The Internet:

A Global Telecommunications Solution?

Laurent Mathy, Christopher Edwards, and David Hutchison, Lancaster University

Abstract

The provision and support of new distributed multimedia services are of prime con-
cern for telecommunications operators and suppliers. Clearly, the potential of the
latest Internet protocols to contribute communications components is of considerable
interest to them. In this article we first review some of the new types of application
and their requirements, and identify the need to support applications that have
strict QoS requirements, the so-called critical applications. We review two propos-
als for enhancing the Internet service architecture. In addition to the integrated ser-
vices work of the IETF, we look at the more recent proposals for differentiated
services in the Internet. We then individually review recent protocol developments
proposed to improve the Internet, and to support real-time and multimedia commu-
nications. These are IPv6 (the new version of the Internet Protocol), Resource reSer-
Vation Protocol, and Multiprotocol Label Switching, respectively. In each case, we
attempt to provide critical reviews in order to assess their suitability for this pur-
pose. Finally, we indicate what the basis of the future infrastructure might be in

order to support the full variety of application requirements.

ne of the key requirements in deploying a perva-

sive and ubiquitous information superhighway is

the development of a global integrated telecom-

munications infrastructure capable of physically
moving users’ information among geographically separated
points. This global communication network will not only have
to cope with the amount of traffic generated by the tremendous
number of anticipated users, but will also have to deal with a
wide spectrum of traffic characteristics. This is because the net-
work will have to support, simultaneously, applications that
have a wide range of expectations and requirements.

Among the networks available today, those based on the con-
cept of packet switching offer the highest potential degree of
flexibility to meet the different application requirements, and
therefore offer the best available technology on which the global
telecommunications infrastructure could rely. Because it already
connects millions of users, the Internet is the uncontested prime
candidate to constitute the core of a global infrastructure.

The Internet was originally designed to move files among
computers as well as to allow remote access to computers.
Such tasks have somewhat loose time requirements, and have
led to a simple and scalable network design that offers a best-
effort service, in which the network does not guarantee any-
thing, not even delivery of the data. This best-effort service
stems from a clear design policy to trade everything possible
for simplicity. Because the major applications that first used
the network could cope with a wide range of provided service
quality (such applications are often said to be elastic), the net-
work’s simplicity allowed wide deployment of the technology.

However, with time, the Internet has perhaps become a vic-
tim of its own success. Now that more and more people realize
the tremendous potential represented by a global communica-
tion network, they expect it to be able to provide support for a
huge range of applications. We contend that, in order to do this
successfully, the time has come for the Internet to evolve. This
evolution has to follow along several lines. First, it must accom-
modate a fast-increasing number of users, and must be upgrad-
ed to cope with an even faster-increasing traffic load.
Furthermore, in a commercial context, the flat best-effort ser-
vice provided by the network may not be the most appropriate
any longer: customers requiring the assurance of better quality
of service (QoS), and willing to pay more, should be able to get
better service than customers paying the basic rate. Therefore,
even without fundamentally modifying the sorts of service pro-
vided, we already see a need for some sort of quality discrimi-
nation within the service. Also, new types of distributed
real-time applications are expected to use the global communi-
cation infrastructure. Such applications have more stringent
time requirements than elastic ones, and consequently will
require new classes of service from the network. Somehow, if it
is to become the core technology in the global infrastructure,
the Internet must be able to provide such services.

We first briefly outline a taxonomy of applications and their
requirements. Then we individually review recent developments
and research results proposed to improve the Internet. We ana-
lyze two service architectures that have been proposed to
extend the set of communication services in the Internet (cur-
rently limited to a “flat” best-effort service). We then present

46 0890-8044/00/$10.00 © 2000 IEEE

IEEE Network < July/August 2000

what we believe to be the most prominent protocols and tech-
niques that have been designed for the implementation of the
service architectures described later, placing them in the con-
text of the two previous sections. Then we try to give a “glob-
al” picture of the evolution trends in the Internet as the
potential core of a global communication infrastructure.

The reader should note that many important developments,
other than those discussed in this article, are also being car-
ried out within the Internet community (e.g., multicast QoS
routing, security, and reliable multicast, to name but a few).
These have been left out because we aim to focus the reader’s
attention on a “communication service” argument.

We also wish to emphasize that the views presented in this
article are the authors’ only and do not represent any consen-
sus within the Internet research community (such a consensus
does not exist).

Finally, it should be noted that the material presented within
this article uses what the authors believe to be an accurate
snapshot of the status of the various areas discussed at the time
of writing. It is clear that as time progresses, various “work in
progress” references used within the article will be enhanced,
although the impact of this is expected to be minimal given that
fundamental issues are likely to remain unchanged.

Application Requirements

In packet-switched networks, the bulk of traffic has so far
been generated by elastic applications. Because the pieces of
data exchanged by such applications are carried over the net-
work as packets that have few time constraints, we call such
traffic discrete media. The lack of time constraints on the
packets allows the network to view them as loosely coupled.
In fact, in the Internet, the basic service is provided by consid-
ering the data packets independent of each other (such pack-
ets are called datagrams). As already mentioned, elastic
applications are essentially composed of file transfers.

However, some elastic applications exhibit a degree of
interactivity, and therefore have additional performance
requirements. Although these requirements may in some
cases be quite loose and dependent on the variable demands
of human users, minima can nevertheless be determined. For
instance, the World Wide Web, the most important applica-
tion on the Internet today, makes extensive use of on-demand
file transfers between servers and clients. Because the per-
ceived “quality” of the transfers depends on the users, their
moods, the purpose of the transfers, as well as many other
factors, strict performance requirements cannot easily be
identified. On the other hand, it is generally recognized that
any user would “give up” browsing if each page transfer took
several minutes. Such time constraints may also be linked with
economic reasons, when users pay for their access links in
proportion to the time of use (as is the case when connecting
via a modem in most European countries).

In addition to discrete media, applications increasingly
make use of continuous media, thanks to advances in coding
technology and the availability of multimedia computers. In
continuous media, specifically video and audio, the data have
intrinsic temporal and spatial relationships that must be
respected for these forms of data to make sense. The perfor-
mance requirements of continuous media are closely linked to
their perceived quality.

Techniques have been devised whereby the playout quality of
continuous media is adjusted to match the instantaneous capa-
bilities of a system, and in particular of a network. Such tech-
nigques, used by adaptive applications, allow the use of multimedia
applications on best-effort networks such as the Internet. How-
ever, even the best adaptive techniques are powerless when fac-

ing the poorest conditions in a network; and, as a consequence,
guarantees cannot generally be given as to the quality delivered
by adaptive applications on best-effort networks. On the other
hand, in order that distributed multimedia applications become
ubiquitous, especially in a commercial environment, there is a
need for a communication platform that is able to provide bet-
ter control and guarantees over performance. Indeed, for com-
mercial use of applications such as teleteaching,
teleconferencing, medical telediagnostics, video/entertainment
on demand, and distributed games, starting a communication
session may be worthwhile only if some minimum performance
can be guaranteed throughout its duration. These can collective-
ly be called critical applications. Critical applications can further
be classified into intolerant applications, which do not tolerate
any deviation from their expressed requirements (e.g., interac-
tive games, some control applications), and tolerant applications,
which essentially have nominal requirements but use adaptive
techniques to deal with occasional violations of these require-
ments (e.g., interactive voice applications).

Typically, the requirements of critical applications can be
expressed as a (sub)set of values representing bandwidth,
delay, jitter, and loss rate constraints for the network. In order
to be able to meet these constraints throughout the lifetime of
a communication session, the components of the network (or
at least the subset representing those “manipulating” the
packets of the session) must be aware of their values and must
cooperate in taking actions to enforce these bounds. To that
end, a network component has to take part in some or all of
the following general activities: admission control, resource
reservation, packet scheduling, traffic policing, and signaling,
in order to enforce the traffic constraints of a session.

It should be clear that because of their very different charac-
teristics, elastic, adaptive, and critical applications! cover separate
regions of a wide spectrum of demand. In other words, these dif-
ferent types of application complement, rather than compete
with, each other. A global telecommunications infrastructure will
therefore have to support all of them simultaneously and, if pos-
sible, seamlessly. This calls for the design of a network where the
overhead associated with each type of application is no greater
than necessary. In the next section we review potentially promis-
ing approaches to providing such support in the Internet. Our
conjecture is that these, in combination, may provide the sort of
support required by the spectrum of applications.

Proposals for an Enhanced Internet Service
Architecture

In this section we present and discuss the integrated services
(IntServ) and more recent differentiated services (DiffServ)
architectures as proposals for enhancing service provision
within the Internet.

Integrated Services

An Overview of IntServ — In the IntServ architecture [1],
three classes of service are proposed based on applications’
delay requirements. These are the guaranteed-service class,
which provides for delay-bounded service agreements; the
controlled-load service class, which provides for a form of sta-
tistical delay service agreement (nominal mean delay) that will
not be violated more often than in an unloaded network; and
the well-known best-effort service, which is further partitioned

1 This categorization of applications is an approximation. Applications
certainly make up a continuous spectrum, but we believe the categories
described in this section represent the majority of the application spectrum.

IEEE Network = July/August 2000

47

into three categories: interactive burst (e.g., Web), interactive
bulk (e.g., FTP) and asynchronous (e.g., e-mail).

The main point is that the guaranteed service and con-
trolled load classes are based on quantitative service require-
ments, and both require signaling and admission control in
network nodes. These services can be provided either per-flow
or per-flow-aggregate, depending on flow concentration at dif-
ferent points in the network. Although the IntServ architec-
ture need not be tied to any particular signaling protocol,
Resource Reservation Protocol (RSVP), described below, is
often regarded as the signaling protocol in IntServ. Best-effort
service, on the other hand, does not require signaling.

Advantages of IntServ — The major advantage of IntServ is
that it provides service classes which closely match the differ-
ent application types described earlier and their requirements.
For example, the guaranteed service class is particularly well
suited to the support of critical, intolerant applications. On
the other hand, critical, tolerant applications and some adap-
tive applications can generally be efficiently supported by con-
trolled load services. Other adaptive and elastic applications
are accommodated in the best-effort service class.

A major characteristic of IntServ it that it leaves the exist-
ing best-effort service class mostly unchanged (except for a
further subdivision of the class), so it does not involve any
change to existing applications. This is an important property
since IntServ is then capable of providing this class of service
as efficiently as the current Internet. IntServ also leaves the
forwarding mechanism in the network unchanged. This allows
for an incremental deployment of the architecture, while
allowing end systems that have not been upgraded to support
IntServ to be able to receive data from any IntServ class (with,
of course, a possible loss of guarantee).

IntServ provides a very interesting set of service classes
that, although maybe not ideal, represent an excellent approx-
imation of the kind of services required in a global telecom-
munication platform since it does not discriminate against any
applications.

Disadvantages of IntServ — End-to-end service guarantees
cannot be supported unless all nodes along the route support
IntServ. This is obviously so because any “pure” best-effort
node along any route can treat packets in such a way that the
end-to-end service agreements are violated.

Although it is recognized that the support of per-flow guar-
antees in the core of the Internet will pose severe scalability
problems [2], it is our belief that the problem of flow aggrega-
tion has not been thoroughly studied yet and needs more
research effort. It is crucial to solve this problem in advance
of widespread deployment of the IntServ architecture, espe-
cially in the core of the network.

Finally, the subclassing of best-effort service, although
already a significant improvement on the flat best-effort ser-
vice currently provided in the Internet, may be considered
somewhat “rough” in a commercial network. We believe it
could be profitable to have finer-grained subclassing of the
best-effort service class.

Differentiated Services

An Overview of DiffServ — To provide QoS support, a net-
work must somehow allow for controlled unfairness in the use
of its resources. As we will show later, controlling to a granu-
larity as fine as a flow of data requires advanced signaling
protocols. By recognizing that most of the data flows generat-
ed by different applications can be ultimately classified into a
few general categories (i.e., traffic classes), the DiffServ archi-
tecture [3] aims at providing simple and scalable service dif-

ferentiation. It does this by discriminating and treating the
data flows according to their traffic class, thus providing a log-
ical separation of the traffic in the different classes.

In DiffServ, scalability and flexibility are achieved by follow-
ing a hierarchical model for network resource management:
= Interdomain resource management: unidirectional service

levels, and hence traffic contracts, are agreed at each

boundary point between a customer2 and a provider for the
traffic entering the provider network.

= Intradomain resource management: the service provider is
solely responsible for the configuration and provisioning of
resources within its domain (i.e., the network). Further-
more, service policies are also left to the provider.

At their boundaries, service providers build their offered
services with a combination of traffic classes (to provide con-
trolled unfairness), traffic conditioning (a function that modi-
fies traffic characteristics to make it conform to a traffic
profile and thus ensure that traffic contracts are respected),
and billing (to control and balance service demand). Provi-
sioning and partitioning of both boundary and interior
resources are the responsibility of the service provider and, as
such, outside the scope of DiffServ. For example, DiffServ
does not impose either the number of traffic classes or their
characteristics on a service provider.

Although traffic classes are nominally supported by interior
routers, DiffServ does not impose any requirement on interior
resources and functionalities. For example, traffic conditioning
(i.e., metering, marking, shaping, or dropping) in the interior of
a network is left to the discretion of the service providers.

If each packet conveyed across a service provider’s network
simply carries in its header an identification of the traffic class
(called a DS codepoint) to which it belongs, the network can
easily provide a different level of service to each class. It does
this by appropriately treating the corresponding packets, say,
by selecting the appropriate per-hop behavior (PHB) for each
packet. In both IPv4 and IPv6, the traffic class is denoted by
use of the DS header field.

It must be noted that DiffServ is based on local service
agreements at customer/provider boundaries. Therefore, end-
to-end services will be built by concatenating such local agree-
ments at each domain boundary along the route to the final
destination. The concatenation of local services to provide
meaningful end-to-end services is still an open research issue.

The net result of the DiffServ approach is that per-flow
state is avoided within the network, since individual flows are
aggregated in classes.

Benefits of DiffServ — The DiffServ architecture is an elegant
way to provide much needed service discrimination within a
commercial network. Customers willing to pay more will see
their applications receive better service than those paying less.
This scheme exhibits an “auto-funding” property: “popular”
traffic classes generate more revenues, which can be used to
increase their provisioning.

A traffic class is a predefined aggregate of traffic. Compared
with the aggregate of flows described earlier, traffic classes in
DiffServ are accessible without signaling, which means they are
readily available to applications without any setup delay. Con-
sequently, traffic classes can provide qualitative or relative ser-
vices to applications that cannot express their requirements

2 A customer can be either a host (directly connected to the provider net-
work) or a network (e.g., an Internet service provider network connected to
a transit network). Note that at any boundary point between two domains,
each network is in turn customer and provider, depending on the direction
of traffic.

48

IEEE Network = July/August 2000

quantitatively. This conforms to the original design philosophy
of the Internet. An example of qualitative service is “traffic
offered at service level A will be delivered with low latency,”
while a relative service could be “traffic offered at service level
A will be delivered with higher probability than traffic offered
at service level B.” Quantitative services can also be provided
by DiffServ. A quantitative service might be “90 percent of in-
profile traffic offered at service level C will be delivered.”

Since the provisioning of traffic classes is left to the
provider’s discretion, this provisioning can, and in the near
future will, be performed statically and manually. Hence,
existing management tools and protocols can be used to that
end. However, this does not rule out the possibility of more
automatic procedures for provisioning.

The only functionality actually imposed by DiffServ in inte-
rior routers is packet classification. This classification is sim-
plified from that in RSVP because it is based on a single IP
header field containing the DS codepoint, rather than multi-
ple fields from different headers. This has the potential of
allowing functions performed on every packet, such as traffic
policing or shaping, to be done at the boundaries of domains,
so forwarding is the main operation performed within the
provider network.

Another advantage of DiffServ is that the classification of
the traffic, and the subsequent selection of a DS codepoint for
the packets, need not be performed in the end systems. Indeed,
any router in the stub network where the host resides, or the
ingress router at the boundary between the stub and provider
networks, can be configured to classify (on a per-flow basis),
mark, and shape the traffic from the hosts. Such routers are
the only points where per-flow classification may occur, which
does not pose any problem because they are at the edge of the
Internet, where flow concentration is low. The potential nonin-
volvement of end systems, and the use of existing and
widespread management tools and protocols allows swift and
incremental deployment of the DiffServ architecture.

Shortcomings of DiffServ — Simultaneously providing several
services with differing qualities within the same network is a
very difficult task. Despite its apparent simplicity, DiffServ
does not make this task any simpler. Instead, in DiffServ it
was decided to keep the operating mode of the network sim-
ple by pushing as much complexity as possible onto network
provisioning and configuration. Of course, network provision-
ing and configuration have been performed since the creation
of the very first communication networks, and thus they bene-
fit from long experience, and available tools and traffic mod-
els. However, so far, large networks have mainly offered a
single type of service (best-effort service in the Internet, inter-
active voice in telephone networks, etc.). The provisioning of
networks providing multiple classes of service at the same
time is therefore a rather new area which requires much
research to study the added complexity due to possibly
adverse interactions between different classes of service. The
construction of end-to-end services by concatenating local ser-
vice agreements is also a nontrivial research issue.

The key to provisioning is the knowledge of traffic patterns
and volumes traversing each node of the network. This also
requires a good knowledge of network topology and routing. The
problem with the Internet is that provisioning will be performed
on a much slower timescale than the timescales at which traffic
dynamics and network dynamics (e.g., route changes) occur. This
problem can be illustrated with the simplest case of a single ser-
vice provider network whose service agreements with customers
are static. Although the amount of traffic entering the domain is
known and policed, it is impossible to guarantee that overloading
of resources will be avoided. This is caused by two factors:

= The entering packets can be bound to any destination in the

Internet, and may thus be routed towards any border router

of the domain (except the one where it entered). In the

worst case, a substantial proportion of the entering packets
might all exit the domain through the same border router

= Route changes can suddenly shift vast amounts of traffic
from one router to another.

We therefore see that unless resources are massively overpro-
visioned in both interior and border routers, traffic and network
dynamics can cause momentary violation of service agreements,
especially those relating to quantitative services. On the other
hand, massive overprovisioning results in a very poor statistical
multiplexing gain, and is therefore inefficient and expensive.

To increase resource usage in their network, service providers
can trade generality and robustness for efficiency. For example,
to limit the amount of expensive resources dedicated to the
support of quantitative services, service providers can limit
quantitative service contracts to apply between any pair of bor-
der routers in the domain. In such a case, the service would
apply only to packets entering the domain at a designated
ingress router and leaving the domain at a designated egress
router.3 This helps solve the first problem described above at
the cost of generality, since only packets bound for destinations
“served” through the egress router can benefit from the service.
Of course, to ensure that the egress router is in the route to
any given destination, the interdomain routing entry for that
destination must be statically fixed in the ingress router. Even
for a fixed ingress-egress pair, intradomain routing dynamics
can still occur. This means that the set of internal routers visit-
ed by the packets travelling between the ingress and egress
routers can still suddenly change. However, the “directionality”
of the traffic considered here is such that the number of possi-
ble routes is considerably reduced compared with the general
case, and so is the resulting and necessary overprovisioning. A
service provider could, however, reduce to a minimum the
overprovisioning of quantitative services offered between pairs
of border routers by “pinning” the intradomain route between
those routers. Fixing the egress router for a given destination
and/or pinning internal routes between border routers never-
theless incurs a loss of robustness. In multicast, where receivers
can join and leave the communication at any time, the problem
of efficient provisioning will be even worse.

Alternatively, a service provider might wish to use dynamic
logical provisioning and configuration (i.e., sharing of
resources between classes) as an answer to the problems of
network and traffic dynamics. However, depending on the
type of service agreement (qualitative, relative, or quantita-
tive) and the QoS parameters involved in the agreement,
dynamic logical provisioning might require signaling and
admission control.

From the point of view of a flow, the class bandwidth is not a
meaningful parameter. Indeed, bandwidth is a class property
shared by all the flows in the class, and the bandwidth received
by an individual flow depends on the number of competing
flows in the class as well as the fairness of their respective
responses to traffic conditions in the class. Therefore, to receive
some quantitative bandwidth guarantees, a flow must “reserve”
its share of bandwidth along the data path, which involves
some form of end-to-end signaling and admission control (at
least among logical entities called bandwidth brokers). This
end-to-end signaling should also track network dynamics (i.e.,
route changes) to enforce the guarantees, which can prove

3 Depending on the type of guarantees offered by the service agreement, the
constraint of a single egress router can be relaxed to a set of well-defined
egress routers.

IEEE Network = July/August 2000

49

0 1 2 3
012 567890123456789012345678901
+—+—+—t+—+—+—+—+—+—+—+—F—+—F—+—+—F+—+—F—+—+—F+—+—F—F—+—+—+—+—+—

very complex. Furthermore, even qualitative | Version | Traffic class | Flow label

. : : +—F+—+—+—+—+—+—+—
bandwidth agreements require end-to-end sig- Payload length | Next header | Hop limit

naling and admission control. This is because P N R N S T R N

even if one class is guaranteed to have more
bandwidth than another, the number and behav-
ior of flows in the latter class may result in
smaller shares of bandwidth for these flows than
for the flows in the other class. Hence, in this
case, end-to-end signaling would also be
required to ensure that in every node along the
path, the bandwidth received by a flow in a high
bandwidth class is greater than the bandwidth
received by a flow in a smaller bandwidth class.
On the other hand, delay and error rates are
class properties that apply to every flow of a class.
This is because in every router visited, all the

—— b ——t—t—t—+—

—t—t+—t+—+—+—F—+—+—+—+—F—+—+—+—F—+—+—+—+—F—F—F—+—F—F—+—+—+—+—

F—t Attt Attt bbbttt —+—+

Source address

Destination address

packets sent in a given class share the queue
devoted to that class. Consequently, as long as
each router manages its queues to maintain a rel-
ative relationship between the delay and/or error rate of differ-
ent classes, relative service agreements can be guaranteed
without any signaling. However, if quantitative delay or error
rate bounds are required, end-to-end signaling and admission
control are also required.

End-to-end signaling and admission control would increase
the complexity of the DiffServ architecture. The idea of
dynamically negotiable service agreements has also been sug-
gested as a way of improving resource usage in the network
[3]. Such dynamic service-level agreements would require
complex signaling, since the changes might affect the agree-
ments a provider has with several neighboring networks. The
timescale on which such dynamic provisioning could occur
would be limited by scalability considerations, which in turn
could impede its usefulness.

We therefore believe that in its simplest and most general
form, DiffServ can efficiently provide pure relative service
agreements on delay and error rates among classes. However,
unless complex signaling and admission control are introduced
in the DiffServ architecture, or generality and robustness are
sacrificed to some extent, guarantees on bandwidth as well as
guantitative bounds on delay and error rates cannot be pro-
vided. The reader should bear in mind that signaling could
only be used by applications which can at least give a quanti-
tative estimate of their requirements, and reside on hosts that
have been modified to support signaling, thus limiting the
immediate usability of DiffServ.

It should be noted that from a complexity point of view, a
DiffServ scenario with dynamic provisioning and admission
control is very close to an IntServ scenario with flow aggrega-
tion. The difference is that precise delay and error rate
bounds might not be computed with DiffServ, since the delays
and error rates introduced by each router in the domain may
not be available to the bandwidth broker.

We therefore conclude that although DiffServ will
undoubtedly improve support for a number of applications
and is urgently needed in the Internet, it does not repre-
sent the ultimate solution for QoS support for all types of
applications. The suitability of DiffServ for a given applica-
tion could also depend on the context in which that appli-
cation is being used. If we take the example of Internet
telephony, we see that DiffServ is suitable for providing a
cheap solution for internal calls between remote sites of a
company by emulating leased lines between these sites.
However, DiffServ may prove unsuitable for the support of
telephony over the Internet for the general public, because
people do not usually restrict their calls to only a few desti-
nations.

m Figure 1. The IPv6 header format.

Major New Internet Protocols

In this section we present and discuss IPv6, RSVP, and multi-
protocol label switching (MPLS) as potential candidates for
improving the utility of the Internet.

Internet Protocol Version 6

An Overview of IPv6 — The 1990s witnessed an explosion in
the growth of the Internet. The number of connected net-
works and users has increased dramatically, posing the threat
of address space exhaustion. Meanwhile, a new sort of appli-
cation appeared, characterized by real-time constraints and
driven by the emergence of cheap digital multimedia technol-
ogy, which puts significant new communication demands on
the underlying networks. This has set a considerable challenge
for the Internet, which was designed to support non-time-criti-
cal applications. Besides requiring an increase in network
capacity (i.e., the communications bandwidth), some signifi-
cant architectural enhancements were prompted as well.

This has triggered the birth of new protocols such as multicast
(leading to the creation of the MBone) [4-6], Classless Interdo-
main Routing (CIDR) [7], RSVP [8], and Real-Time Transport
Protocol (RTP) [9]. The features of the current version of the IP
layer, IPv4, have been able to underpin these protocols for the
past few years. However, it became evident that a more uniform
and fundamentally better adapted solution to the new require-
ments was needed to provide a smooth evolution of the network.

IPv6 was then designed and adopted as the successor to
IPv4, to occupy, of course, the central place in the entire
Internet protocol architecture. As with IPv4, IPv6 [10] is still
based on the key concept of a datagram. On the other hand,
IPv6 exhibits the following changes from its predecessor:
= Expanded address capabilities: I1Pv6 uses 16-byte-long

addresses; these extend the CIDR addressing hierarchy

strategy and definitively overcome the scaling problem of

IPv4 (which uses 4-byte-long addresses).
= New packet format: The packets are based on a simple

header (Fig. 1). Also, the way header options are encoded

has been totally rethought.

= Multicast support: IPv6 supports multicast as a native commu-
nication mode. Moreover, the addition of a scope field to mul-
ticast addresses improves the scalability of multicast routing.

= Flow labeling capability: This allows a sender to identify
packets as being related to one another (i.e., belonging to
the same traffic flow).

= Anycast support: Anycast is used to send a packet to any one
member of a group of receivers (supposedly the “closest” in
terms of the routing algorithm’s unit of measurement).

50

IEEE Network = July/August 2000

= Authentication and privacy capabilities.

It is interesting to note how optional Internet-layer infor-
mation is encoded in IPv6. Indeed, those options are encoded
in separate headers that may be placed between the IPv6
header and the upper-layer header in the packet. Such head-
ers are called extension headers, each identified by a distinct
“next header” value (Fig. 1). As a consequence, the “com-
plete” header of an IPv6 packet can actually be seen as a
“chain” of headers starting with the basic IPv6 header (Fig. 1)
and followed by some (i.e., zero or more) extension headers.

So far, six extension headers have been defined:
= Hop-by-hop options header: Carries information that has to

be examined and processed by each node on the packet’s

path, with the source and destination included.

= Routing header: Used by a source to list one or more
routers to be visited by the packet en route to its destina-
tion. This is very similar to IPv4’s source route option.

= Fragment header: Used when fragmentation is required. In

IPv6, fragmentation can only be done at the source.
= Destination header: Used to carry information that needs to

be examined and processed by the destination of the packet.
= Authentication header and encapsulation security payload

header.
New extension headers can be defined if required.

Finally, we note that the traffic class field in Fig. 1 is labeled

the Differentiated Services (DS) field in the DiffServ work.

IPv6 Improvements — The experience gained during the years
of operating and evolving IPv4 is reflected in IPv6 through the
incorporation of some very interesting design features.

By supporting multicast as a native communication mode,
IPv6 takes a decisive step toward avoiding the problems of
bandwidth consumption exhibited by the MBone [6]. Indeed,
due to its implementation using tunnels between multicast
routers (i.e., encapsulation of multicast packets in IPv4 pack-
ets), the MBone tends to replicate, several times, the same
packet on its links. This is because a packet is replicated a
number of times equal to the number of tunnels using the
link. By avoiding the use of tunnels for multicasting (because
multicast is “integrated” in the protocol), IPv6 will improve
the support of multicast in the Internet. This will only happen
when most of the routers in the Internet are based on IPv6,
avoiding the need for tunneling IPv6 through IPv4 routes.

Besides better multicast routing, IPv6 also offers a very use-
ful feature to improve control of multicast traffic: the scope
field added to the multicast addresses. This allows precise
control of where multicast packets are sent, and is very useful
to avoid “leaks” of multicast packets on the Internet as well as
ensure some security (e.g., making sure that a remote site can-
not eavesdrop on a local teleconference). The same function-
ality can be obtained on the MBone today, but at the price of
a difficult tuning of the IPv4 time to live (TTL) field. Also,
the native support for anycast makes resource discovery a lot
easier.

The IPv6 (basic) header format is simpler than that in 1Pv4.
Indeed, some of the IPv4 header fields have been dropped
(e.g., the header checksum) or made optional (e.g., fragmen-
tation). This can only be beneficial to the performance
achieved by IPv6, since the common-case processing cost (i.e.,
CPU instructions) of packet handling is reduced. In other
words, packet forwarding is more efficient with IPv6.

Because of the simplification of the IPv6 header, a new way
to deal with options had to be devised. This resulted in the
extension headers already described. The good point about
extension headers is that they allow less stringent limits on
options than those imposed by IPv4 due to a lack of space in the
IPv4 header. This is the case, for instance, with the source rout-

ing option which, in IPv4, limits the specification of the route to
a maximum of nine hops. In IPv6 the limitation is 24 hops.

Fragmentation is a costly operation. Not only does it
increase the overhead associated with the fragmented packet
(because of the “replication” of the header in each fragment),
but it also requires significant processing time at the frag-
menting/reassembling nodes. By restricting fragmentation to
being performed by source nodes only, IPv6 thus offloads the
burden of fragmenting from potentially heavily loaded routers.
It is worth noting that, given the widespread use of Ethernet
LANSs, this can lead to a network where it is unlikely to
encounter packets bigger than 1500 bytes.

The flow labeling capability allows flow identification without
layer violation (i.e., without combining fields from different
protocol headers, e.g., IP and UDP headers). This not only
enables fine-grained flow identification, but also simplifies the
treatment of flows where security issues may require payload
encryption at the network (i.e., IP) layer. Flow labeling also has
an important role in QoS support since QoS in a network
should be closely linked to the concept of flow (at least at the
edge of the network). This is because QoS as required by multi-
media communications cannot be defined on a datagram basis.

Shortcomings of IPv6 — Although we acknowledge that extension
headers were introduced for flexibility when dealing with options
as well as getting rid of most of IPv4’s limitations, the whole idea
of extension headers nonetheless introduces concerns. Since new
extension headers as well as new options for each of the existing
headers can be specified at any time, it seems almost impossible
to design routers that will process all the extensions efficiently.
Indeed, when a new extension or option is introduced, the only
reasonable way to make an existing router understand it is by
means of a software update. This, however, contradicts the trend
to build high-speed routers using specialized hardware.

Furthermore, since each new extension or option will
impose updates on routers’ and end systems’ software, we may
find there is disparity from one node to another, since some
will be updated and others not. Such disparity in the functions
supported in the nodes may well render some of those exten-
sions or options totally unusable (because the nodes will
either discard or misprocess packets containing options or
extensions they do not understand). At best, we may evolve
toward a situation where most of the nodes in the Internet
will only support the core extension headers and options spec-
ified in today’s version of the IPv6 specification.

A summary of the two previous paragraphs is perhaps to
say that extended systems are probably better than extensible
ones, especially when considering large-scale networks.

The IPv6 specification says that “with one exception (the hop-
by-hop option header), extension headers are not examined or
processed by any node along a packet’s delivery path, until the
packet reaches the node identified in the destination address field
of the IPv6 header.” We would like to mention that when routing
options are used (i.e., source routing), the destination of a packet
changes several times on the way to the final destination, which
will trigger the processing of the extension headers in the “inter-
mediate” destination (i.e., routers). This may cause the corre-
sponding packet to experience very long transmission delays.

It is worth noting that the concept of flow seems to some-
what contradict the concept of datagrams, and that simultane-
ous support for flows and datagrams by the same packet type
inevitably leads to unnecessary overhead. When forwarding a
packet in “datagram mode,” the routers ignore the flow label.
When forwarding a packet in “flow mode” (by ensuring that
the different packets of a flow receive the same treatment
from the network), a router should ignore the destination and
source addresses of the packet.4 This is illustrated by the

IEEE Network = July/August 2000

51

example of a telephone-quality audio flow (64 kb/s) where
one packet is sent every 20 ms. Assuming the now typical use
of RTP/UDP/IP for media transfer in the Internet, the header
“information” would comprise 60 bytes (40 bytes of IPv6
header, 8 bytes of UDP header, and 12 bytes of RTP header);
the packet payload would be 160 bytes. We would therefore
have a per-packet overhead of about 27 percent, of which 53
percent is IPv6 addresses and 5 percent is the flow label.

With regard to the treatment packets of a given flow should
receive, the IPv6 specification is rather elusive, stating that
routers may (and thus may not) use flow labels to treat pack-
ets. It therefore appears that a source using a flow label will
have no guarantee that the corresponding packets will receive
special attention from the network. In other words, it cannot
be assumed that IPv6 provides a communication scheme
where the concept of flow has significance throughout the net-
work (i.e., for nodes other than the source and destination).

The features of 1Pv6 (address size, packet format, etc.) render
it incompatible with IPv4. In other words, in spite of the similar-
ities in their name, IPv6 and IPv4 are two different protocols
unable to interoperate. Therefore, a transition mechanism has
had to be devised to facilitate and encourage the deployment of
IPv6 [11]. This transition mechanism roughly specifies that:
= Each IPv6 router or end system has to provide a complete

implementation of both versions (IPv4 and IPv6). This

leads to a dual-stack architecture in every IPv6 node.

= IPv6 traffic will, when necessary, be carried over the IPv4 rout-
ing infrastructure using a tunneling technique (i.e., encapsula-
tion of the IPv6 packets into IPv4 ones). This is likely to ruin
the advantages of native support for multicast communication.

Finally, current Internet transport protocols (i.e., TCP and
UDP) include the addresses from the IP header in their
checksum computation. Since the size of IPv6 addresses is dif-
ferent from those of IPv4, these transport protocols have to
be modified.

The Resource Reservation Protocol

Overview — RSVP is based on the concept of session [12]. A
session is composed of at least one data flow and is defined
in relation to a “destination” — more precisely as the triplet
(destination address, destination port, protocol id). Since the
destination address can be a multicast address, the destina-
tion can thus be either a group of receivers or a single
receiver.

In RSVP, a flow is defined as any subset of the packets in
a session, or, in other words, as a subset of the packets sent
to a given destination. A flow is therefore simplex. Theoreti-
cally, the subset of packets making up a flow may be arbi-
trary, but in the current state of the RSVP specification, a
flow is defined as the set of packets emitted from a given
“source” (identified by the pair (source address, source
port)).5

RSVP works as follows [12, 8].

4 1gnoring both addresses when in flow mode implies hop-by-hop flow
label translation to ensure a globally unique flow identification scheme
throughout the network. Another way to achieve such a unique identifica-
tion scheme is to let the source locally, and independently, select the flow
label and use it in conjunction with the source address. It is important to
note that in such a case, the source address is not used for any location
information purposes, but rather as a unique bit pattern to build a globally
unique flow identifier.

5 This definition of a flow could, and should, be updated in future versions
of the protocol to exploit the possibilities offered by the flow label field in
the IPv6 header.

Path messages are periodically® sent toward the destination
and establish a “path state” per flow in the routers. Resv mes-
sages are periodically sent toward the sources, and establish
the required reservations along the path followed by the data
packets. The style of reservation in RSVP is thus receiver-ori-
ented, since it is the receivers that initiate the requests for
resources to be reserved.

In order to reduce the overhead associated with RSVP, any
Path or Resv message that does change the states held by a
router is not forwarded immediately by that router. Instead,
each router periodically issues its own Path and Resv mes-
sages carrying information about the flows it holds.

A lifetime L is associated with each reserved resource. This
timer is reset each time a Resv message confirms the use of
the resource. If the timer expires, the resource is freed. This
principle of resource management based on timers is called
soft state. Soft state is also applied to the path state in the
routers (in this case, the timer is reset upon reception of a
Path message). By default, L is 2 min 37.5 s [12].

To improve RSVP responsiveness to network dynamics, a
mechanism called local repair has been introduced. When an
RSVP entity detects a change of route, it sends Path messages
down the new route for the flows whose route has changed.
When the downstream RSVP entity, situated at the junction
of the old and new routes, receives these Path messages, it
updates its path states accordingly and immediately sends a
Resv message upstream along the new segment of the route
for the corresponding flows.

Teardown messages (PathTear and ResvTear) are available
for immediate release of the corresponding states (path state
and reservations). Teardown requests can be initiated by a
sender or receiver, or any intermediate RSVP router (upon
state timeout or service preemption).

It is worth noting that all the messages described above are
delivered unreliably: because of the protocol reliance on soft
states, the concept of acknowledgment is not used in RSVP.

RSVP allows several styles of reservation: distinct resources
may be assigned to given flows, while several flows may share
some resources. The selected style for a given flow is
expressed in the filter spec associated with that flow. There
are three filter types:
= Wild-card filters: every flow of a session shares the associat-

ed resource
= Shared-explicit filters: explicitly identified flows share the

same resource
= Fixed filters: ensure that one flow is granted the exclusive
use of a resource

It is worth noting that a flow for which no resource has
been reserved gets best-effort service from the routers.

Finally, in its current specification stage, RSVP does not
influence the routing of packets (which are therefore routed
by IPv4 or v6).

Positive Features of RSVP — RSVP has been designed to be
able to operate across non-RSVP networks. It is extremely
difficult (if not impossible) to guarantee end-to-end service in
such a case. Nevertheless, this allows for a progressive deploy-
ment of the protocol associated with a steady improvement of
the end-to-end best-effort service seen by flows exploiting
RSVP in the part of the Internet where it is supported.

The soft state mechanism is a very simple self-stabilizing
mechanism to keep the nodes of the network in a consistent
state. It provides “natural” recovery form node crashes, as

6 Each period is chosen randomly in [R/2, 3R/2], with R = 30 s by default
[12].

52

IEEE Network = July/August 2000

well as preventing resource leaks by reclaiming resources
made obsolete by various conditions (e.g., route changes, loss
of teardown messages, users leaving a multicast group without
explicitly releasing resources).

Local repairs take care of establishing resources on new por-
tions of a route after a route change. However, these cannot be
relied on across a non-RSVP cloud, because routing changes
that affect the egress path from such a cloud may not be detect-
ed by an RSVP node located just before the non-RSVP area.

Therefore, soft state (and its associated periodic messages)
also provides an easy solution to route changes in non-RSVP
areas of the network.

RSVP as a receiver-driven protocol scales to large numbers
of participants in multicast groups. The reservation request
from a receiver does not have to propagate all the way to the
sender in most situations. If the reservation request encoun-
ters an existing reservation in one of the RSVP routers along
the route which is equal to or greater than its own reservation
request, it merges with the existing reservation at that router
and does not travel any further.” This also allows for “incre-
mental” reservations whereby some receivers behind a bottle-
neck can hold partial reservations and then regularly poll the
network, hoping for completion of full reservations.

The different reservation styles proposed in RSVP tend to
improve resource usage efficiency in the nodes of the network.
For instance, shared reservations are well suited to scenarios
where multiple sources are unlikely to transmit simultaneously
(e.g., audio sources in conferencing applications), because, in
such a case, the size of the shared reservation is essentially inde-
pendent of the number of sources. It should be noted that shared
reservations provide for an overall gain in reservation efficiency.
Unless all the sources transmit with the same requirements, and
the shared reservation is exactly equal to the requirements of a
single source, resource waste may occur near the sources, while a
resource gain occurs everywhere else in the network (compared
to having simultaneous individual reservations for each source).

Shortcomings of RSVP — The operation of RSVP is based on
periodic messages exchanged unreliably. This can result in pos-
sibly long establishment latencies, if RSVP messages are lost
during the establishment phase of a reservation. This is because
the average time to recover from such losses is equal to the
message refresh period whose value is several tens of seconds.
Several solutions have been proposed to improve the perfor-
mance of RSVP at reservation establishment without increasing
the subsequent steady-state overhead caused by the soft state
mechanism on the flows [13, 14] (some of these proposals are
being considered for inclusion in the specification of RSVP).
RSVP was designed to scale in terms of the size of the
groups of receivers it can support on individual flows. Howev-
er, the reservation model in RSVP can itself represent a threat
to scalability of the protocol, especially in parts of the network
where flow concentration is high (i.e., in the core of the Inter-
net). It is so because this reservation model induces both state
overhead and message overhead that are, at best, linear in
terms of the number of sessions established. The state over-
head resides in both the slow path of routers (reservation
states in the RSVP daemon) and, more important, the fast
(data) path of routers (filtering/classification, scheduling, and
possibly policing states). Flow aggregation has been proposed
to solve this state scalability problem [15, 16]. However, the
techniques proposed for flow aggregation are often designed
to work only within a single aggregation area, with the state
overhead due to the aggregates proportional to the size of the

7 Merging rules depend on reservation style; see [12] for details.

aggregation area. We therefore believe that more research is
needed to design aggregation techniques that could work effi-
ciently across several (smaller) aggregation domains.

Most aggregation techniques do not attempt to reduce the
message overhead caused by the periodic refresh of soft
states. The message overhead consumes bandwidth and, in
most cases (even with aggregation), CPU time in the routers.
Furthermore, although soft state is a very simple mechanism,
it has proved slow to react to some network conditions (e.g.,
node failures, route changes). Solutions have recently been
proposed to these message overhead problems [13, 14]. These
proposals are based on the principle of hierarchical soft states
based on a soft state per node, while reverting to a per-flow
soft state technique only when some conditions have been
detected by the per-node soft state mechanism. Because an
RSVP node usually has far fewer neighbor RSVP nodes than
reservations, much smaller refresh periods can be afforded for
the per-node soft state, which can improve the response of the
protocol to specific network conditions such as node failures/
reset. It should also be noted that, contrary to common belief,
soft state is not a fault tolerance mechanism, because the
automatic “reestablishment” it provides can fail (unless stand-
by reservations have been put in place). We thus prefer the
term fault-resilient to qualify the soft state mechanism.

The receiver-based approach, as used in RSVP (i.e., where
reservation request and specification travel upstream toward
the source), may not be well suited to all types of application.
Indeed, some applications fit a model where it is the sender(s)
that fix(es) the quality of transmission (e.g., Internet telepho-
ny, digital TV/VoD servers). This does not mean that with
such applications the senders must be involved or aware each
time a receiver joins the communication. Indeed, consider a
scheme where the receiver triggers a request for a reservation
(but without specifying the actual reservation) on the branch
of the multicast tree on which it resides, and where the reser-
vation message travels downstream from the closest router up
the multicast tree knowing the requirements. This is an accept-
able receiver-based approach since it does not directly involve
the sender, who simply specified the communication require-
ments in its initial establishment message. We note that the
sender could periodically retransmit the QoS requirement,
which becomes a necessity if the routing protocol does not
support “reverse path routing.” Furthermore, the receiver-
based scheme of RSVP leads to fairly static reservations, which
in some cases can be wasteful. For instance, consider the case
where sources of a multicast session use different coding
schemes (giving different communication requirements) and
are unlikely to be simultaneously active. A receiver that wants
to receive the different data flows without any loss of quality
will have to request a reservation matching the characteristics
of the most demanding coding scheme, because it never knows
when each sender is going to be active. In contrast, if the
sender could propagate reservation messages downstream, the
reservations could be updated whenever the sources are active.

Because data packets are routed in the network in the same
way whether or not a reservation has been established for the
corresponding flow, receivers (in a multicast group and not using
RSVP) can get a “free ride” on the reservations established by
their peers. Indeed, a receiver close (in a network sense) to
another one which has requested a reservation can enjoy that
reservation all the way from the source down to the point where
the routes to the two receivers split. If the final subbranch of the
multicast tree toward the first receiver follows lightly loaded
links, that first receiver can see an acceptable end-to-end quality
without having requested any reservation itself. Such “free rid-
ers” can only be prevented if the number of downstream receivers
is available in multicast routers [17]. However, most multicast

IEEE Network = July/August 2000

53

routing protocols do not provide such a receiver count facility.
Although this is not a significant technical problem, it could rep-
resent a challenge as soon as billing is considered [17].

Multiprotocol Label Switching

MPLS Background and Overview — The growth of the Inter-
net has prompted the IT industry to look at mechanisms that
improve the efficiency of packet forwarding. The bus architec-
ture found within traditional routers fails to scale beyond a
maximum load of about 1 Gb/s [18]. Gigabit routers have
been developed to achieve speeds far greater than this by
replacing the bus architecture with a switch fabric to intercon-
nect various components within the router. Here, the switch-
ing fabric is used as a very fast interconnect, and is essentially
“hidden” from the outside world, with the IP processing func-
tionality maintained within the interfaces to the fabric.

The term multilayer routing covers approaches to the inte-
gration of layer 3 datagram forwarding and layer 2 switching
that go beyond the use of the techniques found within gigabit
routing/switching. The approach uses label lookups to allow
more efficient packet classification, and the potential to engi-
neer the network and manage the impact of data flows. A flur-
ry of vendor-specific approaches to multilayer routing appeared
between 1994 and 1997, including IP Switching [19], Cell
Switch Router (CSR) [20], ARIS [21], Tag Switching [22], and
IPSOFACTO [23]. The fact that these approaches were pro-
prietary, and in the main produced incompatible solutions, led
to the formation of the Internet Engineering Task Force
(IETF) Multi Protocol Label Switching working group.

The MPLS working group is addressing the issues of the
scalability of routing, the provision of more flexible routing
services, increased performance, and more simplified integra-
tion of layer 3 routing and circuit-switching technologies, with
the overall goal of providing a standard label-swapping archi-
tecture [24, 25].

Each MPLS packet has a header that is either encapsulated
between the link layer and the network layer, or resides within
an existing header, such as the virtual path/channel identifier
(VPI/VCI) pair within asynchronous transfer mode (ATM).
At most, the MPLS header will contain a label, TTL field,
Class of Service (CoS) field, stack indicator, next header type
indicator, and checksum.

MPLS defines a fundamental separation between the grouping
of packets that are to be forwarded in the same manner (the for-
warding equivalence classes, or FECs), and the labels used to
mark the packets. This is purely to enhance the flexibility of the
approach. At any one node, all packets within the same FEC
could be mapped onto the same locally significant label (given
that they have the same requirements). However, there are
instances where one may wish to engineer the network in such a
way that several different labels are used (e.g., when wishing to
explicitly differentiate between streams). The assignment of a par-
ticular packet to an FEC is done once, at the entry point to the
network. MPLS-capable routers (label-switched routers, LSRS)
then use only the label and CosS field in order to make packet for-
warding and classification decisions. Label merging is possible
where multiple incoming labels are to receive the same FEC.

MPLS packets are able to carry a number of labels, orga-
nized in a last-in first-out stack. This can be useful in a number
of instances, such as where two levels of routing are taking
place across transit routing domains. Regardless of the exis-
tence of the hierarchy, in all instances the forwarding of a pack-
et is based on the label at the top of the stack. In order for a
packet to travel through a tunnel, the node at the transmitting
side of the tunnel pushes a label relating to the tunnel onto the
stack, and sends the packet to the next hop in the tunnel.

A collection of LSRs go together to make a label-switched

path (LSP). Two options are defined for the selection of a
route for a particular forwarding class. Hop-by-hop routing
defines a process where each node independently decides the
next hop of the route. Explicit routing is where a single node
(often the ingress node of a path) specifies the route to be
taken (in terms of several or all of the LSRs in the path).
Explicit routing may be used to implement network policies, or
allow traffic engineering in order to balance the traffic load.

There are two approaches to label path control. Indepen-
dent path control means that LSRs are able to create label
bindings and distribute these bindings to their peers indepen-
dently. This is useful when bindings relate to information dis-
tributed by routing protocols, and means that nodes can begin
to label switch before the completion of a path. Ordered path
control means label binding only takes place if the node is the
egress node for the particular FEC, or has received a label
binding for that FEC from its next hop. This approach is used
to ensure that a particular traffic class follows a path with a
specified set of QoS properties.

There are three main approaches for identifying traffic to be
switched. First, path creation can be control- or topology-driven,
where labels are preassigned in relation to normal routing con-
trol traffic. Here, the network size dictates the load and band-
width consumed by the assignment and distribution of label
information. Second, request-based control traffic from protocols
such as RSVP can trigger path creation relating to individual
flows or traffic trunks. Here, the number of labels and computa-
tional overhead will depend entirely on the number of flows
being supported. Finally, data-traffic-driven label assignment is
where the arrival of data recognized as a flow activates label
assignment and distribution on the fly. This approach implies
that there will be latency while path setup takes place. Overheads
in this case will be directly proportional to traffic patterns.

MPLS is able to work in an environment that uses any data
link technology, connection-oriented and connectionless.
MPLS also provides the potential for all traffic to be switched,
but this depends on the granularity of label assignment, which
again is flexible and depends on the approach used to identify
traffic (discussed above). Labels may be assigned per address
prefix (e.g., a destination network address prefix) or set of pre-
fixes, and can also represent explicit routes. On a finer-grained
level, labels can be defined per host route and also per user.
At the lowest level, a label can represent a combined source
and destination pair, and in the context of RSVP can also rep-
resent packets matching a particular filter specification.

MPLS needs a mechanism for distributing labels in order to
set up paths. The architecture does not assume that there will be
a single protocol (known as a label distribution protocol, LDP) to
complete this task, but rather a number of approaches that can
be selected depending on the required characteristics of the
LSPs. Where paths relate to certain routes, label distribution
could be piggybacked onto routing protocols [26]. Where labels
are allocated to the packets of a specific flow, distribution can
be included as part of the reservation protocol [27]. New proto-
cols have been developed for general label distribution [28] and
the support of explicitly routed paths [29]. MPLS label distribu-
tion requires reliability and the sequencing of messages that
relate to a single FEC. While some approaches use protocols
that sit directly over IP (thus implying they are unlikely to be
able to meet these reliability requirements), a number of the
defined LDPs solve this issue by operating over TCP.

Within the MPLS architecture, label distribution binding deci-
sions are generally made by the downstream node, which then
distributes the bindings in the upstream direction. This implies
that the receiving node allocates the label. However, there are
also instances (especially when considering multicast communica-
tions) where upstream allocation may also be useful. In terms of

54

IEEE Network = July/August 2000

the approach to state maintenance used within MPLS, a soft
state mechanism is employed, implying that labels will require
refreshing in order to avoid timeouts. Approaches to this include
the MPLS peer keep-alive mechanism, and the timeout mecha-
nisms inherent within routing and reservation protocols (in
instances where they are used to carry out label distribution).

In terms of support for QoS, MPLS provides the CoS field
which enables different service classes to be offered for indi-
vidual labels. For more fine-grained QoS provisioning, the CoS
field could be ignored, using a separate label for each class. In
this instance, the label would represent both the forwarding
and service classes. As noted earlier, MPLS is able to provide
QoS support on a per-flow basis using either flow detection or
request-based control traffic from protocols such as RSVP to
trigger label assignment. More general QoS differentiation can
be achieved by such means as label assignment on a per-user
basis, and using more general traffic engineering techniques.

Positive Features of MPLS — MPLS and multilayer routing
techniques in general allow efficient packet forwarding to
enable high-speed data transfer. Although in the case of
MPLS the link layer is not specified, the approaches all pro-
vide a scenario where it is possible to fully integrate and cou-
ple traditional datagram routing concepts with link-layer
switching devices supported within the telecommunications
industry. MPLS functionality is now being supported directly
within hardware, with routing and switching mechanisms com-
bined at the chip level in order to provide integration at high
speeds, thus increasing its viability.

MPLS-capable devices are able to provide additional func-
tionality beyond the best-effort packet forwarding found within
a gigabit router. This flexibility means that in principle it is pos-
sible to support ideas such as QoS differentiation. The funda-
mental separation between forwarding class and label
assignment provides a great deal of flexibility. While packets
within a class are to be processed in the same way, this approach
means that traffic can be engineered to varying extents.

Alone, IP does not lend itself to the idea of traffic engineer-
ing, that is, the ability to manage bandwidth and routes in order
to provide equal loading of resources within the network. Until
now, it has been reliant on other technologies (e.g., ATM) and
associated encapsulation techniques in order to offer this func-
tionality. MPLS provides support for traffic engineering through
the deployment of constraint-based routing. Stemming from the
idea of QoS routing, constraint-based routing not only provides
routes that are able to meet the QoS requirements of a flow, but
also considers other constraints including network policy and
usage. Label distribution protocols supporting label switching for
end-to-end constraint-based paths [29] allow traffic characteris-
tics to be described in terms of peak rate and committed rate
bandwidth constraints, along with a specified service granularity
(which can be used to define the delay variation constraint).

Explicit routing (a subset of constraint-based routing) allows
the specification of the route to be taken across the network.
This is enabled within MPLS by allowing a label to represent a
route, without the overhead of source routing found within nor-
mal IP forwarding (making it too resource-intensive for use in
most circumstances). Different paths can be selected in order
to allow traffic engineering to be carried out effectively, allow-
ing network load to be balanced in a far more flexible manner
than manually configuring virtual circuits (as with other primi-
tive approaches to engineering IP traffic). The engineering of
paths in such a way implies a simple mechanism for measuring
traffic between edge network devices making use of an LSP.

In Internet service provider (ISP) environments where ser-
vice differentiation is likely to mean users will be charged in
terms of the network QoS exploited, the ability within the

MPLS architecture to specify per-host and per-user label
assignment is likely to be very useful for billing purposes.

Shortcomings of MPLS — MPLS essentially attempts to overlay
connection-oriented concepts onto connectionless technolo-
gies. While providing several advantages, in a number of
instances this approach reduces the overall flexibility of the IP
protocol, and could be branded somewhat heavyweight.8
Some of the conclusions that led to the research into multilay-
er routing, such as tthat routers are too slow or routing tables
becoming too large, have been weakened by the appearance
of fast and powerful gigabit routers.

The MPLS framework [25] and architecture [24] define a
base-level label swapping technology. As shown within the
previous sections, MPLS allows for traffic to be switched
under different circumstances (topology-driven, flow-driven
etc.), using different LDPs depending on the circumstances.
While this implies that MPLS is flexible, it is likely to be
applicable only within well-managed networks, where all com-
ponents are able to provide support for MPLS and the indi-
vidual distribution protocols in use.

While the label stack concept provides benefits, the idea of
having packets carry a number of labels is likely to increase over-
heads, certainly in terms of making the MPLS header larger.

With topology-driven label assignment (where labels are
allocated and distributed without reference to the traffic), a
full mesh of labels will be established. The overhead of this
approach is essentially relative to the size of the network, and
has the potential to use a vast number of labels. This can be a
large overhead in instances when labels are allocated to
routes where very little traffic is flowing.

The current MPLS architecture and framework specifications
have left the topic of multicast as an area for further study.

In terms of the provision of varying levels of QoS, MPLS
poses a number of issues.

Label assignment based on support for traffic flows will
require a path to be put in place the moment the flow is detect-
ed, therefore implying that there will be some latency prior to a
full path being in place. In this instance, the overhead will
increase in relation to the number of flows being supported and
the duration of the flows. Label assignment in order to support
short flows implies a large overhead. When label distribution is
included as part of a reservation protocol (e.g., RSVP), the over-
heads and scalability of such a protocol must also be considered.

The ordered and independent control of labeled paths
(described earlier) are said to be compatible approaches to
path setup. However, when they interoperate the overall
behavior can only be described as independent because, to
ensure QoS, ordered control must be used entirely from
ingress to egress node.

LDPs must work in a reliable manner given that the loss of
a control message in this instance could cause a delay in the
establishment of a label path. This constitutes a serious
impediment to the support of critical applications. As men-
tioned earlier, the use of TCP with a number of LDPs offers
the necessary reliability. In the case of flow-based label assign-
ment and the use of RSVP, reliable transmission of the LDP
information is not guaranteed due to the use of UDP.

The ability of MPLS to support a number of link-layer
technologies provides a high degree of flexibility. However, in
terms of the provision of connections with a level of associat-
ed QoS, mechanisms are required to ensure that the QoS
specified for an LSP is maintained by the underlying link

8 The authors recognize that IP is not the only network layer protocol sup-
ported by MPLS.

IEEE Network = July/August 2000

55

layer. This may not be possible in some instances (e.g., with
an Ethernet) where firm guarantees cannot be made (because
of the inherent nature of the technology). Where ATM tech-
nology is used with MPLS, in most instances the LDP acts as
the ATM signaling protocol. This implies that a low-level con-
trol protocol is required which is able to configure connec-
tions with defined levels of QoS. While work is progressing in
this area within the IETF GSMP Working Group [30, 31],
widescale support for this type of protocol by major switch
vendors is not yet evident.

Discussion and Conclusion

We now discuss several possible ways in which the different
proposals presented earlier can be deployed and integrated in
the Internet. We look at the different scenarios from an end-
to-end service perspective, noting that the spectrum of quality
provided by these services will ultimately determine the Inter-
net’s suitability as the core of a future global telecommunica-
tions infrastructure.

IPv6 does not fit well in such a discussion, because the
motivations to develop a new Internet Protocol do not directly
stem from the need to develop and support new services. The
main factors that will drive and pace the deployment of 1Pv6
are, in our opinion, the “pressures” on current Internet
address space and to a lesser extent the increasing demand for
multicast communications.

From the proposals discussed in this article, DiffServ appears
to be the most appropriate and thus the most attractive. Our dis-
cussion earlier led us to the conclusion that in its simplest and
most general form, DiffServ can provide relative differentiation
of service on delays and/or error rates without explicit bounds.
DiffServ is therefore able to provide a range of increasingly bet-
ter best-effort services. Since no bounds are guaranteed in such
services, traffic conditioning becomes optional (even at network
boundaries), which could further simplify the operation of the
network and thus help retain the Internet’s original simple phi-
losophy. We believe that such a range of differentiated services
would not need to be broad to be extremely useful since many
applications can react to a wide range of network conditions. The
idea here is that if the traffic generated by these applications
were segregated into a few classes, the service provided by each
class could be tailored to the support of a given type of applica-
tion® (e.g., delay-sensitive, error-sensitive, or insensitive). The
application would perform “better” than if competing with all
others. Of course, insensitive (i.e., “pure” best-effort or asyn-
chronous) applications would probably see worse performance
than if the service space remained flat, but this does not really
matter as the level of satisfaction a user gets from these applica-
tions is not related to performance. Pricing would have to be
used to balance traffic over the different classes.

This idea of a range of best-effort services is re-enforced by a
recent study [32], which suggests that most of the congestion in
the Internet occurs at the edges, while the core is fairly under-
used. Indeed, as long as a dramatic shift in traffic mix does not
occur, a simple DiffServ network could also probably support
most adaptive multimedia applications in a satisfactory way.

We also concluded that under some traffic restrictions, the
simple DiffServ architecture could provide quantitative ser-
vices by essentially emulating leased-lines. These services are
particularly well suited to business applications such as Virtual

9 The type of an application depends on the context in which it is being
used. For instance, commercial Web browsing could be considered delay-
sensitive, while Web browsing could be considered insensitive, depending
on users’ willingness to pay for improved services.

Private Networks (VPNs). Because the restrictions applicable
to these services are “directional,” the use of MPLS in sup-
porting them promises to facilitate traffic engineering and
hence improve resource usage while possibly improving
robustness. Therefore, although the use of MPLS is not
mandatory, it is likely that the combination of DiffServ/MPLS
will play an important role in the provision of some form of
quantitative service guarantees in the Internet.

The way that a DiffServ leased-line is shared between users
(i.e., the hosts of the stub-network on the ingress side of the
line) is left to the discretion of these users. A very flexible and
efficient way to provide end-to-end guarantees is by using
IntServ in the stub-networks on each side of the DiffServ
leased-line. Doing so allows the users to signal their require-
ments locally, which enables admission control at the entrance
of the DiffServ leased-line, whose characteristics are known. It
should however be noted that applications not requiring any
specific guarantees may still benefit from the leased-line by
sharing any non-reserved part of the bandwidth.

The restrictions of directionality of a leased-line allow the
previously described integration of IntServ and DiffServ to pro-
vide end-to-end guarantees in a simple way. As soon as these
restrictions are relaxed, we believe that such an integration
model can no longer enforce guarantees, unless complex signal-
ing is used within the DiffServ area. We also believe that intro-
ducing such complex functions in DiffServ would spoil the major
attractive features of DiffServ, namely its simplicity and close
adhesion to the Internet’s original philosophy. Furthermore,
even though RSVP (the likely signaling mechanism in IntServ)
is receiver-oriented, while DiffServ is sender-oriented, applica-
tion users may not be willing to accept that their end-to-end
requirements cannot be fully met. This could be the case when
the bandwidth brokers in the DiffServ area do not have a pre-
cise view of their network. If DiffServ signaling can ensure that
such deficiencies will be avoided, we believe its complexity will
match that of IntServ signaling, and therefore we do not see any
point in “reinventing the wheel.” IntServ (with aggregation in
the core) seems adequate to fulfill the needs of general applica-
tions with quantitative requirements and was indeed designed to
provide end-to-end QoS. We therefore advocate the use of
IntServ with aggregation for general applications (i.e., applica-
tions without directionality limits) that have quantitative
requirements (e.g., some interactive real-time applications such
as tele-education). This leads to a model where DiffServ and
IntServ are both supported in the routers, especially in the core.
In this model, the flexibility of the best-effort services provided
by DiffServ seems ideal to provide extended and extensible best-
effort services for the IntServ architecture. Furthermore, this
use of DiffServ to provide a range of differential best-effort ser-
vices (in terms of delay and error rates) lends itself to incremen-
tal deployment. Indeed, as long as best-effort service
differentiation has been provided in parts of the network, it is
guaranteed to be retained end to end. This is so because delays
and error rates have additional and multiplicative properties,
respectively, and the delay and error rate experienced by pack-
ets in a node providing a flat best-effort service are the same.

Because of the strict guarantees, end-to-end guaranteed-ser-
vice IntServ should command a higher price than controlled
load services, which, in turn, should command more than the
“best” best-effort provision of simple DiffServ. This leads to a
model where applications, depending on the severity of their
requirements, could try successive DiffServ classes until they get
acceptable performance, only using an end-to-end IntServ path
in cases where the best DiffServ class is not sufficient. The
important point of this model is that while trying successive
best-effort services provided by simple DiffServ, no performance
indication (never mind guarantee) is provided. Many applica-

56

IEEE Network = July/August 2000

tions can cope with such a lack of performance information, but
some applications will require better guarantees from the net-
work. These latter applications will have to use either guaran-
teed service or controlled load service to operate satisfactorily.

In this article we have discussed the Internet as a candidate
to provide the global telecommunication infrastructure of the
future. A major requirement for such an infrastructure is the
ability to support new distributed, interactive multimedia appli-
cations (the critical applications) that require strict QoS guar-
antees. A second key requirement is the ability to cope with
hugely increased traffic demands, which will be generated by
both current best-effort applications and new multimedia appli-
cations. The elastic applications, where the burden lies with the
applications themselves to adapt to variations in network ser-
vice quality, raise a further requirement, namely the provision
of a better best-effort service from the network where the QoS
is more predictable and consistent. For best-effort and elastic
applications, the current evolution of the Internet in terms of
more efficient routing and allowing users to pay more for a dif-
ferentiated service is highly welcome. However, for critical
applications further development of a guaranteed service within
the IntServ architecture continues to be elusive.

In this article we have discussed how the combination of
IntServ and DiffServ can contribute to strategic approaches
for providing appropriate compromise levels of QoS for mix-
tures of applications. We have also analyzed new members of
the IP family, specifically IPv6, RSVP, and MPLS, and
deduced that they have both significant benefits and deficien-
cies, the deficiencies being largely that critical applications are
not ultimately supported. Telecommunication operators and
suppliers should understand the benefits as well as the flaws
of the new-generation IP family. If they are interested in fully
supporting critical applications in the future, they should be
aware that this support will not be realized until further
research and development have been undertaken. Meanwhile,
they might wish to adopt the Internet as the basis for a global
information infrastructure, but accept that for now, and for a
while to come, their applications will have to continue to
adapt to the deficiencies of the network and its protocols.

Acknowledgments

We would like to thank Jon Crowcroft, Domenico Ferrari,
Paul Kirkby, and Peter Newman for their comments on an
earlier version of this article. We also thank the anonymous
referees whose comments have substantially improved this
final version.

References

[1] R. Braden, D. Clark, and S. Shenker, “Integrated Services in the Internet
Architecture: an Overview,” RFC 1633, June 1994.

[2] A. Mankin et al., “Resource ReSerVation Protocol (RSVP) Version 1 Applica-
bility Statement: Some Guidelines on Deployment,” RFC 2208, Sept. 1997.

[3] D. Black et al., “An Architecture for Differentiated Services,” RFC 2475, Dec.
1998.

[4] S. Deering and D. Cheriton, “Multicast Routing in Datagram Internetworks and
Extended LANs,” ACM Trans. Comp. Sys., vol. 8, no. 2, May 1990, pp. 85-110.

[5] S. Deering et al., “An Architecture for Wide-Area Multicast Routing,” ACM
Comp. Commun. Rev., vol. 24, no. 4, Oct. 1994, pp. 126-35.

[6] H. Eriksson, “MBONE: The Multicast Backbone,” Commun. ACM, Aug.
1994, vol. 37, no. 8, pp. 54-60.

[7] V. Fuller, T. Li, and J. Yu, “Classless Inter-Domain Routing (CIDR): an
Address Assignment and Aggregation Strategy,” RFC 1519, Sept. 1993.

[8] L. Zhang et al., “RSVP: A New Resource ReSerVation Protocol,” IEEE Net-
work, vol. 7, Sept. 1993, pp. 8-18.

[9] H. Schulzrinne et al., “RTP: A Transport Protocol for Real-Time Applications,”
RFC 1889, Jan. 1996.

[10] S. Deering and R. Hinden, “Internet Protocol, Version 6 (IPv6) Specifica-
tion,” RFC 1883, Dec. 1995.

[11] R. Gillian and E. Nordmark, “Transition Mechanisms for IPv6 Hosts and
Routers,” RFC 1933, Apr. 1996.

[12] R. Braden et al., “Resource ReSerVation Protocol (RSVP) — Version 1 Func-
tional Specification,” RFC 2205, Sept. 1997.

[13] L. Mathy et al., “Improving RSVP for Better Support of Internet Multimedia
Communications,” Proc. IEEE Multimedia Sys. '99, Florence, Italy, June
1999, pp. 102-6.

[14] L. Berger, D.-H. Gan, and G. Swallow, “RSVP Refresh Reduction Exten-
sions,” IETF, RSVP Working Group, draft-berger-rsvp-refresh-reduct-00, Mar.
1999, work in progress.

[15] J. Schmitt et al., “Aggregation of Guaranteed Service Flows,” Proc. IWQoS
’99, London, U.K., June 1999, pp. 147-55.

[16] S. Berson and S. Vincent, “Aggregation of Internet Integrated Services
State,” IETF, RSVP Working Group, draft-berson-rsvp-aggregation-00, Aug.
1998, work in progress.

[17] S. Herzog, S. Shenker, and D. Estrin, “Sharing The “Cost” of Multimedia
Trees: An Axiomatic Analysis,” IEEE/ACM Trans. Net., 1997, vol. 5, no. 6,
pp. 847-60.

[18] P. Newman et al., “IP Switching and Gigabit Routers,” IEEE Commun.
Mag., 1997, vol. 35, no. 1, pp. 64-69.

[19] P. Newman, G. Minshall, and T. Lyon, “IP Switching: ATM Under IP,”
IEEE/ACM Trans. Net., vol. 6, no. 2, Apr. 1998, pp. 117-29.

[20] Y. Katsube, K. Nagami, and H. Esaki, “Toshiba’s Router Architecture Exten-
sions for ATM : Overview,” RFC 2098, Feb. 1997.

[21] A. Viswanathan et al., “Aggregate Route-Based IP Switching (ARIS),” IBM
tech. rep. TR29.2353, Feb. 1998.

[22] Y. Rekhter et al., “Tag Switching Architecture Overview,” Proc. I[EEE 1997,
vol. 85, no. 12, pp. 1973-83.

[23] A. Acharya, R. Dighe, and F. Ansari, “A Framework for IP Switching over
Fast ATM Cell Transport (IPSOFACTO),” Conf. Broadband Networking Tech.,
vol. 3233, ch. 36, Dallas, TX, Nov. 1997, pp. 20-28.

[24] E. Rosen, A. Viswanathan, and R. Callon, “Multiprotocol Label Switching
Architecture” IETF, MPLS Working Group, draft-ietf-mpls-arch-05.txt, Apr.
1999, work in progress.

[25] R. Callon et al., “A Framework for Multiprotocol Label Switching,” IETF, MPLS
Working Group, draft-ietf-mpls-framework-03.txt, June 1999, work in progress.
[26] Y. Rekhter and E. Rosen, “Carrying Label Information in BGP-4,” [ETF, MPLS
Working Group, draft-iet--mpls-bgp4-mpls-02.txt, Feb. 1999, work in progress.
[27] B. Davie et al., “Use of Label Switching with RSVP,” IETF, MPLS Working

Group, draft-ietf-mpls-rsvp-00.txt, Mar. 1998, work in progress.

[28] L. Andersson et al., “LDP Specification,” IETF, MPLS Working Group, draft-
ietf-mpls-ldp-5.txt, June 1999, work in progress.

[29] B. Jamoussi “Constraint-Based LSP Setup using LDP,” [ETF, MPLS Working
Group, draft-ietf-mpls-cr-Idp-01.txt, Feb. 1999, work in progress.

[30] T. Worster, F. Hellstrand, and A. Doria, “A QoS Model for GSMP,” IETF, GSMP
Working Group, draft-worster-gsmp-qos-00.txt, Feb. 1999, work in progress.
[31] C. Adams, A. Lazar, and M. Nandikesen, “The gGSMP Protocol, IETF, GSMP
Working Group, draft-adam-gsmp-qgsmp-00.txt, June 1999, work in progress.
[32] A. Odlyzko, “The Internet and Other Networks: Utilization Rates and their

Implications,” Proc. 26th Telecommun. Policy Res. Conf., Oct. 1998.

Biographies

LAURENT MATHY (laurent@comp.lancs.ac.uk) graduated in electrical engineering
from the University of Liege, Belgium, in June 1993, and was awarded his Ph.D.
in computer science from Lancaster University, England, in January 2000. He is
currently a research lecturer in the Computing Department at Lancaster Universi-
ty. He spent the 1995-1996 academic year at the University of British Columbia,
Vancouver, Canada, as a visiting scholar. His research interests include integrat-
ed communication architectures, services and protocols for multimedia communi-
cations requiring QoS and group communication support, programmable
networks, and e-commerce security.

CHRISTOPHER EDWARDS (ce@comp.lancs.ac.uk) graduated from Liverpool John
Moores University in 1995 with a degree in computer studies. Following this, he
joined the Computing Department of Lancaster University as a research student.
During 1998 and 1999, he worked as a research assistant on the European
ACTS Project Provision of an Enhanced Transport by Exploiting Reservation in IP
and ATM Networks (PeterPan), looking at various issues concerning IP/ATM inte-
gration. He was awarded his Ph.D. in computer science in March 2000 in the
area of open network control. He is currently working as a research assistant on
the Lancaster and Microsoft Active Research Collaboration (LandMARC) project.
His research interests include multimedia communications, future approaches to
signaling and network control, and support for QoS within the Internet.

DAvID HuTcHIsON (dh@comp.lancs.ac.uk) is professor of computing at Lancaster
University and has worked in the areas of computer communications and dis-
tributed systems for the past 15 years. He has completed many U.K. and Euro-
pean-funded research contracts and published over 120 papers as well as
written and edited books in these areas. He assists the U.K. EPSRC on several
aspects of their research program planning and is a technical expert adviser to
the Office of Telecommunications (OFTEL). He is a technical expert and auditor
for the European Commission in the areas of telecommunications and telematics,
and represents the United Kingdom on the management committee of the
COST264 project on multimedia group communication, and the COST263 pro-
ject on quality of Internet services. The main theme of his current research is
architecture, services, and protocols for distributed multimedia systems, including
QoS for the Internet, and multimedia content description and extraction.

IEEE Network = July/August 2000

57

