increasing,

•
$$c_{X,Y}(-\infty, -\infty) = 0, c_{X,Y}(-\infty, y) = 0, c_{X,Y}(x, -\infty) = 0, c_{X,Y}(+\infty, y) = c_Y(y),$$

 $c_{X,Y}(x, +\infty) = c_X(x), \text{ and } c_{X,Y}(+\infty, +\infty) = 1.$

DISCRETE

probability mass function (PMF) $P_{X,Y}$

relation to CDF:

$$c_{X,Y}(x,y) = P(X \le x, Y \le y)$$

$$= \sum_{x_i \le x} \sum_{y_j \le y} P_{X,Y}(x_i, y_j).$$

probability density function (PDF)

CONTINUOUS

 $\rho_{X,Y}$ $P(X = x_i, Y = y_j) = P_{X,Y}(x_i, y_j) \qquad P(a \le X \le b, c \le Y \le d) = \int_a^b \int_c^d \rho_{X,Y}(x, y) dx dy$

relation to CDF:

$$c_{X,Y}(x,y) = P(X \le x, Y \le y)$$

$$= \int_{-\infty}^{x} \int_{-\infty}^{y} \rho_{X,Y}(\xi,\zeta) d\xi d\zeta,$$

$$\frac{\partial^2 c_{X,Y}}{\partial x \partial y}(x,y) = \rho_{X,Y}(x,y).$$

properties: $0 \le P_{X,Y}(x_i, y_j) \le 1,$ $\sum_{x_i} \sum_{y_i} P_{X,Y}(x_i, y_j) = 1.$

properties:

$$\rho_{X,Y}(x,y) \ge 0,$$

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \rho_{X,Y}(x,y) dx dy = 1.$$

For a pair of discrete random variables X and Y, we obtain conditional PMFs as

$$P_{X|Y}(x_i|y_j) = \frac{P_{X,Y}(x_i, y_j)}{P_Y(y_j)} \quad \text{if } P_Y(y_j) \neq 0,$$
$$P_{Y|X}(y_j|x_i) = \frac{P_{X,Y}(x_i, y_j)}{P_X(x_i)} \quad \text{if } P_X(x_i) \neq 0.$$

For a pair of discrete random variables X and Y, we obtain the marginal PMFs as

$$P_X(x_i) = \sum_{y_j} P_{X,Y}(x_i, y_j),$$
$$P_Y(y_j) = \sum_{x_i} P_{X,Y}(x_i, y_j).$$

If two discrete random variables X and Y are statistically independent, then we have

$$\begin{array}{l} P_{X,Y}(x_i|y_j) = P_X(x_i), \\ P_{Y|X}(y_j|x_i) = P_Y(y_j), \end{array} \text{ hence } P_{X,Y}(x_i,y_j) = P_X(x_i)P_Y(y_j). \end{array}$$

ULg, Liège, Belgium

For a pair of continuous random variables X and Y, we obtain conditional PMFs as

$$\begin{split} \rho_{X|Y}(x|y) &= \frac{\rho_{X,Y}(x,y)}{\rho_Y(y)} \quad \text{if } \rho_Y(y) \neq 0, \\ \rho_{Y|X}(y|x) &= \frac{\rho_{X,Y}(x,y)}{\rho_X(x)} \quad \text{if } \rho_X(x) \neq 0. \end{split}$$

For a pair of continuous random variables X and Y, we obtain the marginal PMFs as

$$\rho_X(x) = \int_{-\infty}^{+\infty} \rho_{X,Y}(x,y) dy,$$
$$\rho_Y(y) = \int_{-\infty}^{+\infty} \rho_{X,Y}(x,y) dx.$$

If two continuous random variables X and Y are statistically independent, then we have

$$\begin{aligned} \rho_{X,Y}(x|y) &= \rho_X(x), \\ \rho_{Y|X}(y|x) &= \rho_Y(y), \end{aligned} \text{ hence } \rho_{X,Y}(x,y) &= \rho_X(x)\rho_Y(y). \end{aligned}$$

The joint second moment of two random variables \boldsymbol{X} and \boldsymbol{Y} is defined as

$$E\{XY\} = \begin{cases} \sum_{x_i} \sum_{y_j} x_j y_j P_{X,Y}(x_i, y_j), & \text{(DISCRETE)}, \\ \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} xy \rho_{X,Y}(x, y) dx dy, & \text{(CONTINUOUS)} \end{cases}$$

The joint second central moment of two random variables X and Y is defined as

$$E\{(X-m_X)(Y-m_Y)\} = \begin{cases} \sum_{x_i} \sum_{y_j} (x_j - m_X)(y_j - m_Y) P_{X,Y}(x_i, y_j), & \text{(DISCRETE)}, \\ \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} (x - m_X)(y - m_Y) \rho_{X,Y}(x, y) dx dy, & \text{(CONTINUOUS)}. \end{cases}$$

The correlation coefficient of two random variables X and Y is defined as

$$\rho = \frac{E\{(X - m_X)(Y - m_Y)\}}{\sigma_X \sigma_Y} \quad \text{with} \quad -1 \le \rho \le 1.$$

ULg, Liège, Belgium

This can be extended from pairs of (real) random variables to n-uples of (real) random variables.

Let us consider a random vector old X with values in $\mathbb{R}^n.$

I The mean vector of $m{X}=(X_1,\ldots,X_n)$ is the vector $m{m}_{m{X}}$ in \mathbb{R}^n defined as

$$\boldsymbol{m}_{\boldsymbol{X}} = E\{\boldsymbol{X}\} = \begin{bmatrix} E\{X_1\} \\ \vdots \\ E\{X_n\} \end{bmatrix}$$

The correlation matrix of $m{X}$ is the (n imes n)-dimensional real matrix $[R_{m{X}}]$ defined as

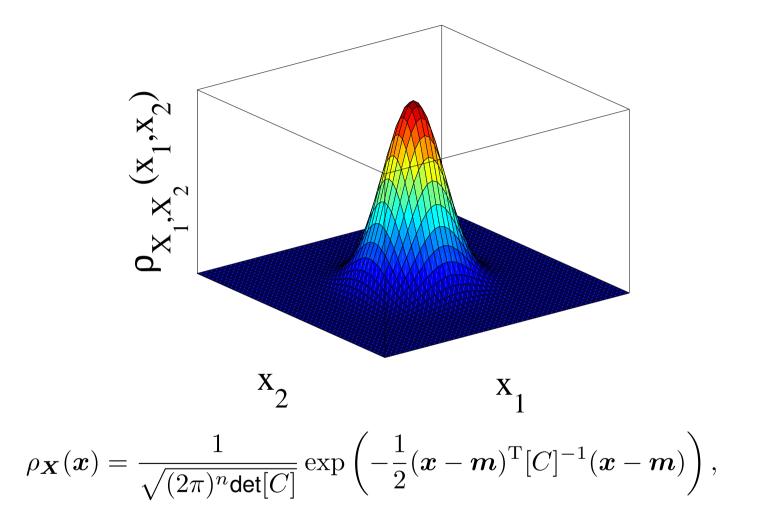
$$[R_{\boldsymbol{X}}] = E\{\boldsymbol{X}\boldsymbol{X}^{\mathrm{T}}\} = \begin{bmatrix} E\{X_{1}X_{1}\} & \dots & E\{X_{1}X_{n}\}\\ \vdots & & \vdots\\ E\{X_{n}X_{1}\} & \dots & E\{X_{n}X_{n}\} \end{bmatrix}.$$

The covariance matrix of ${m X}$ is the (n imes n)-dimensional real matrix $[C_{{m X}}]$ defined as

$$[C_{\mathbf{X}}] = E\{(\mathbf{X} - \mathbf{m}_{\mathbf{X}})(\mathbf{X} - \mathbf{m}_{\mathbf{X}})^{\mathrm{T}}\} = \begin{bmatrix} E\{(X_{1} - m_{X_{1}})(X_{1} - m_{X_{1}})\} & \dots & E\{(X_{1} - m_{X_{1}})(X_{n} - m_{X_{n}})\} \\ \vdots & \vdots \\ E\{(X_{n} - m_{X_{n}})(X_{1} - m_{X_{1}})\} & \dots & E\{(X_{n} - m_{X_{n}})(X_{n} - -m_{X_{n}})\} \end{bmatrix}$$

ULg, Liège, Belgium

The n-variate Gaussian PDF is the PDF of a continuous random vector given by



where the vector \boldsymbol{m} in \mathbb{R}^n and the $(n \times n)$ -dimensional real matrix [C] are parameters of the PDF; in fact, \boldsymbol{m} and [C] are the mean vector and the covariance matrix, respectively, that is, $E\{\boldsymbol{X}\} = \boldsymbol{m}$ and $E\{(\boldsymbol{X} - E\{\boldsymbol{X}\})(\boldsymbol{X} - E\{\boldsymbol{X}\})^{\mathrm{T}}\} = [C].$

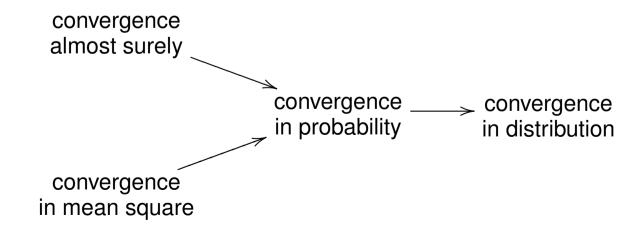
ULg, Liège, Belgium

Convergence of random variables

Convergence of random variables

- Probability theory offers several ways in which a sequence of random variables can be considered to converge, namely, convergence almost surely, convergence in distribution, convergence in mean square, and convergence in probability among other ways.
- Let us consider a sequence of random vectors $\{X_{\nu}\}_{\nu=0}^{+\infty}$ with values in \mathbb{R}^n and a random vector X with values in \mathbb{R}^n . Then, we have that
 - $\lim_{\nu \to \infty} X_{\nu} \stackrel{\text{a.s.}}{=} X$ if and only if $P(\lim_{\nu \to \infty} X_{\nu} = X) = 1.$
 - $\lim_{\nu \to \infty} X_{\nu} \stackrel{\text{distr.}}{=} X$ if and only if $\lim_{\nu \to \infty} P_{X_{\nu}} = P_X$.
 - $\lim_{\nu \to \infty} X_{\nu} \stackrel{\text{m.s.}}{=} X$ if and only if $\lim_{\nu \to \infty} E\{\|X_{\nu} X\|^2\} = 0.$
 - $\lim_{\nu \to \infty} X_{\nu} \stackrel{\text{prob.}}{=} X$ if and only if for every $\epsilon > 0$, $\lim_{\nu \to \infty} P(\|X_{\nu} X\| \ge \epsilon\}) = 0$.

These modes of convergence are related as follows:



Suggested reading material

L. Wehenkel. Eléments du calcul des probabilités. ULg, 2013.

Additional references also consulted to prepare this lecture

A. Ang and W. Tang. Probability concepts in engineering. John Wiley & Sons, 2007.

C. Soize. The Fokker–Planck equation for stochastic dynamical systems and its explicit steady state solutions. World Scientific Publishing, 1994.