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Abstract

Background

The end-systolic pressure-volume relationship is often considered laad-independel
property of the heart and, for this reason, is widely used as an widexentricular
contractility. However, many criticisms have been expresgminst this index and tf
underlying time-varying elastance theory: first, it does nohsier the phenome
underlying contraction and second, the end-systolic pressure volumensfigi has beg
experimentally shown to be load-dependent.




Methods

In place of the time-varying elastance theory, a microsaopidel of sarcomere contractipn
is used to infer the pressure generated by the contraction lefttientricle, considered ag a
spherical assembling of sarcomere units. The left ventricle Indieserted into a closed-
loop model of the cardiovascular system. Finally, parameters oholkfied cardiovascular
system model are identified to reproduce the hemodynamics of a normal dog.

Results

Experiments that have proven the limitations of the time-varyilagtance theory afe
reproduced with our model: (1) preload reductions, (2) afterload iEsed3) the same
experiments with increased ventricular contractility, (4) isovatugontractions and ()
flow-clamps. All experiments simulated with the model genediferent end-systolic
pressure-volume relationships, showing that this relationship isalpctioad-dependent.
Furthermore, we show that the results of our simulations areoau ggreement with
experiments.

Conclusions

We implemented a multi-scale model of the cardiovascular systerwhich ventriculaf
contraction is described by a detailed sarcomere model. Usinghtddsl, we successfully
reproduced a number of experiments that have shown the failing poifiis time-varying
elastance theory. In particular, the developed multi-scale noddleé cardiovascular systgm
can capture the load-dependence of the end-systolic pressure-volume relationship.
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Background

Since the experiments of Suga and Sagawa [1], the concept of tiymegvalastance (also
termed “time-varying pressure-volume ratio”) has been extegsiwgd by clinicians and
engineers to simply and accurately represent ventricular &umclihis powerful concept
states that ventricular pressure and volume can be relateg atoment of the cardiac cycle
by means of an activation function. This function, once normalized negtpect to time and
amplitude, is able to represent any loading condition of the ventA¢lthe end of cardiac
ejection (systole), this pressure-volume ratio is called the-$gatblic pressure-volume
relationship” (ESPVR). The slope of the ESPVR has been widelyassadoad-independent
index of ventricular contractility.

Thanks to its simplicity, the time-varying elastance thdmayg been used in many lumped
mathematical models of the cardiovascular system. This thesrpden extended to better
reproduce the diastolic properties of the heart [2,3]. A great adyeantahis concept is that
it allows fast model simulations, enabling the large number of nradslneeded to identify
model parameters and design patient-specific models for use at the bedside [4,5]



However, many criticisms have been leveled against the timygagaelastance concept.
First, its biggest advantage, namely that it allows a simgéionship between ventricular
pressure and volume, is also its biggest drawback. Indeedadhisc approach does not
consider the fact that cardiac muscle contraction begins atrasoopic scale. Second, more
recent experiments have shown the end-systolic pressure-volumenstigdt to be more
parabolic than linear in shape [6-8]. Some researchers subsequoeifjed the time-
varying elastance theory to include various nonlinear pressure-voklatenships [9,10].
Third, instantaneous ventricular pressure has also been shown toatigalgglependent on
instantaneous flow out of the ventricle, an effect that has besned the “internal
resistance” of the ventricle [11-13]. These authors also addedathboc modifications to
the time-varying elastance theory to account for this resistfeet by including a flow term
in the pressure-volume relationship. Finally, the relationship between ventri@daupr and
volume has been demonstrated to depend on the mechanical load exerted/emtrible
[14]. This result implies the load-dependence of the ESH\Rthat the ESPVR is not
unique. This effect cannot be accounted for by any modification dintieevarying elastance
theory.

These objections have lead many authors to gain deeper knowledge ohdaenéntal
mechanisms underlying cardiac contraction. For example, Burkhoff [8¢rided a
ventricular model, with its contraction based on chemical mechanisittated by a time-
varying intracellular calcium concentration. Negroni and Lascanoddbg¢eived a muscle
model based on the same type of chemical pathways. This musclé maedeeen inserted
into different ventricle models [15] and even full cardiovascularesytCVS) models [16].
In these studies, attention was more focused on the microscopits énappening during
contraction while, to our knowledge, no study investigated the influehsuch microscopic
models on macroscopic hemodynamic variables such as volume and grésswever,
these two variables are the ones that have been used by expaliresearchers to underline
the limitations of the time-varying elastance theory.

The goal of the present work is thus to implement a multi-SC&18 model, taking into

account the physiological origin of cardiac contraction at thHelaelevel, that will provide

answers to the objections formulated against the time-varyingtastae theory. This
implementation will allow a critical comparison of this modéhvwihe time-varying elastance
model.

In the following sections, we describe how we assembled the-scale CVS model from
existing micro and macroscopic models of myocyte contraction andrthgatory system.
Then, the model parameters are identified to reproduce the hemodgnaina normal dog.
Finally, experimental protocols that have shown the limitatiorteetime-varying elastance
theory, including the load-dependence of the ESPVR, are reproduckdth&itmodel,
demonstrating that these effects are correctly captured.

Methods

The multi-scale cardiovascular system model developed in this waskassembled from
three existing models: (1) a cardiac sarcomere model, (2htacke model and (3) a CVS
model (Figure 1). This section describes how the models are antexcted, while the
following subsections contain descriptions of the models.



Figure 1 Interconnection of the three models with inputs and outputs of eacimodel.

In this work, cellular electrophysiology is not described in tletmstead, a typical
experimental curve representing how intracellular calcium coratent varies with time was
used as input for a cardiac sarcomere model. This cardiac sarcomere modes ichehaecal

equations depicting how variations in calcium concentration modifyefgeneration. The
model also describes how muscle length influences force generatgeuretrical ventricle
model was built by assembling sarcomere units around a spherauifhé force of the
sarcomere was then used to compute ventricular pressure, whiekdit to be inserted into
a cardiovascular circulation model. Closing the loop, the circulation Inthdiates how

much volume goes in and out of the ventricle, thereby dictatingtHeof the individual

sarcomere units. The models interconnections are presented in Figure 1.

Calcium input

Intracellular calcium concentration has been derived from quely published data [17] (see
Figure 2). Two cosine branches were fit to the experimentailgrgfelding the following

expression fo{Ca”] (t):

Cﬂ[l— CO{ED ifO<t<T,
2 T
[Caz*}(t): Co| 14 o6 A—T) i, <t<T, 1)
2 27 h
0 otherwise

Figure 2 Experimental and fit intracellular calcium concentration profiles. Experimental
intracellular calcium concentration profilen( blue) is taken from Yue [17]. This
experimental curve is fit with two cosine branches in order to éé as input for numerical
simulations (ed).

whereT, is the time at which maximum calcium concentration ocdutghe time at which
calcium concentration goes back to zero ang,da the maximum value of the calcium
concentration. The fitting result is displayed in Figure 2 with corresponding pararaletes
displayed in Table 1.



Table 1Values of the model parameters

Parameter Value Units Source
Intracellular calcium concentration

T, 40.6 ms Fit from [17]

T, 130.2 ms Fit from [17]
Camnax 1.47 uM Fit from [17]
Chemical kinetics

Y. 39 uM s [15]

Z; 30 S [15]

Y, 1.3 st [15]

Z, 13 st [15]

Y3 30 st [15]

Zs 1560 uM st [15]

Ya 40 st [15]

Yy 8 sum? [15]

T 70 uM [15]

B 800 st [15]

he 0.005 um [15]

La 1.17 um [15]

R 20 pm? [15]

Cross-bridge parallel and elastic forces

A 1800 mN mr? pm™ uM=? [15]

K 140 000 mN mmf um™ [15]

Lo 0.97 um [15]

a 05 mN mm? [15]

p 75 pm™? [15]

Force-length to pressure-volume conversion

K, 29.0 mlpm Adjusted

L, 1.05 um [15]

Vi, 60.6 ml Computed from [6]
f 0.217 - Adjusted
Hemodynamic parameters

Epa 0.953 mmHg mf Adjusted

Epu 0.0302 mmHg mt Adjusted

Ezo 0.965 mmHg mf Adjusted

Ev 0.0107 mmHg mt Adjusted

En 2.06 mmHg mf Computed from [6,18]
Roul 2.74 mmHg s mt Computed from [6,18]
Ry 5.65 mmHg s mt Computed from [6,18]
Ry 0.152 mmHg s mi Adjusted

Rt 0.0313 mmHg s mi Adjusted

R 0.0269 mmHg s mi Adjusted

R 0.459 mmHg s mi Adjusted

Total blood volume 1500 ml [19]

Right ventricle driver function

A 0.956 - [3]

A 0.625 - [3]

As 0.0180 - [3]

B, 255 §? [3]

B, 225 5 [3]

Bs 4230.0 g [3]

C 0.431 S Adapted from [3]
C 0.328 S Adapted from [3]
C; 0.374 S Adapted from [3]
Cardiac period 0.6 S [3]

These values have been taken as such from thatliteror have been adjusted by an iterative prasesstext
for details).



Cardiac sarcomere model

The four-state model of Negroni and Lascano [15] was used to coraptite force
generated by sarcomeres from intracellular calcium condemiralhe functioning of this
model is briefly described in this section. Originally, this matidlnot use an input calcium
concentration as described in the previous section but instead des@aibedh dynamics.
For simplicity and rapidity of model simulation, we chose to usal@um driver function, as
done by others [8], including Negroni and Lascano [15].

The model considers only a half-sarcomere of lehgtls shown in Figure 3. This half-

sarcomere consists of an elastic element, responsible fovedssce F,) generation,
according to the following equation:

F,=K(L-L), 2

Figure 3 Equivalent half-sarcomere involved in the model of Negroni andLascano[15].
The equivalent half-sarcomere is composed of a parallel eklsinent pottom) and a
contractile elementdp).

whereK is the stiffness of the element dnglis its resting length.

This elastic element is in parallel with a thick (myositgrfient that can bind a thin (actin)
filament. The binding takes place through one “equivalent” crosséricgpresenting the
average of all actual cross-bridges), whose mobile end (the black Eigure 3) binds actin.

If the half-sarcomere shortens (decreases), the equivalent cross-bridge also does (
decreases), and is not at equilibrium anymore. Hence, the crdgs-lwill stretch, which
means its length will increase to reach its equilibrium valbg as dictated by the following
equation:

& =8(n-n)=B(L-X-h) @

whereX =L —h andB is the rate at which reaches its equilibrium valug.

The mechanism of active force generation involves troponin (T), which, in theahatirsere
model, goes through four different states during one calcium.clyokd, when calcium is
released, it can bind troponin to form a complex, denoted TCa. Thissaitoponin to bind
myosin, located on the thin filaments (TCa*). Afterwards, calcian be released, while
troponin is still bound to myosin (T*). Finally, troponin and myosin detacit, troponin
goes back to its initial state T.

The chemical kinetics behind all these transformations are givéimebfollowing equations
(see [15] for details):



d[TCq _
—75———QD4A
d[Tcd]

at =Q,-Q,-Qy (4)
d[T]_
T _Qr 'Qd 'de

The rates involved in the previous equations are given by:

Q,=Yx[TCq,, -Zx| TC4]

Q,=x[ ca | 1 -2 7¢4

Q =Yx[ TCd | -zx| T |x| C& |
[

QYT ] 2 (5)
dX

Qu=v & | <[]
dX )’ .

Qu=¥o 5 | {7

where[T(;a]eﬁ :[TCa]e‘R(L‘La)Z is the effective concentration of calcium bound to troponin.

This effective concentration is introduced to account for the overlapebetthin and thick
filaments. Overlap is maximal whén=L,. R is a parameter controlling the curvature of the
function and parametery and Z are reaction rates of the previous chemical reactions.
Values for these parameters are displayed in Table 1. Tieegither taken from [15] or
identified (see section “Parameter adjustment to canine data”).

Since troponin concentration does not vary with time, concentration of tropoits initial
state can be deduced from concentration of troponin in modified ¢fates*], [TCaland

[T*]) by:
[T]=T.-[Tca ]-[Tcd-[ T] (6)
whereT; is total troponin concentration.

In the equations describing the chemical kinetics of the sarespmeaction rates can be seen
to depend om., the length of a half-sarcomere (through [T&ajand d./dt, the change df
with time (through &/dt that influence€)y; andQq). This dependence modifies the reaction
rates if the sarcomere is stretched and how it is stretchedymting for well-known force-
length and force-velocity relationships [20]. Finally, active fprEg is related to the
concentration of troponin attached to myosin via:

= Ao 110 "



whereA is a lumped constant establishing the bridge between forcemtgghby a single
half-sarcomere and the whole muscle unit.

Total muscle force is given by the sum of active and passive forces:
F= Fb + Fp' (8)

A series elastic element was added to model the effeatsyofyte compliance. The force
produced by this elastic element was defined to be:

F = a(e 1) ©)

S

wherea andp are parameters describing the shape of this passive forceoftleeH;, and
length,Ls, of this elastic element are linked to the fofeeand lengthL, of the muscle unit
by:

F=F (10)
L=L+L (11)

Equation (10) has to be solved numerically to find the valle of

Ventricle model

The spherical ventricle model of Negroni and Lascano [15] was wsddscribe the left
ventricle. This model consists of an arrangemeridialf-sarcomeres on the circumference
of a sphere. The numbe\,, of half-sarcomeres can be obtained by the formula

Vo =KL (12)

whereVn, is midwall volume, the logarithmic mean of inner and outer ventricle volumes [21]
andK, = N.*/67°.

The pressure inside the spherical left ventricle can be obthintgee following relationship,
derived from energetic considerations [21]:

R =50
Viw (13)

whereo is the average fiber stress aviglis the volume of the ventricular wall. Note that the
numerical factor 5 in this equation is different from the one puldiSiyeRegen [21] because

pressure has been converted from mNfrtsrmmHg for comparison with physiological data
(1 mN/mnf = 7.5 mmHg).

Since the forcelr, computed in the previous section is a force per unit of musclecsuda
total force for the whole muscle unit can be computed by multiplyibg the reference area
(ar) of the muscle unit:



Then, the average fiber stresscan be computed by dividing this total force by the current
area §) of the muscle unit:

_Fa

poFu
a a (15)

Under the assumption of constant muscle unit volume, we have:

La =La (16)

whereL; is the reference length of the muscle unit. Finally, this yields:

o=FL
L, (17)

This, combined with Equation 13, gives the following expression for left ventriculaupees

Rv = 55 VWZ '
L KL (18)

Originally, a passive term was added to this equation to morectigraccount for diastolic
properties, but we chose to neglect it here after verifyingithaéitl not greatly affect the
results of the model simulations.

To derive the total length of the muscle unit from the left veletirolumeV,,, the fraction of
wall volume enclosed in the midwall volume is assumed to be a constant [15], dénoted,

Rv = 55 VWZ '
L KL (19)

This equation is supposed to be valid for any values of the leftictentolume,V,,, thus
making it possible to derive the length of the muscle fiber invettiagrevious equation and
using Equation (12):

V f +V
| = 3[—W Iv.
VK (20)

Cardiovascular system model

The ventricular model introduced in the previoustisa is then inserted into a closed-loop
CVS model. Our approach is based on a model desdlbp Smith [2], that describes cardiac
contraction by the means of the time-varying elastatheory applied to the left and right
ventricles. For completeness, this initial modell we briefly described below. Then, the



ventricular model presented above will replacettime-varying elastance model for the left
ventricle.

The CVS model of Smith [2] is a lumped-parametedei@onsisting of six elastic chambers.
These chambers represent the Ikff &nd right v) ventricles, the aortaag), the vena cava
(vc), the pulmonary arteryp@) and the pulmonary veingu). Vessels with modelled flow
resistance link the six chambers. Those vesselsraspectively, the systemisyf) and
pulmonary pul) circulations and the cardiac valves: the mitra)(aortic @o), tricuspid {c)
and pulmonary @v) valves (Figure 4). Valvular behavior is modelledth elements
analogous to ideal diodes in series with additidloal resistance.

Figure 4 Cardiovascular system model.The cardiovascular system model of Smith [2]
comprises six chambers, including the left and trigkntricles. The left ventricle of the

original model, described by a time-varying elaséns replaced by the ventricular model
described in this work.

The initial formulation of the model also includetertances, elements accounting for the
inertia of the blood going through the valves [&le choose not to include these elements in
the model, as they have been shown to have smhlevaand to weakly affect model
dynamics. Furthermore, neglecting these inertialapaters reduces uncertainty in the
parameter estimation process. Finally, these pasmare difficult to measure and not well
defined [22].

The model chambers are characterized by two vasalbheir volume\{) and the pressure
(P) inside of the chamber. The two elastic chambepsesenting the ventricles are said to be
active, which means that the relationship betwéenpressure and the volume is variable.
More precisely, it varies between the end-diastphessure-volume relationship (EDPVR)
and the ESPVR, respectively:

EDPVR:P(V)=P, (e”‘(vi o) —1) (21)
ESPVR R (V,)=E (V,-V,,) (22)

where E; (i being either IV’ or “rv”) is the end-systolic elastanc¥y;, the end-systolic
volume at zero pressur¥p;, the end-diastolic volume at zero pressure Bfidand/; are
parameters of the nonlinear relationship (21). iowplicity, we assum&/y; andPy; to be
zero, such that the EDPVR is coincident with theuree axis and the ESPVR goes through
the origin.

Transition between these two extreme relationsfspsiediated by an activation function,

varying between 0 and 1 and denot&ét). Consequently, the pressure in a ventricle at any
momentt of the cardiac cycle is linked to the volume by:

RtV (1)) = e(t)E (W (1) Vi) +(1-e(t)) Ry, (0 ) 23

The shape of the activation function for a dog lbesn described [3] as:



e(t) = iAj g8la)
= (24)

Values of the constants, B; andC; are taken from [3] and are displayed in Table 1.

The other elastic chambers are passive, which méesheir volumes and pressures are
linked by a constant, the elastange,

P=EV (25)
The volume change in the six elastic chambers earebived from the continuity equation:

N _
E_Qm Qout (26)

where Qi, and Qo« are, respectively, flow coming in and going outtbé compartment.
Equation (26) does not consider the heart valvémse role is to prevent backwards flow.
Hence, to correctly model the effect of the vahaesiegative flow has to be replaced by a
zero flow. Mathematically, it can be easily donerbglacing each flowQ(t), controlled by a
valve by rQ(t)), where r denotes the ramp function, defined as

OIS O @7

Then, a positive flow is unchanged and a negatox iis replaced by 0.

A vessel element links each pair of elastic conmpants of the model in Figure 4. Each of
these vessels is characterized by an hydraulisteegie, denote. The relationship between
flow, pressure and resistance is given by Poiseslilaw:

P -P

Q —_up down

R (28)

whereP,, andPgown represent the pressure up and downstream of dmalwdr, respectively.
Note that the original model also takes into actdbe effect of the pericardium and the
septum [2]. For simplicity, these effects were eetgd here.

The complete cardiovascular system model of Seiitd. has been previously shown to be
able to reproduce the major features of the caediowlar system. It has been validated
silico [23], in several animal model studies [4,24,254 & currently applied in one human
study.

In our approach, and for the corresponding redlitsussed below, this original model is
modified by considering for the left ventricle thedel described in the previous section and
based on the microscopic behavior of the equivatetdfsarcomere, instead of the time-
varying elastance concept. This amounts to repllaeedescription of the left ventricle by



Equation (23) with Equations (1) to (11), (18) afiD). A summary of all the model
eqguations is given in Additional file 1.

The right ventricle is still described by Equati@8), but values o€; have been shifted so
that left and right ventricles contract at the samme, as is the case physiologically.

Parameter adjustment to canine data

The complete model of the CVS presented above wegoh large number of parameters,
which are all summarized in Table 1. The hemodyoaparameters of our model and the
geometrical properties of the ventriclé,(V,, andf) were numerically adjusted to match
pressure and volume data from two canine expermhatidies [6,18]. These are displayed
in Table 2. We chose to identify these parametecalbse they directly influence ventricular
pressure and volumef( Equations (18) and (20)) and have a macroscapevance. Other
microscopic parameters related to the biochem@attrons and sarcomere length were kept
at values obtained from literature as no data wasable to adjust them.

Table 2 Reference values for parameter identification

Measurement Value Units Source
LV pulse pressure 119 mmHg [6]
Mean LV pressure 66 mmHg [6]
Aortic pressure at valve opening 115 mmHg [6]
Aortic pressure at valve closing 121 mmHg [6]
Mean ventricular volume 20.8 ml [6]
Stroke volume 11.7 ml [6]
RV pulse pressure 45.8 mmHg [18]
Mean RV pressure 22.9 mmHg [18]

These reference values comprise left (LV) and r{§f\) ventricular pressures, aortic and pulmonatgrat pressure and LV
and RV volumes.

The experimental canine pressure-volume loops gldi in the previous studies were taken
as reference for parameter identification. Morecisy, four characteristic points were

manually identified on these pressure-volume loopsnely points of beginning and end of

systole and diastole. This yielded a total of eiglgssure-volume points that were used for
parameter computation.

Four parameters were directly computed from thessspre-volume points, while others
were iteratively adjusted. These steps of the ifieation process are described in the
following sections and are summarized in in Figblre

Figure 5 Flow chart of the parameter estimation processThe superscript “0” denotes
initial parameter values, while the asterisk desaenverged parameter values. Parameters
that are directly computed and kept constant ferrést of the identification process have no
superscript.

Step 1. direct parameter computation from data

Four parameters can be directly computed froméference pressure-volume loops, the first
of which is the volume of the left ventricular wall,. The end-diastolic volume makes it
possible to derive the radius of the left ventri€tg, which can then be used to compute the
outer ventricular volume by taking into account deatricular wall thicknesg;



4 3
V, .tV =— +t) .
lv,ed w 37T(Rv ) (29)

where thickness was settat 0.9 cm [15]. Finally, Equation (29) can be usedomputev,,.

Second, we simplified Equation (23) for the riglentricle by assumin¥y,, andPq,, to be
zero, which is a common assumption [5]. Equati@) (Ben becomes:

_4 3
VIv,ed +Vw - BH(RV +t) ' (30)

Using the point of end-systole detected on thetngintricular pressure-volume loop and
knowing thate(t) = 1 at end-systolef) gives a direct way of compultirigj,:

Er - VI'V,ES
Fres (31)

Finally, flow resistances of the systemic and pulary circulationsRys and Ry, can be
directly computed using the definition of systemascular resistance [20] and the pulmonary
equivalent, namely:

F)ao - Pvc
_Po—Pw (32)
R"ys B CO_
_ Ppa - Ppu (33)
R cO

where the bar is used to denote the meanCGdaepresents cardiac output (the volume of
blood ejected by the heart per unit time). All tight-hand side elements of Equations (32)
and (33) can be estimated by inspection of thespresvolume loops. First, cardiac output is
computed by dividing stroke volume (equal to thigedence between end-diastolic and end-
systolic volumes) by cardiac period, which is aetixparameter of the model. Mean arterial
pressures were assumed equal to end-systolic ealatripressures. Finally, mean vena cava
pressure was assumed to be equal to the averaghio¥entricular pressure at the beginning
and end of diastole. The same approach was apjglietean pulmonary vein pressure and
left ventricular pressure.

Direct computation of the four paramet®ig Ev, Rss andRyy carried out as described above
yielded the values displayed in Table 1.

Steps 2 and 3: initial valuesfor iteratively adjusted parameters

An iterative process, described in the next sectieas used to adjusted other hemodynamic
parameters and geometric features of the left wbatrBefore describing this process, we
will first discuss how initial values for these iddied parameters were obtained.

Initial values for identified hemodynamic paramstienamely elastances of arterial and
venous chambers€f,, Ey, Eic andEy,) and valve resistance®, Ra, Re andRy) were



taken from previously published values for pigs. [Bhis initialization process is termed as
“Step 2" in Figure 5.

Initial values for parameters describing geomdtatures of the left ventricl&( andf) were
obtained by performing simulations of isovolumicntractions. In these experiments, the
ventricle contracts while being submitted to a ¢ants volume. An example of such
simulations can be found in section "Load-dependeot the ESPVR". The interest of
performing isovolumic contractions simulations l&tt a constant volume input suppresses
the influence of the circulatory system and theatesl parameters, which allows the
ventricular parameters to be estimated separaRdyameterK, and f were iteratively
adapted so that end-systolic and end-diastolic spres for four different isovolumic
contractions match corresponding points on thec{ieg) pressure-volume loops published
by Kass [6]. The load-dependence of the ESPVR msphat maximum pressure for ejecting
and isovolumic beats are different [11,12], thismsy this technique was only used to get
initial parameter values. The step described ia garagraph is referred to as “Step 3” in
Figure 5.

Steps 4 to 6: numerical adjustment of other parameters

First, the CVS model was split into systemic andnqmnary circulations, by assuming
constant systemic and pulmonary venous pressufs (Qonstant venous pressures were
computed as the mean values of begin- and endtoticagentricular pressures, see above.)
The vena cava and pulmonary veins compartmentsnie@mints with constant pressures,
implying that the two subsystems, each composedvatricle and an arterial compartment,
become independent. The two subsystems must dhmarsaie stroke volume, thus single
stroke volume value in Table 2. Furthermore, meamtnicular volumes were assumed to be
similar, hence the unique value for mean ventricutdume in Table 2.

Step 4 of the identification process was to idgrpdirameters of the systemic subsyst&m, (
Rav, Eao, Ky andf) with the left ventricle described by the physmital model detailed in the
previous sections. Reference data are those degplaythe first 6 rows of Table 2 (mean and
amplitude of left ventricle volume and pressureisphortic pressures at aortic valve opening
and closing).

Step 5 was equivalent to step 4 applied to the poéry subsystem, where cardiac
contraction is dictated by a time-varying elastaiR&ameterg;,, R andR,, were adjusted
so that simulated data matched reference valugsagled in the 4 bottom rows of Table 2
(mean and amplitude of right ventricle volume amdspure, plus mean pulmonary artery
pressure).

Finally, for step 6, the two subsystems were pokliagether, with venous pressures allowed
to vary. The last step of the identification pracess to adjust parametdtg andEp, using
the whole set of reference values displayed ingabl

In all the steps of this process, parameters wejested using Nelder and Mead'’s simplex
method [27]. All the computations were carried aging MATLAB (2011a, MathWorks,
Natick, MA).



Results

With the adjusted model parameters, we will fitsdwg (1) that the model is able to correctly
reproduce the sequence of events occurring durceydiac cycle. Then, some experimental
protocols that have proven the limitations of tihmetvarying elastance theory will be

reproduced with the model: (2) preload reductionugations through atrial hemorrhage and
increase of mitral valve resistance, (3) afterloattease simulations via increase of aortic
elastance or systemic vascular resistance, (49ahee simulations with increased ventricular
contractility, (5) isovolumic contraction simulati®, and (6) flow-clamp simulations. These
simulations allow us to investigate how well the dabreproduces experimental reality.

Specifically, we investigated if the model reproedche load-dependence of the ESPVR.

Parameter adjustment

After parameter adjustment, simulated pressuresvahgmes were of the same order of
magnitude as reference experimental results disglagy Table 2. As an example, the
pressure-volume loop of the left ventricle is shawifrigure 6. Figure 7 represents simulated
temporal pressure curves in the pulmonary veinfi, dentricle and aorta during one

heartbeat.

Figure 6 Simulated pressure-volume loop of the left ventricle

Figure 7 Time course of model simulated pressuresSimulated pressures in the pulmonary
veins (ed), left ventricle black) and aortalflue).

Simulation of preload reduction experiments

One goal of our work was to numerically investigdte load-dependence of the end-systolic
pressure-volume relationship. To do so, we numkyiceproduced the experiments of Kass
et al. [6]. These authors recorded left ventricular pues-volume loops in six open-chest
dogs with rapidly varying preload. Preload reductweas achieved by left atrial hemorrhage:
a cannula was inserted in the left atrium and cotaoketo a 1 | reservoir that was lowered to
decrease left ventricle filling pressure. The padloreduction experiment consisted of
lowering the reservoir for 10 to 12 s and simultarsdy recording the pressure-volume loops.
This technique allowed them to create a broad rahgeeloads, and thus to more completely
characterize the ESPVR. One of their observatioas tuat the shape of the ESPVR curve
was more parabolic than linear.

To remain as close as possible to such experimpragcols in our CVS model, an outward
flow of 50 ml/s was inserted in the circulation negdat the level of the pulmonary veins.
(Since the atria are not explicitly included in thedel, they are merged with the pulmonary
vein compartment.) The model was then simulatec fiurther 4.8 s (i.e. 8 cycles). Resulting
pressure-volume loops are shown in Figure 8.

Figure 8 Simulated left ventricle preload reduction experiment though atrial
hemorrhage. The first four pressure-volume loops are represknt solid lines, the last four
ones, in dashed lines. Straight lines were fith® énd-systole points of the two simulated
pressure-volume curves sets.




To evaluate the linearity of the end-systolic puesssolume relationship, we reproduced the
computations carried out by Kaesal. [6]. Simulated pressure-volume loops were divided
into two sets (one containing the first four loofds other containing the last four) and a
linear ESPVR of the form

Pes = ES(\/ES _VO) (34)

was computed for the two sets with an iterativecess [28]. This process involved fitting a
straight line to the end-systolic points, definedp@ints with the maximd/(V — Vo) ratio.
During the first step of the proces# was fixed at zero. Then, coefficients of the linea
regression yielded new estimates fég and Vo and the process was repeated until
convergence was achieved.

As suggested by Kassal. [6], a parabolic regression of the form

_ "\ 2 b .
P =a(Vie =V, ) +b(Ve - V) (35)
was also computed to fit the points of end-systdte perform this regression, the previous
function was fit to points of end-systole with anfinear least-squares algorithm. We

performed such a computation, the result of whickhown in Figure 9 and in Table 3. The
curvature parameterin Equation (35) was statistically different fraaro with g = 0.0383.

Figure 9 Simulated left ventricle preload reduction experiment though atrial
hemorrhage A parabolic curve (dashed line) was fit to thed-sgystole points of the
simulated pressure-volume curves.

Table 3 Coefficients of the linear and parabolic ESPVRs. Experimental values can
from [ 6]

Linear ESPVR Parabolic ESPVR
First loops Last loops
Ee Vo Ees Vo a p* b Vo
Experiments 6.49 -570 23.30 4.00 -2.68 0.005 30.00 3.90
Simulations 1.74 -422 233 -274 -0.0678 0.0383 5.62 -104

*Statistical significance of parametar

Load-dependence of the ESPVR

In this section, we compare the previously deriESPVR to four other ESPVRS: one
resulting from another preload reduction, two cagnirom afterload variations and another
one resulting from isovolumic contraction simulaso

In the previous section, preload was varied byrnigans of a simulated atrial hemorrhage.
Here, we simulated another preload reduction expart by a tenfold increase of the mitral
valve resistance. The result of this simulatioshewn in Figure 10. Points of end-systole
were computed as previously described and a pacab8PVR was fit to these points (white
dots in Figure 10).



Figure 10 Simulated left ventricle preload reduction experiment by mcreasing the
mitral valve resistance.The corresponding ESPVR is drawn with white ddtse ESPVR
obtained by simulating an atrial hemorrhage isldiggd in dashed line.

Afterload can be defined as the pressure the wbmthas to overcome to eject. Doubling
aortic elastance, which has the effect of increpsiortic pressure, increases afterload. The
pressure-volume loops obtained by such a simulatiershown in Figure 11. Once again, we
computed the ESPVR as a parabolic fit of the panftsnd-systole. In this case, the ESPVR
was parabolic, but with a slightly positive contgive = 0.2426 mmHg/ni| p < 0.001). This
ESPVR is represented in dash-dotted line in Fidurealong with ESPVRs obtained with
preload reduction simulations.

Figure 11 Simulated left ventricular afterload increase by doubling aoric elastance The
corresponding ESPVR is drawn in dash-dotted linke ESPVRs obtained by preload
reduction simulations are displayed in dashed amtevdotted lines.

Afterload can also be increased by doubling theievalf the systemic vascular resistance in
the model [23]. The simulation result is shown iigufe 12. In this figure, the ESPVR
computed from points of end-systole is also dispithyblack-dotted line). It was not
significantly different from a straight line. (Thpevalue of the quadratic parametewasp =
0.662.)

Figure 12 Simulated left ventricular afterload increase by doubling sysgmic vascular
resistance.The corresponding ESPVR is drawn in dotted linke ESPVRs obtained by
preload reduction simulations are displayed in ddsand white-dotted lines; the ESPVR
obtained by afterload increase by doubling aottistance is displayed in dash-dotted line.

To numerically reproduce the experiments of Sugh @agawa [1] and Burkhoff [14], we
also performed simulations of isovolumic contractiexperiments. In an isovolumic
contraction, the ventricular volume remains constmd thus only depends on the fixed
volume.

The isovolumic contraction simulations were repedte different constant volumes, ranging
from 10 ml to 25 ml. The developed pressure foheaicthe constant volumes is plotted in
bold line in Figure 13. For comparison, the ESPU\Ra&t were computed from the four
previous load variation simulations are also shown.

Figure 13 Isovolumic contraction simulations. Isovolumic contraction simulations are
represented in bold line with four different ESPVRsnerated by preload reduction
simulations (dashed and white-dotted) and afterloadease simulations (dash-dotted and
dotted line).

Contractility-dependence of the ESPVR

As previously explained, the ESPVR was initiallpposed as a load-independent index of
contractility [29]. After having examined the loaiependence of the ESPVR in the
previous section, we will now focus on the variatioof the ESPVR due to changes in
ventricular contractility.



Contractility was increased in the model by doulpline peak value of intracellular calcium
concentration. In their experimental protocol, Swyeal. [29] increased contractility by
epinephrine infusion, the effect of which is to mate calcium release by the sarcoplasmic
reticulum [20]. To model this effect, we thus cheds double the value of the parameter
Camax (Equation (1)), hence doubling the peak valuentbcellular calcium concentration in
the model.

The previous preload reduction and afterload irsweaimulations were repeated with
increased contractility. The result of these simaie is shown in Figure 14. Each one of the
four ESPVRSs presented in the previous sectiongplayed in black in this figure. The four

ESPVRs obtained after increasing contractility aepeated the load variation simulations
are displayed in red for comparison.

Figure 14 Four pairs of different ESPVRs generated by preload reducbn simulations
(dashed and white-dotted) and afterload increase simulation@ash-dotted and dotted
line). Each pair of ESPVRSs corresponds to basal (blawk)racreased (red) contractile state.

Internal Resistance of the ventricle

Shroff [12] performed flow clamp experiments on &vlated canine heart. These
experiments consisted in imposing linear ramps efticular volume (and consequently,
constant flows out of the ventricle) and obsenrving effects of their timing and magnitude
on ventricular pressure. The main conclusion o$éhmuthors was that, for a given ventricular
volume, the bigger the flow out of the ventriclee tower the pressure. They found that this
relation between ventricular pressure and flow Waesar and called the slope of the linear
relation the “internal resistance” of the ventricl€his resistance was found to be
approximately equal to 0.0799 mmHg s/ml (in absollue) for a normal contractile state.

The ability of the model of Negroni and Lascano][fid correctly reproduce various flow
clamp experiments has been extensively describetthdse authors and hence, will not be
described in detail here. In short, we also sinedlalow-clamp experiments in our left
ventricle model with adjusted parameters and oleskras expected, a decrease in ventricular
pressure as flow out of the ventricle increased.

Discussion

The model developed in this work accounts for thegsplogical, microscopic origin of
cardiac contraction, making it a much more realistiodel of cardiac contraction than the
time-varying elastance model. But this improvedisea comes with a cost: to be used, the
time-varying elastance concept only requires twapaters (maximum elastance and time
to peak) and one input function (the activationction) [29]. On the other hand, the model
developed here requires 22 parameters (see sectimical kinetics”, “Cross-bridge
parallel and elastic forces” and “Force-length tesgure-volume conversion” of Table 1) and
one input function (the intracellular calcium contation). Values have to be assigned to all
of these parameters, which required the developrokat numerical parameter estimation
scheme, as described in section “Parameter adjostrard in Figure 5. Due to the large
number of parameters, a large amount of data veasresl, which could not be obtained for a
single animal. However, to remain as close as ples$o the experiments we intended to
simulate, we only used reference data coming frepeements on dogs.



After parameter adjustment, the model was ableotoectly simulate the normal succession
of events during a cardiac cycle. The four phadesaadiac contraction, namely filling,
isovolumic contraction, ejection and isovolumicasedtion can clearly be distinguished on the
pressure-volume loop of Figure 6. The timing ofsthephases was also physiologically
correct, as shown in Figure 7. The first phase esgnted in Figure 7 is isovolumic
contraction: after mitral valve closing, ventriaularessure increased until the aortic valve
opened (crossover of ventricular and aortic presguiThen, during ejection, the aorta filled
up with blood, increasing its pressure until it @ded the ventricular pressure. At this
moment, the aortic valve closed, denoting the begm of isovolumic relaxation. When
ventricular pressure dropped below pulmonary venmessure, the mitral valve opened,
allowing filling of the ventricle. Mitral valve ckure occurred when ventricular pressure rose
at the initiation of a new contraction, and theleyepeats.

Since one of the main objectives of this articleswa evaluate the load-dependence of the
ESPVR, this concept has to be clearly defined. Waelanthe choice to compute ESPVRs
during transient variations in ventricular volumedapressure following abrupt changes of
load exerted on the ventricle. We chose this methdzktter agree with experimental reality.
However, this method is different than some expental procedures where ESPVR is
computed only from stabilized pressures and voluf38$ or from isovolumic pressure-
volume relationships [14]. Since the ESPVR is |ldagendent, it is important to describe
precisely how it was derived to enable correct camspns between our model simulations
and previously published experimental results.

As can be seen in Figure 8 and in Table 3, theliwear ESPVRs computed from the atrial
hemorrhage experiment yielded different slopes \asidme axis intercepts for each one of
the two sets of loops. The same observation wa® regperimentally by Kass al. [6], who
suggested that the ESPVR could more accuratelyeleritbed by a quadratic curve. The
result of this computation is shown in Figure 9. @& be seen in this figure, the parabolic
ESPVR obtained by atrial hemorrhage is close talinThis may come from the insufficient
variation in ventricular volume. Indeed, we haditoit our atrial hemorrhage simulation to
an outward flow of 50 ml/s during 4.8 s to avoianglete emptying of the pulmonary veins.
Kasset al. [6] used an outward flow of 80 to 100 ml/s duri@to 12 s. Still, our parameter
a, describing the concavity, is negative, meanirgt the ESPVR is concave towards the
volume axis, as experimentally determined [6,7].

The biggest assumption of the time-varying elagtatheory is that the ESPVR is load-
independent. It is thus assumed to be unique andlyodepend on the contractile state of the
heart, which makes it a powerful index of contidggti We numerically reproduced
experiments that have shown the opposigethat the ESPVR depends on the load imposed
on the ventricle. To do so, we showed that the moal@ld exhibit many different ESPVRs.
The simulation of a preload reduction experimentabial hemorrhage allowed us to trace a
first ESPVR that was slightly parabolic and concemeards the volume axis (Figure 9). A
second preload reduction experiment by increasthe@fmitral valve resistance yielded a
clearly different ESPVR (Figure 10). Yet, the resflthe two preload reduction experiments
was, as expected, a shift of the pressure-volumgsleowards the lower volumes. The same
observation can be formulated from the resultshef two afterload increase simulations
(Figures 11 and 12). The ESPVRs resulting fromeah®g simulations were similar but
different from one another. They were also cledifferent from the ESPVRs computed by
the preload reduction simulations, reproduced shdd and white-dotted lines in Figures 11



and 12. Also, as physiologically expected, the ltesfuthe preload increase was an increase
of ventricular pressure and a decrease of strokena

It has been experimentally shown that the end-Bggtcessure for an ejecting beat is higher
than for an isovolumic beat [14]. This is called positive effect of ejection. This effect does
not appear on our simulations since the maximalokonic pressures are higher than the one
obtained by simulating load variations. Howevercan be seen in Figure 13, one ESPVR
was higher than pressures generated by isovoluomtaction simulations, at least for some
values of volume. Hence, this positive effect @céipn is also present in the model. Negroni
and Lascano [15] performed the same kind of exparsiand were able to reproduce this
experimental finding that ventricular pressure dgriejection is higher than during
isovolumic contraction. However, because they hatdmtroduced their ventricle model in a
model of the circulatory system, they had to creatphysiological approximation of a
ventricular volume curve. In our model, the ventlde volume is not imposed; it is a
consequence of pressures in the other model comgais. Finally, it is also clear in Figure
13 that the pressure-volume points resulting freavolumic contraction simulations do not
fall on any of the four previously computed ESPVRhkis shows that, if one defines the
ESPVR from isovolumic contraction experiments [1Ag result is again different than what
would be obtained by load variations.

The effect of increased contractility on the ESPVRa shift towards higher volumes and
lower pressures (Figure 14), which is what has leegrerimentally observed [6,7]. Indeed,
the effect of increased contractility is an inceshdeveloped pressure and a reduction in end-
diastolic volume [20]. We also notice an increasehe curvature of the ESPVRs derived
from preload reduction simulations. It can be segeRigure 14 that the dashed and white-
dotted ESPVRs become more curved after increabmgantractility. The same observation
has been made experimentally in dogs [6]. Intergbti we find a similar change in
curvature of ESPVRs derived by afterload increasesthe ESPVRs become more curved
when contractility is increased. We found no expental study assessing contractility-
dependence of ESPVRs derived from afterload vanatto compare this finding with.

Shifting of the ESPVR can be used to track vanetiof contractility, irrespective of how the
ESPVR was derived. However, since the ESPVR isumifue, it cannot be assumed to
represent an absolute measure of cardiac contiactil

As a concluding remark, please note that figuresaeted from simulations and those
published from experiments are not supposed tomatactly, since model parameters were
adjusted to match two different experimental stsidgee section “Parameter adjustment”).
Furthermore, the CVS model used here is a verylsimipe in which the lumped properties
cannot account for the rich features of experinmbntaeasured waveforms. Additionally,
only the contraction of the left ventricle was désed from a microscopic point of view.
This work is a first step into the microscopic dgs#on of cardiac contraction and its
repercussion on hemodynamics. Hence, the goal wbs for the model to be able to
reproduce experimental trends, which it has ackiesuecessfully.

Conclusions

The model presented in this work is able to overdhe drawbacks of the time-varying
elastance theory, namely its lack of physiologfoaihdations and the load-dependence of the



ESPVR. A large number of experiments that have gmothe flaws of the time-varying

elastance theory have been reproduoedilico, namely preload and afterload variation
experiments, isovolumic contraction experimeniswiclamp experiments and investigation
of the effect of contractility on the ESPVR. Corstans derived from model simulations
were the same as these coming from canine expasmenthe ESPVR is load-dependent.
Consequently, when describing an ESPVR, it is eésddo explain how it was derived to

allow for comparison between ESPVRSs.

Because the ESPVR depends on the load exertect lwaitulature on the ventricle, it cannot
be considered as an intrinsic ventricular propektyditionally, the ESPVR cannot represent
an absolute measure of cardiac contractility, beeahe shape of the ESPVR depends on
how it was derived. But, instead of focusing on &hsolute value of the contractility by the
means of the slope of the ESPVR, it would be meliable to speak in terms of variations of
contractility from a reference state.

The work that has been done here for the left idatcould easily be adapted to the right
ventricle and, with some further modeling workthe atria. Such a representation of the atria
could be useful, since, to our knowledge, therestexno accurate time-varying elastance
model applicable to the atria. Another possible rompment would be to introduce the
effects of the septum and the pericardium in theutation model. These effects have been
neglected here for simplicity, but the model coelasily be adapted to take them into
account. With these proposed ameliorations, thgaacopic contraction model would make
it possible to fully describe a complete heart, posed of its four interacting chambers.

In conclusion, the multi-scale cardiovascular modieVeloped in this work overcomes the
lack of physiological grounds of the time-varyingpstance theory. In addition, model
simulations successfully replicate trends obsemeaskperiments that showed the limitations
the time-varying elastance theory.
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Figure 13 Left ventricular volume (ml)
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Figure 14 Left ventricular volume (ml)
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