Radial Velocities and Atmospheric Parameters of Field Stars Suitable for RAVE Tests

M. Valentini and U. Munari
INAF - Osservatorio Astronomico di Padova, sede di Asiago, Via dell'Osservatorio 8, I-36012 Asiago, Italy

Abstract

With the Asiago 1.82m telescope + Echelle spectrograph we have obtained high resolution spectra of 25 RAVE targets well distributed in atmospheric parameters. From them we have derived radial velocities and $T_{\text {eff }}, \log g$, $[\mathrm{M} / \mathrm{H}], V_{\text {rot }} \sin i$ to the aim of serving as an external test for corresponding values derived from RAVE spectra.

RAVE is a spectroscopic survey of high galactic latitude field stars aiming to investigate galactic kinematics and chemistry. Spectra at a resolving power 7500 are collected over the range $8400-8800 \AA$ with the 6 dF multi-fiber spectrograph operating on the UK Schmidt telescope at AAO (Australia). At the time of writing, RAVE has already secured 175000 spectra. Steinmetz et al. (2006) described the project and the first data release. The second one (Zwitter et al., in preparation) is planned to deliver also atmospheric parameters $T_{\text {eff }}, \log g$ and $[\mathrm{M} / \mathrm{H}]$ in addition to radial velocities. At the faint RAVE magnitudes there are very few targets for which radial velocities and atmospheric parameters have been derived in literature by means of high resolution spectroscopy. Such stars would be quite useful to serve as an external test of the accuracy of RAVE results.

To fill the gap, we have observed with the Asiago 1.82 m telescope and Echelle spectrograph (resolving power $R_{P}=20000$ and wavelength range 5100$6000 \AA$) a sample of 25 RAVE targets selected from those to be included in the second data release, aiming to span a wide range in $T_{\text {eff }}, \log g,[\mathrm{M} / \mathrm{H}]$ and $V_{\text {rot }} \sin i$. In addition, some of the targets have been selected because they show emission line cores (marked by a bullet in Table 1). As expected, all fast rotating cool stars also have active chromoespheres traced by emission line cores. Radial velocity and atmospheric parameters have been obtained via χ^{2} fitting to $R_{\mathrm{P}}=20000$ version of the synthetic spectral library of Munari et al. (2005). They are listed in Table 1. Five of program stars have been observed twice at different dates to evaluate internal consistency of the derived results, which turned out to be appreciably high: the mean differences between the two observations for the five repeated stars is Δ Rad.Vel. $=0.4 \mathrm{~km} / \mathrm{s}, \Delta T_{\text {eff }}=67^{\circ} \mathrm{K}$, $\Delta \log g=0.32, \Delta[\mathrm{M} / \mathrm{H}]=0.13$.

Acknowledgments. We would like to thank A. Siviero, L. Tomasella and M. Fiorucci for their assistance in the project.

References

Munari, U., et al. 2005, A\&A, 442, 1127
Steinmetz, M., et al. 2006, AJ, 132, 1645

Valentini and Munari

