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The SmallSat spacecraft 

EADS-Astrium satellite 

ESA Technology Research Programme 

”Advancement of Mechanical Verification 

Methods for Nonlinear Spacecraft 

Structures” 

Measurement campaign at EADS-Astrium. 
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Goals 

Micro-vibration 

mitigation 

 

 

Large amplitude 

limitation 

Solutions 

Elastomer plots 

 

 

 

Mechanical stops 

The nonlinear WEMS device: filtering and protection 
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Motivations are twofold 

 

 

Experimental 

Accurately identify the underlying linear system and the 

parameters defining the nonlinearities 

 

 

 

Theoretical 

Numerically reproduce nonlinear phenomena experimentally 

observed 
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1. Nonlinearity detection: a rich frequency content … 
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2. Nonlinearity characterization: RFS method 

Restoring forces can be conveniently 

visualized (Masri and Caughey, 1979) 

 

For this application, qualitative 

information only: 

 

Accelerometer 

Sine sweep base excit.  

0.6 g 1 g 

Force  Force 

Rel. displ.  Rel. displ.  
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3. Nonlinear parameter estimation: FNSI method 

Rigorous nonlinear generalization of subspace identification 

methods to nonlinear systems (developed at ULg) 

 

 

 

 

 

NL    Error    

 

1-x 0.78 %  
 

2-x 0.66 %  
 

3-y 0.67 %  
 

4-y 1.44 %  
 

1-z 0.01 %  
 

2-z 2.53 %  
 

3-z 0.98 %  
 

4-z 1.01 %  

Underlying linear system Nonlinear coefficients 



8 

Outcomes of the experimental campaign 

Complex nonlinear dynamics observed on a real-world 

spacecraft structure and also accurately identified. 
 

Information gathered is used to build a computational model 

and for further analysis of the observed dynamics. 

 

 

 

 

 

Initial model: 65000 DOFs 

 

Reduced model: 34 DOFs and              

accurate between [0-100Hz] 

 

8 nonsmooth (regularized) 

nonlinearities 

WEMS 

WEMS 
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Regularization using Hermite polynomials 

2Δ 

Cubic 

polynomials 
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Regularization using Hermite polynomials 

2Δ 

Purely linear 

behavior ! 
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Two-step architecture of computational methods 

STEP 1:   

 

Shooting algorithm 

 

Finite differences 

 

Harmonic balance 
 

 

 

STEP 2:   
 

Pseudo-arclength continuation 

 

Asymptotic-numerical continuation 
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5:1 modal interaction between modes 1 and 12 

Energy (J) 10-6 104 

Frequency 

(Hz) 

10.65 

11 

S51 

S31 

10
-6

10
-4

10
-2

10
0

10
2

10
4

10.65

10.7

10.75

10.8

10.85

10.9

10.95

11

Energy [J]

F
re

q
u

en
cy

[H
z]

S51 

S31 



15 

5:1 modal interaction between modes 1 and 12 
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Correspondence with the measurements ! 
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Third mode is nonlinear (again WEMS local mode) 
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Conclusion 

 

 

 
 

A real-life structure with strong, multiple piecewise-linear 

nonlinearities showed a complex behavior 
 

 

 

 

 

Observed phenomena are explained by 

Nonlinear Normal Modes ! 
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