
Controlling the Effects of Anomalous ARP Behaviour on
Ethernet Networks

D. Ármannsson and G. Hjálmtýsson
Network Systems and Services Laboratory

Reykjavı́k University
dadi01@ru.is, gisli@ru.is

P. D. Smith and L. Mathy
Computing Department

Lancaster University
p.smith@comp.lancs.ac.uk,
laurent@comp.lancs.ac.uk

ABSTRACT
There are a large number of large-scale Ethernet-based lo-
cal and metropolitan area networks in use. A significant
reason for this prolific deployment is the relatively simple
manner in which they can be configured and deployed. A
critical service on these networks, that epitomises the sim-
ple nature of Ethernet, is the Address Resolution Protocol
(ARP). This protocol is used to determine the link-layer ad-
dress of a host given its network-layer identifier, and uses the
intrinsic broadcast capability of Ethernet to determine these
mappings. In this paper, we present an analysis of ARP be-
haviour on three sizable local area networks and show that
due to poorly configured or malicious software (e.g. viruses)
on hosts, performance issues could arise because of ARP.
We also propose a scheme that can be used to manage the
effect of the problems identified in our analysis.

Categories and Subject Descriptors
C.2.3 [Computer Communication Networks]: Network
Operations – Network monitoring ; C.2.5 [Computer Com-
munication Networks]: Local and Wide-Area Networks
– Ethernet

General Terms
Algorithms, Measurement, Performance, Reliability

Keywords
Address Resolution Protocol, rate limiting, Ethernet perfor-
mance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CoNEXT’05, October 24–27, 2005, Toulouse, France.
Copyright 2005 ACM 1-59593-197-X/05/0010 ...$5.00.

1. INTRODUCTION
Implementing large-scale local and metropolitan area net-

works using link-layer switching technologies is becoming an
increasingly attractive proposition. The simple manner in
which such networks can be formed and the increasing capa-
bilities of current switching devices has led to these networks
growing significantly in size and sophistication. It is possible
today to construct switched Ethernet networks that serve in
the order of thousands of systems with relative ease.

A fundamental service on a local area network is one that
resolves network-layer identifiers to an associated identifier
at the link-layer. The Address Resolution Protocol (ARP)
[6] is used in Ethernet networks to discover the 48-bit ad-
dress associated with a given 32-bit IPv4 address. In short,
the protocol functions by broadcasting resolution request
messages to all hosts on the local area network. A target
host responds with a message that is addressed to the origi-
nator. We will describe the operation of ARP in more detail
in Section 1.1.

While the operation of ARP is extremely simple and re-
quires no specialised infrastructure support (i.e., servers),
the use of broadcasting to resolve address mapping requests
has a number of potential problems. In Section 2, we present
the results of an analysis of ARP traffic on three relatively
large local area networks. Our aim is to identify the main
characteristics of the protocol’s behaviour and any prob-
lems associated with the broadcast nature of ARP. We find
that the normal behaviour of ARP on the networks studied
is of little concern, but anomalous ARP behaviour caused
by malicious hosts or poorly configured servers could prove
problematic.

In Section 3, we propose a scheme to address the prob-
lems identified in our analysis of the local area networks that
limits the rates of abnormally behaving hosts (those that
generate an unusually large amount of ARP request traffic)
to their fair share of the resources allocated to ARP request
forwarding at a network switch. In summary, the scheme
probabilistically drops the ARP requests of hosts that use
more than their share of the available network resources allo-
cated to ARP forwarding. An initial evaluation is presented,
in Section 4, that demonstrates that the approach we pro-
pose has the potential to be effective at controlling the effect
of anomalous ARP behaviour.

50

1.1 The Address Resolution Protocol
When a device on a network needs to deliver an IP packet

to another device, it needs to frame the packet and address it
to the correct Network Interface Card (NIC) for the target
host. The Address Resolution Protocol (ARP) is the pri-
mary means by which a network device discovers the hard-
ware address associated with the IPv4 address for another
device on the local area network.

ARP is a simple protocol – if a device s needs an ad-
dress mapping for protocol address pt, it simply broadcasts
an ARP request message asking: Who has address pt? Tell
ps. This message reaches all the devices on the local area
network, including the target device t. Upon receiving a re-
quest, host t will send a unicast reply stating, I have address
pt and my hardware address is mact.

As an optimisation, each device maintains an ARP table
where they cache address mappings (of the form (pi,maci))
obtained by previous address resolution requests. Before
sending an ARP request targeted at host d, a host checks
its ARP table for an entry for address pd. Since hosts usually
send bursts of packets to other hosts the cache ensures that
a host doesn’t repeat ARP requests for every single packet.
ARP requests are retransmitted a certain amount of times
before the target is assumed not to exist on the network.

According to the protocol specification, a target t of an
ARP request sent by s should opportunistically store the
address mapping (ps,macs) in its ARP table. This is done
on the assumption that communication is bidirectional and
eliminates the need for targets to immediately broadcast
ARP requests for originators of requests targeted at them.
Entries in the ARP table expire after a given period of
time. The protocol specification recommends verifying ex-
pired ARP entries directly using unicast, broadcasting only
in case of no response to the unicast request. If no response
is received from the broadcast request the entry is removed.

2. NETWORK ANALYSIS
To gain an increased understanding of ARP behaviour on

large local area networks, we carried out extensive measure-
ments and data analysis of ARP traffic on three local area
networks. The data included ARP request traffic collected
across three relatively large networks that serve our respec-
tive institutions and a student residential network. For one
of our networks, the data included periods of ARP flood-
ing where several network devices infected by an Internet
worm [9] scanned the local network for machines vulnerable
to infection.

Network #Devices Type

N1 ca. 700 University Network - Computer
Facilities, Private Workstations

N2 ca. 2900 Residential Area Network - Pri-
vate Workstations

N3 ca. 3800 University Network - Computer
Facilities, Private Workstations

Table 1: The number of devices and type of each of the

three test networks.

The three networks (summarised in Table 1) are all similar
in structure. The smallest network (N1) consists of approx-
imately 700 end systems, most of which are workstations of

students and faculty members. Additionally, the network
contains gateways to the Internet, a wireless local area net-
work, and local research laboratories. Finally, the network
contains local servers, such as storage, web, domain, print,
name, and DHCP servers. The second network (N2) is a stu-
dent residential network. It contains about 2900 hosts with
a single gateway to the Internet and a few local servers. The
majority of the machines are the private workstations of res-
idents, several of which were still unpatched several weeks
after a severe worm infection. The third network (N3) con-
sists of approximately 3800 hosts interconnected by a 100
Mbps switched network. One egress point to the Internet
exists on the network, along with a number of devices pro-
viding key services such as those on N1.

The broadcast nature of ARP requests make the collection
of ARP traffic data on a network trivial. This was done on a
single machine attached to each network, using tcpdump to
store the ARP requests in files. The ARP replies, however,
are delivered using unicast, therefore making their collec-
tion very difficult, due to the switched nature of modern
Ethernet networks. Consequently, our data only includes
the ARP requests. This does not limit our measurements
and analysis since the unicast nature of replies is unlikely to
impose a significant overhead on Ethernet networks. To aid
our analysis, a set of tools have been written to extract and
process the collected ARP request traffic.

In the following sections, we present the results of this
analysis. The aim is to identify what constitutes normal
ARP behaviour. With an understanding of normal ARP
behaviour, we will point out and quantify the anomalous
behaviour that is caused by mis-configured and malicious
devices.

2.1 ARP Broadcast Distribution
The data presented in Figure 1 shows that the number

of devices broadcasting ARP requests at any given moment
is fairly low. There are, however, frequent spikes where a
substantially larger number of devices flood the entire net-
work with mapping requests. We also note that ARP re-
quest spikes observed on N1 are as high as one third of the
number of nodes on the network.

 0

 100

 200

 300

 400

 500

 600

 0 10000 20000 30000 40000 50000 60000 70000 80000

Nu
m

be
r o

f D
ev

ice
s

Time (s)

Broadcasting devices

Figure 1: The number of devices broadcasting ARP

requests at a given second over one day, taken from N3

These spikes were found to correspond to events where
a large set of devices broadcast ARP requests for a single

51

device. A closer look at a short period before and during
the spikes reveals that almost every host that broadcasts
requests during the peak times lacks a mapping for the same
IP address. This kind of behaviour can only be caused by
an event triggered by the end system holding the IP address
targeted by the wave of ARP requests. A look at other (non-
ARP) broadcast traffic reveals that the target of the ARP
requests had broadcast a higher-layer protocol message, such
as a NetBIOS name query, that required a subset of the
network’s devices to respond. The respondents, lacking an
address mapping for the originator, each broadcast an ARP
request.

Figure 2 displays the number of ARP requests broadcast
on the N3 for a single day. There are a lot of spikes, some
of which correspond to the spikes mentioned earlier. Others
spikes correspond to a single or a small subset of devices
broadcasting a large number of requests in a short period of
time.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 10000 20000 30000 40000 50000 60000 70000 80000

Nu
m

be
r o

f A
RP

 R
eq

ue
st

s

Time (s)

Broadcast requests

Figure 2: The number of ARP request broadcast at a

given second over one day, taken from N3

The latter class of spikes can be explained by two forms
of behaviour. The first form of behaviour relates to servers
that keep a list of their clients. The clients are contacted,
either periodically or as an effect of a higher layer event,
and triggers the need for an address mapping. If the interval
between these contacts is larger than the ARP table timeout,
or the number of clients is larger than the ARP table size,
this results in an ARP request for each client.

The second form of behaviour causing these spikes relates
to devices scanning the network, thus triggering ARP re-
quests for every address in the network’s address range. One
of our data traces was taken at a network (N2) infected with
scanning worms. Scanning can also be performed by an ex-
ternal node, in which case, for example, the external node
issues an ICMP echo request for IP addresses on the net-
work1. In the latter case, the gateway router of the network
is the initiator of the ARP requests. Scanning is gener-
ally performed by malicious software, for example, Internet
worms [10] looking for machines vulnerable to infection (see
Section 2.2). Today, no attempt is made to limit the ef-
fects scanning worms have on the performance of Ethernet
networks.

1This only applies to networks where the hosts have public
IP addresses and are not, for example, behind NAT.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 10 20 30 40 50 60 70

#D
ev

ice
s

Burstiness

Distribution of ARP burstiness

Figure 3: Burstiness characteristics of ARP traffic

An interesting characteristic of ARP request broadcast
per device is its burstiness. If we define the maximum in-
stantaneous ARP request rate for a device to be the inverse
of the shortest observed inter-request time between two con-
secutive requests from that device, and the average ARP
request rate to be the overall number of requests divided
by the length of time over which these were observed, we
can then define burstiness as the ratio of the maximum re-
quest rate to the average rate. Figure 3, plots the number of
devices whose burstiness is greater than the corresponding
value along the x-axis for one of our test networks, but is
representative of all our observations.

In Figure 3, we see that most devices in normal operation
do not send ARP request broadcasts in bursts. In other
words, it is not normal for a device to broadcast a substan-
tially larger number of requests over a short period than
on average. Small bursts may occur when hosts start up
and duplicate address detection (described in Section 2.2) is
performed, and the host acquires the address mappings for
critical services such as DNS servers and gateways.

A key observation is that the traffic volume generated by
ARP requests is very low on average. On the largest stud-
ied network (N3), the average number of broadcast ARP
requests per second is 85, which corresponds to approxi-
mately 43 kbps. If we assume linear growth, a network of
85000 devices would generate a volume of about 1 Mbps –
1% of the capacity of standard fast Ethernet networks today.
During the dissemination of an Internet worm, however, the
volume increases dramatically.

From the description of the ARP protocol and the analysis
presented in this section, it should be clear that a normal
ARP request rate is one whose sustained rate is well below 1
request/second (occasionally exhibiting very short “bursts”
at around 1 request/second).

2.2 ARP Traffic Patterns
The ARP data analysis reveals an interesting characteris-

tic of the hosts on the network – their traffic patterns. The
data, illustrated in Figure 4 shows that the ARP requests
broadcast are almost symmetric. In other words, a small
subset of devices are targeted by a large subset and, like-
wise, the few devices broadcast many requests for the large
subset. Expectedly, it turns out that the few heavily hit de-
vices are the network’s gateway routers and servers. Almost

52

every single workstation needs to communicate with the lo-
cal servers and with non-local servers and peers through the
gateway. Therefore, a lot of ARP requests broadcast by
workstations target these devices.

Perhaps, more surprisingly, a lot of requests broadcast
by the servers and gateways were observed that targeted
the local workstations. In the initial address mapping ac-
quirement phase, performed when workstations boot and
start communicating with other network devices, the work-
stations learn the hardware addresses of the gateways and
servers. Since the targets of ARP requests should add the
source of the request to their ARP tables, a single ARP re-
quest should suffice for each pair of communicating devices.
From that point forward, the ARP table entries at the two
devices should be refreshed at roughly the same time, as-
suming communication is generally bidirectional (e.g. data
and acknowledgements in a TCP connection). The fact that
servers and gateways frequently request address mappings
for workstations does not conform to this line of reasoning.

One reason for the large number of requests broadcast
by servers and gateways, seems to be caused by the fact
that the ARP table on these devices is not large enough
to contain the entire set of active clients. In other words,
address mappings are removed from the ARP table prema-
turely to accommodate for new ARP table entries. Shortly
after removing the address mapping from the table, a device
broadcasts an ARP request for the recently removed address
mapping, removing another entry prematurely when storing
the result in the already full ARP table and triggering yet
another ARP request. This chain reaction greatly reduces
the effectiveness of the ARP cache.

Another reason for high request rates of gateways is exter-
nally sourced address-range scans. When external network
devices perform scans, packets enter the local area network
through a network’s gateway. At that point the gateway
needs to map the destination IP address to its associated
link-layer address. This causes the gateway to check its ARP
table for an entry containing the correct address mapping.
If no entry is found, the gateway broadcasts an ARP request
packet.

Since the device performing the scan does not know what
IP addresses have been allocated to devices on the network,
many of the probe packets will be destined to unbound ad-
dresses. Each packet will trigger an ARP request which will
not yield a reply. The data from N3 show that about 81%
of requests sent by its gateway are for unbound addresses,
which suggests a significant number of external scans.

Furthermore, some operating systems implement the ARP
timeout mechanism such that it verifies the validity of timed-
out entries, instead of just removing them. This is done
directly by unicasting an ARP request. If the target does
not respond, another request is broadcast for the IP address,
potentially discovering a new address mapping for the target
address. Since the set of hosts is more dynamic than the
set of gateways and servers, and communication tends to
be between devices in these sets, rather than within the
sets, ARP requests due to address mapping verification are
mainly broadcast by gateways and servers.

Figure 4 highlights an interesting application of ARP.
Some network devices broadcast ARP requests targeted at
the protocol address they currently hold. This is called gra-
tuitous ARP and can be seen as a diagonal line on the fig-
ure. Some operating system network stacks use self-targeted

ARP requests to perform duplicate address detection. This
behaviour is not of significant concern in the context of the
scalability of ARP, since the number of requests generated
is of O(n) and only occurs when hosts boot.

Finally, workstations do not communicate directly with
each other very often. Most communication seems to be
originated by workstations and destined for local and exter-
nal servers.

172.20.8.152

172.20.4.201

172.20.0.250
172.20.8.152172.20.4.201172.20.0.250

Ta
rg

et

Source

Figure 4: Traffic patterns showing the relationship be-

tween ARP sources and targets. This graph plots data

from network N1 with the axes representing device iden-

tifiers.

2.3 TheEffect ofMalicious andMis-configured
Devices

As mentioned earlier, one of the data sets used in our
ARP analysis was taken during a period where the some
local devices were infected with a scanning Internet worm.
Although the worm infection on that network reached its
heights several weeks earlier and most of the devices had
been patched, the data still contains some useful informa-
tion about the ARP behaviour of malicious software. This
particular worm scans the local subnet for vulnerable ma-
chines in a sequential order, before probing for vulnerable
non-local machines. Some other worms may use selective
random scan, i.e., probe targets are chosen at random with a
bias for local machines. The reason for the complete sequen-
tial scan or the bias for local addresses is twofold. Firstly,
a single firewall breach allows a worm to infect the whole
protected subnet. Secondly, machines on a local area net-
work are likely to be managed by the same individuals and
be fairly homogeneous, therefore sharing the same vulnera-
bilities.

Local probes by a worm result in an ARP request broad-
cast by the infected machine. For the worm to speed up its
dissemination, it aims to probe as many potential victims
as possible in the shortest period of time. This results in a
sudden increase in ARP requests rates on infected machines.
When the student residential network (N2) became infected
by the Internet worm, several of the devices connected to
the network began scanning for vulnerable machines to in-
fect. These devices, previously broadcasting only the occa-
sional ARP request, suddenly started to broadcast at 120
requests/second. This behaviour is demonstrated in Figure
5. One particular day saw about 120 separate devices per-

53

 0

 100

 200

 300

 400

 500

 600

 700

 0 100 200 300 400 500

Nu
m

be
r o

f r
eq

ue
st

s

5 second intervals

Requests per five seconds

Figure 5: The increase in request rate for hosts infected

with a worm scanning the local network for vulnerable

machines.

forming scans repeatedly. It should be noted that the data
were taken several weeks after the time of the initial worm
dissemination when the network became saturated by ARP
scans.

To get an idea of how worms effect the performance of
Ethernet LANs it is useful to get a sense of the dissemination
of worms. In [1] a model for calculating the spread of worms
is put forward. We have extended that model so that devices
stop scanning after sending a probe to every address on the
local area network. The equations for the spread of scanning
worms are shown in Equation 1.

mi =
i

X

j=0

nj si+1 =
i

X

k=i− T

s

nk

ni+1 = [N − mi][1 − (1 −
1
T

)rsi+1] (1)

In Equation 1, N is the total number of vulnerable devices,
T is the size of the address range from which probe targets
are chosen at random, r is the scan rate. mi, si and ni

represents the number of devices infected, the number of
scanning worm instances, and the number of new infections
at the end of time slot i, respectively. We ignore the death
and patch rates of vulnerable devices.

A hypothetical example, based on the request behaviour
seen on the residential network, assumes a single initial in-
fection (n0 = 0), a class B network (T = 216), and a
scan rate of 120 request/s (r = 120). The network has
about 3000 devices, 10% of which are assumed to be vul-
nerable (N = 300). Figure 6, shows the worm dissemi-
nation and ARP request volume for the first 40 seconds.
The spread is alarmingly fast; the worm reaches complete
infection in about 25 seconds. Interestingly, and perhaps
counter-intuitively, a smaller vulnerable set slows down the
infection rate. If we have 30 vulnerable devices, it takes the
worm approximately 140 seconds to infect all the vulnerable
hosts. This is due to the fact that the larger the vulnerable
set the more likely a probe will hit a vulnerable device. The
infected device immediately starts scanning, increasing the
rate of infection. This promotes the case for smaller subnets.

ARP requests are minimum-sized Ethernet frames of 64
bytes. As these ARP requests need to be broadcast on the

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35 40
 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

#I
nf

ec
tio

ns

Re
qu

es
ts

/s

Time (s)

New Infections
Scanning Devices

ARP Volume

Figure 6: The infection dissemination and ARP volume

caused by infected devices for 0 <= i <= 40

network, an n-port switch must replicate these on n − 1 of
its output ports. Most switches use a slow path for broad-
cast forwarding, where the CPU has to copy the frame to
all output ports. This will reduce the performance of many
switches dramatically. On a network with m infected de-
vices, each of which broadcasts r requests/second, the load
on the switch is O(mnr) requests. Consequently, a few in-
fected hosts can quickly consume a large amount of the for-
warding capacity of a switch. In the above example, there
are approximately 300 devices that are each broadcasting
120 request/second. This would cause a 24-port switch
to broadcast about 828000 requests/second, using the slow
path.

Equally as serious, is the effect that worms have on the
performance of end-stations, each of which has to serve an
interrupt, copy the packet to main memory and have a look
at its internals. DMA is rarely used for packets this small.
An estimate of 6 µs per interrupt, context switch and packet
copy, and 36000 requests/second, results in a workstation
wasting about 22% of its CPU cycles2. Interrupt coalesc-
ing, where implemented, will reduce the interrupt overhead
somewhat. Additionally, the requests take up bandwidth on
the links to end-stations – about 18% of 100Mbps links.

Unusually high ARP request rates are an identifying char-
acteristic of machines infected with Internet worms. As seen
earlier in this analysis, it is also typical for gateway routers
to exhibit higher request rates than normal hosts. This
point highlights the difficulty in distinguishing between non-
malicious devices such as gateway routers and those infected
with Internet worms, for example. Perhaps a more effective
approach for detecting Internet worms may be to monitor
the relative increase in rates at a given host.

Another characteristic that is typical for machines in-
fected with a worm is the ratio of the requests targeted at a
host to the requests broadcast by the host. This ratio is very
low for machines performing address range scans while it is
close to one for other hosts. This can be seen in Figure 4,
where the vertical lines representing scans do not have cor-
responding horizontal lines, representing requests targeted
at the scanning machines.

The number of broadcast requests targeted at unbound

2The numbers are based on [11] and analysis of Linux data
path performance.

54

IP addresses is also an identifying characteristic of devices
infected with malicious software. Malicious software, not
knowing what IP addresses are in use on the local network,
broadcast requests blindly in a sequential or random man-
ner. On a network where address utilisation is low, only
a small set of requests result in a reply. This behaviour is
also typical of incorrectly configured devices. During the
time of our observations, one of the test networks contained
an incorrectly configured print server that constantly broad-
cast ARP requests for an unbound IP address that used to
belong to a printer.

3. MANAGINGANOMALOUSBEHAVIOUR
As seen in Section 2, a small subset of devices on a local

area network that are either infected with malicious soft-
ware or incorrectly configured, may generate bursts or con-
sistently large amounts of ARP request frames. If left un-
managed, this behaviour could cause an unacceptably sig-
nificant quantity of network resources to be consumed that
could cause a network to become unserviceable. In this sec-
tion, we describe a strategy that can be used to ensure such
devices do not consume an unacceptable quantity of net-
work resources due to this behaviour. The algorithm can be
seen in Algorithm 1 and 2. The strategy we propose can be
described as follows.

Data: v - a switch wide moving average request rate.
Initialized to 0.

Data: table - a table containing devices seen and
timestamp of last ARP request seen.

begin1

foreach incoming requests req do2

s ←−
1

now−last request arrival3

v ←− (1 − α) × v + α × s4

if v >= threshold then5

f = threshold
size-of(table)6

if allow-request (req, f) then7

forward-request (req)
add (table, req)8

end9

else forward-request (req)10

end11

end12

Algorithm 1: Control ARP

input : Request req and the fair share f .
output: Boolean indicating if the request should be

dropped or forwarded.
begin1

l = get-update-timestamp (table, sender-of (req))2

r = 1
now−l3

p = max(0, r−f
r

)4

return throw-coin (p)5

end6

Algorithm 2: Allow-Request Procedure

The maximum amount of resources allocated to ARP broad-
cast traffic forwarding is configured on the switch. This
quantity could be specified as a number of requests per sec-
ond the switch should broadcast per port, multiplied by the

number of active ports, for example. If the observed rate of
aggregated ARP traffic at the switch becomes greater than
the desired forwarding rate, a scheme is invoked to manage
(and reduce) the ARP traffic forwarded at the switch.

In this scheme, each active host (generating ARP requests)
that is observed at a switch is allocated a share of the avail-
able resources allowed for request forwarding. If a host
exceeds this share, its ARP requests are probabilistically
dropped. This dropping is carried out in such a way that
hosts that attempt to consume larger amounts of a switch’s
resources will suffer an increased probability of having their
requests dropped. This scheme continues until the aggre-
gated ARP request rate at the switch falls below the max-
imum forwarding rate, when the scheme is reset and “un-
managed” ARP forwarding resumes (ARP requests are no
longer deliberately dropped).

To be more specific, the probability pi that a host i will
have an ARP request dropped becomes higher as the re-
quest rate for i (ri) increases relative to its share of the
resources allocated to ARP request forwarding (f). This
relationship is defined in Equation 2, where the value ri is
the instantaneous request rate for host i, calculated using
Equation 3. Here, li represents the time at which the previ-
ous request by host i was received. The instantaneous rate
and drop probability are calculated in Algorithm 2. The in-
stantaneous request rate is used because normal ARP traffic
from a host, as indicated in Section 2, is not transmitted in
bursts.

pi = max(0,
ri − f

ri
) (2)

ri =
1

now − li
(3)

f =
t

n
(4)

v = (1 − α) × v + α × s, with α > 0 (5)

s =
1

now − max
i

li
(6)

As mentioned earlier, the f value represents the share of
the switch’s ARP request forwarding resources that are allo-
cated to an individual active host. This value is determined
using Equation 4, where the value t (given in requests/sec)
represents the switch-wide maximum desired ARP request
forwarding rate (threshold), and n is the number of hosts
seen sending ARP requests on the switch’s ports since the
dropping scheme was invoked.

The devices known to the dropping scheme are forgotten
and not used to calculate the share of the switch’s available
resource after a timeout period. This is so that the share
of the available resources (f) is not effected by hosts that
have not been active for extended periods. A separate main-
tenance algorithm removes stale entries, such that they are
removed when now − li > D, where D is the timeout value
for device entries. Forgetting of devices in this way has two
consequences – one is to decrease the likelihood of dropping
requests sent by hosts with low request rates, and the other
is to increase the fair share f , which allows malicious soft-
ware to send at a higher rate. This isn’t a problem as the
aim of the scheme is to limit the resources used on ARP
request broadcasting to t, therefore limiting the effects of
malicious and malfunctioning devices.

55

The average switch rate (v) is computed as a moving
weighted average of switch wide request rate samples, as
in Equation 5, because the combination of non-bursty ARP
traffic streams from hosts can result in some burstiness at
the switch. This prevents the dropping scheme from starting
up unnecessarily in case of transient spikes, i.e., the scheme
only starts dropping requests when a high request rate has
been experienced for a sustained period of time. This aver-
age is calculated in Algorithm 1.

The resources required to implement this relatively simple
scheme on a switch should not be detrimentally high. The
most significant amount of additional state to be maintained
is a time-stamp of the last request for a given host – a small
addition to a switch’s forwarding table. In terms of the
additional computation required, a switch needs to maintain
the average ARP request rate across the switch and perform
the operations described, which we believe for out-of-band
traffic such as ARP is not prohibitively expensive.

4. EVALUATION
To give an indication of the effectiveness of the approach

described in Section 3 for managing anomalous ARP be-
haviour, we carried out a series of simulations.

A network switch was modelled and extended with the
probabilistic dropping strategy. The value of α, which is
used to calculate the average rate at the switch (see Equa-
tion 5) was set to 0.2, and entries in the table of time-stamps
were set to timeout after 30 seconds. A number of different
threshold t values were used.

Three million ARP requests, that were taken from the
traces acquired from networks N2 and N3 during our net-
work analysis, were passed to the modified switch. We also
ran simulations that included a further twenty five hosts
generating synthesised network scans for network N3. In-
formation regarding the traces used is presented in Table 2.
Note that the average request rate for network N2 is con-
siderably higher than N3 – this is because the trace for N2
was taken two weeks after the breakout of an Internet worm,
with some hosts still being infected.

Network Average Maximum Number
(req/sec) (req/sec) of hosts

N2 1639 2958 887
N3 95 2207 3061

N3 + 25 142 2393 3086

Table 2: Network information for traces used in sim-
ulations

To determine if the ARP management strategy correctly
drops ARP requests from hosts that have the highest request
rates, we looked at the percentage of requests dropped for a
host against its maximum instantaneous request rate. Re-
call that the instantaneous request rate for a host is used
to determine the probability that an ARP request will be
dropped (see Equation 2). Figures 7, 8, and 9, plot these
values3 for networks N2, N3, and N3 plus the synthesised

3Note that the maximum instantaneous rates shown are
never greater than 1000 requests/second because our algo-
rithm was implemented at a millisecond time resolution.
Better time resolution seems superfluous, as a host gen-

scan traffic, respectively. The threshold value t was set to
128 requests/second.

These figures show that the hosts with higher instanta-
neous request rates are the most susceptible to having their
ARP requests dropped. Differences in the percentage of re-
quests dropped for hosts with similar request rates can also
be observed. For instance, hosts shown in Figure 7 with
a maximum request rate of 1000 requests/second have be-
tween 2% to 100% of their requests dropped. There are a
number of causes of this. For example, over an extended
period a host may generate requests when the management
scheme is not invoked (i.e. during periods when the ag-
gregate request rate at the switch is below the threshold),
therefore causing a relatively small percentage of its total
number of requests to be dropped. Conversely, a host may
generate a burst of requests while the scheme is invoked (and
be otherwise silent) and have a significant percentage of its
requests dropped. But, these results demonstrate that our
proposed scheme is indeed biased towards dropping ARP
requests from high rate request “streams” – the required
behaviour.

The probabilistic dropping scheme could discard normal
ARP traffic. To understand to what extent this could occur,
we conducted simulations that categorised requests as either
normal or anomalous, and looked at the percentage of re-
quests dropped for each category. There are two behaviours
we used to determine whether an ARP request was anoma-
lous:

1. A request was part of a sequential network scan. In
other words, a request was part of a series with the
same source address and a sequentially increasing tar-
get address.

2. A request was targeted at an unbound network ad-
dress. This form of request was found to be generated
by network N3’s gateway router caused by external
network scans, and incorrectly configured devices.

Note that while the likelihood is very high that ARP re-
quests tagged as anomalous by this categorisation are indeed
anomalous, many anomalous requests could still be cate-
gorised as normal (for example, abnormally high request
rates towards bound addresses).

Figures 10, 11, and 12 show the percentage of normal and
anomalous ARP traffic that was dropped over the length of
the simulation with different threshold values for the three
network traces used. For network N2 (shown in Figure
10), it can be seen that the dropping scheme discards a
significant percentage (almost 100%) of the requests classi-
fied as anomalous and approximately 30% of the network
traffic that is classified as normal, for threshold values of
128 through to 1024 requests/second. A 30% drop rate of
normal traffic appears unacceptably high.

To understand this result further, we looked at the per-
centage of dropped normal ARP requests that were sent by
hosts whose ARP request stream only contains requests cat-
egorised as normal – we found that none of these requests
were dropped. Sources of “purely” normal ARP request
streams are very likely to be hosts that only engage in nor-
mal communication patterns resulting in low ARP request

erating ARP requests at a higher rate should certainly be
deemed malicious.

56

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.0001 0.001 0.01 0.1 1 10 100 1000

Pe
rc

en
t R

eq
ue

st
s

Dr
op

pe
d

Maximum Instantaneous Request Rate (requests/sec)

Figure 7: Percentage of requests dropped against the

maximum instantaneous request rate for each host on

network N2

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1e-05 0.0001 0.001 0.01 0.1 1 10 100 1000

Pe
rc

en
t R

eq
ue

st
s

Dr
op

pe
d

Maximum Instantaneous Request Rate (requests/sec)

Figure 8: Percentage of requests dropped against the

maximum instantaneous request rate for each host on

network N3

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1e-05 0.0001 0.001 0.01 0.1 1 10 100 1000

Pe
rc

en
t R

eq
ue

st
s

Dr
op

pe
d

Maximum Instantaneous Request Rate (requests/sec)

Figure 9: Percentage of requests dropped against the

maximum instantaneous request rate for each host on

network N3 and 25 synthesised network scans

 1

 10

 100

20481024512256128

Pe
rc

en
t R

eq
ue

st
s

Dr
op

pe
d

Threshold

Normal Traffic
Anomalous Traffic

Figure 10: Percentage of the normal and anomalous

ARP requests dropped for network N2 with different

threshold values.

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

20481024512256128

Pe
rc

en
t R

eq
ue

st
s

Dr
op

pe
d

Threshold

Normal Traffic
Anomalous Traffic

Figure 11: Percentage of the normal and anomalous

ARP requests dropped for network N3 with different

threshold values.

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

20481024512256128

Pe
rc

en
t R

eq
ue

st
s

Dr
op

pe
d

Threshold

Normal Traffic
Anomalous Traffic

Figure 12: Percentage of the normal and anomalous

ARP requests dropped for network N3 with synthesised

scans with different threshold values.

57

rates. The zero drop observation for such hosts is very sig-
nificant because it shows that our scheme is very good at
discriminating positively for well behaved hosts. We can
therefore be confident that the normal traffic dropped by our
scheme is either anomalous requests that have been misclas-
sified by our simple categorisation, or normal requests from
hosts that also generate anomalous ones.

This is another piece of evidence that our proposed scheme
is biased against ARP request streams from hosts that con-
tain anomalous traffic. This is, in most cases, a very good
property because their normal communications would be
hindered, providing both an incentive to quickly patch a
host infected by malicious scanning software and an indica-
tor of the infection in the first place.

Unfortunately, this could be problematic for the ARP re-
quest stream sent by the router gateway, as this request
stream can contain a significant amount of anomalous re-
quests (see Section 2.2). However, in Sections 5 and 6,
we discuss simple methods to reduce the ARP request rate
caused by external scans through the gateway. The use of
such methods, along with appropriate configuration of the
gateway (e.g., ARP table size large enough to contain most,
if not all, address bindings for the hosts in the LAN, ARP
table entry expiration timers large enough and/or the use
of ARP table entry verification on expiration) as well as op-
portunistic ARP cache population on receiving requests, can
ensure that the ARP request rate generated by the gateway
is “normalised”, so that both inbound and outbound com-
munications can occur unhindered by our proposed scheme.

Another observation from Figures 11 and 12, is that for
some thresholds the scheme drops a higher percentage of
normal requests than anomalous – this appears to be worse
than just dropping a random proportion of all the requests.
For these thresholds, the scheme is dropping a relatively
small number of requests that are from hosts that have
a high request rate. For example, for a threshold of 512
for network N3 (shown in Figure 11), the scheme is drop-
ping approximately 0.1% (811 requests) of the total number
of normal requests and the average instantaneous request
rate for hosts that generate these normal requests is 933
requests/second. Again, this suggests that our definition
of normal ARP requests is not strong enough and includes
ARP requests generated at an abnormally high rate.

The effect of different threshold values can be seen in Fig-
ures 10, 11, and 12. For network N3, whose average request
rate is 95 requests/second, the percentage of dropped re-
quests falls as the threshold becomes greater than the aver-
age request rate. This is to be expected, as the scheme will
be invoked less often and dropping will be less aggressive
when it is executing. For network N2, when the threshold is
well below the average request rate (1639 requests/second),
the percentage of requests dropped remains approximately
constant. This is due to the threshold being so low that each
host has a very small fair share of the switch’s resources, so
that those generating requests at high rate are aggressively
controlled by the scheme.

Figure 13 shows the cumulative distribution function (CDF)
of the number of dropped requests as a function of the in-
stantaneous request rate of their ARP request streams when
they were dropped. Keeping in mind that a sustained ARP
request rate of 1 request/second per individual host can al-
ready be considered as a high rate, we see that over 90% of
all request drops occur at high and very high rates, while the

10−1 100 101 102 10310−6

10−4

10−2

100

Request rate (request/sec)

CD
F

128
256
512
1024
2048

Figure 13: CDF of the number of drop requests across

all three networks for various threshold values.

dropping of requests that are part of ARP request streams
with a low (normal) rate is well below 1 request/second and
is an extremely rare event.

As mentioned in Section 1.1, if a host does not receive a re-
sponse to an ARP request it has broadcast, it will retransmit
the request after a timeout period. Retransmissions may be
sent a number of times if there continues to be no response.
We implemented this behaviour for our simulations. More
specifically, the behaviour we implemented, which was ob-
served on a Linux-based host, was to retransmit up to three
requests at one second intervals. Our aim was to determine
to what extent a host will have a request dropped and any
subsequent retransmissions. If all requests are dropped, this
will render the host unable to send frames to the targeted
host.

Figures 14, 15, and 16 show both the percentage of normal
ARP requests and the subsequent retransmissions that were
dropped. We observed that if a normal packet is dropped,
there is a high probability that subsequent retransmissions
will suffer the same fate. Again, we believe this is largely
due to the fact that normal requests are being transmitted
by hosts that are sending at abnormally high rates. If this
were not the case, the instantaneous request rate for these
hosts would be approximately 1 request/second – consider-
ably lower than the 933 requests/second average mentioned
earlier – and would have a low drop probability.

Our evaluation demonstrates that the ARP management
scheme is effective at dropping anomalous requests that ex-
hibit a sustained high rate. Although our results show that
in some cases a significant percentage of normal traffic is be-
ing dropped, our analysis shows that these are either part of
an overall anomalous request stream or that these requests
have been misclassified by our rather simple categorisation.
We conclude that non-malicious and correctly configured
hosts will have an extremely low probability of their ARP
requests being dropped by our scheme, while anomalous re-
quests are effectively controlled.

58

 0

 20

 40

 60

 80

 100

20481024512256128

Dr
op

 P
er

ce
nt

ag
e

Threshold

Normal Requests
1st Retransmission

2nd Retransmission
3rd Retransmission

Figure 14: Percentage of the normal requests and re-

transmissions that are dropped for network N2

 0

 20

 40

 60

 80

 100

20481024512256128

Dr
op

 P
er

ce
nt

ag
e

Threshold

Normal Requests
1st Retransmission

2nd Retransmission
3rd Retransmission

Figure 15: Percentage of the normal requests and re-

transmissions that are dropped for network N3

 0

 20

 40

 60

 80

 100

20481024512256128

Dr
op

 P
er

ce
nt

ag
e

Threshold

Normal Requests
1st Retransmission

2nd Retransmission
3rd Retransmission

Figure 16: Percentage of the normal requests and re-

transmissions that are dropped for network N3 with syn-

thesised scans

5. RELATEDWORK
Considerable research effort has gone into understanding

the scalability of Ethernet-based local area networks. Some
claim that the spanning-tree construction carried out on
Ethernet switches is the main bottleneck on Ethernet scal-
ability. This is because the use of a single spanning-tree
prevents the utilisation of redundant network resources and
decreases fault-tolerance. This fact in turn prevents load-
balancing and increases end-to-end latency. These are well-
known effects of the use of spanning-trees. In [8], proposals
are presented for a VLAN-based architecture to construct
multiple spanning-trees. Additionally, in [4] an approach is
provided for mapping several spanning-trees to a reduced
number of VLANs. The use of VLANs could also be used to
manage the broadcast domains of a local area network. The
only drawback associated with this approach is that VLANs
require additional configuration.

In [5], radical changes are proposed to the Ethernet ser-
vice model. It is proposed that link-layer broadcast support
should be removed and a directory service be used to obtain
address mappings and locate services, such as DHCP. It is
unclear how this would work with existing infrastructure.
Our proposal addresses the potential threat caused by ARP
in light of anomalous behaviour, and can be used to control
its potential impact. A solution similar to ours could be
used in a more general context to reduce the effect of other
broadcast traffic on Ethernet networks in addition to ARP,
therefore obviating the need for the proposed directory ser-
vices.

The scheme presented in Section 3 is similar in nature
to research carried out on Internet worm containment, in
particular network-based approaches to worm containment.
Snort [7] and Network Security Monitor [3] are two examples
of network-based worm containment approaches. While it
is not a direct goal of ours to detect and contain Internet
worms, our scheme could be used to reduce their rate of
proliferation. As such, we believe the approach presented
here is complimentary to such schemes.

Black hole routers/sink holes [2] are an elegant solution
to deal with external scans (i.e. scans originating from out-
side the LAN and causing the network gateway to generate
excessive ARP request broadcasts to unbound addresses).
A black hole router is a router inside the LAN that adver-
tises, to the gateway, routes to the “dark IP space” (i.e. un-
bound/unallocated addresses and prefixes), and that drops,
as well as possibly logs, any traffic it receives. Because the
gateway will identify the black hole router as its next hop
to any unbound address, all traffic to such addresses can be
dealt with at the gateway without triggering ARP request
broadcasts, since, for that traffic, the only ARP binding
needed at the gateway is that of the black hole router. As
a result, the vast majority of malicious traffic is “filtered
out” of the ARP requests broadcast by the gateway (whose
volume is therefore drastically reduced). Although our pro-
posed scheme is less effective at managing (and reducing)
malicious ARP broadcast from the gateway, it is easier to
deploy and configure. Furthermore, black hole routers are
powerless to defend against, and control, internal malicious
ARP traffic emitted by local machines – a situation where
our scheme excels. For that reason, our proposed scheme
and black hole routers are complementary solutions.

59

6. CONCLUSIONS
In this paper, we have studied the behaviour of ARP traf-

fic. We have shown that although ARP raises no cause for
concern for even very large Ethernet networks under normal
conditions, the presence of malicious software and external
scans can be seen as a problem.

We have presented a simple, yet very effective scheme to
control the amount of ARP traffic present in the network.
Our scheme efficiently isolates anomalous ARP traffic, while
leaving normal ARP traffic unaffected, which is a very de-
sirable property. It should also be noted that thanks to the
opportunistic ARP mapping and cache population advised
by the ARP standard, a node generating normal ARP traffic
will be able to instantiate communication unhindered with
a host, server or gateway router generating anomalous ARP
request patterns.

Also, because of externally generated scans, a gateway
router often appears to generate a substantial amount of
anomalous ARP traffic. Filtering out the normal ARP traf-
fic from the malicious one emanating from a gateway is one
of the greatest challenges faced by our proposed scheme.
Although our scheme does not guarantee that “legitimate”
ARP traffic from a gateway (or from any host generating
a mix of malicious and legitimate ARP requests) will not
be dropped, it should be noted that widely used techniques
can help alleviate the problem: static ARP table entries for
servers (on the gateway) or defining a subnet where only
servers reside (a.k.a, a demilitarized zone) can ensure that
communications to servers are never hindered by our pro-
posed scheme. Better still, the use of black hole routers or
sinkholes within a network, or whenever appropriate the use
of firewalling rules limiting inbound traffic, can efficiently fil-
ter out most of the externally generated malicious traffic.

From an implementation point of view, it is important to
note that our scheme operates on the ARP request traffic
only. In switches that adopt a store-and-forward architec-
ture, the frame-type of Ethernet frames can be used to eas-
ily “filter out” ARP requests. For those that implement a
cut-through forwarding strategy, all broadcast traffic can be
filtered off the fast-path for further processing. As broadcast
traffic on a LAN is typically used for control purposes, our
scheme should have no impact on the forwarding capabilities
of switches for data traffic.

Furthermore, we believe the additional state required at a
switch to implement the strategy proposed here is not pro-
hibitively large. On a per host basis, only the time-stamp of
the previous ARP request received from a host is necessary.
A small addition to a switch’s forwarding table. For the
entire switch, we need only to maintain state regarding the
threshold value (a weighted moving average) for the whole
switch and a counter to help compute a fair share. With an
approximate figure of approximately $10 per megabyte of
memory, state for several millions of hosts can be accommo-
dated cheaply, as a time-stamp can be implemented using
very few bytes.

A positive side-effect of our proposed scheme is the role
it plays in slowing the propagation of viruses by capping

their probing rate. Also, our scheme discourages the use of
MAC address masquerading while probing, as it maintains
a record of the number of sources seen to compute a fair
ARP rate.

Although this paper addresses a real potential issue in
very large-scale wired Ethernet networks, it can find appli-
cations in improving performance of other types of Ethernet-
based networks, such as wireless multi-hop networks.

7. ACKNOWLEDGEMENTS
The work presented in this paper has been partially sup-

ported by the British Department of Trade and Industry
(DTI) under the Ubicare Center-lead ANS Project, and also
partially supported by the EU E-NEXT Network of Excel-
lence.

8. REFERENCES
[1] Z. Chen, L. Gao, and K. Kwiat. Modeling the Spread

of Active Worms. In IEEE INFOCOM 2003, 2003.
[2] B. Greene and D. McPherson. Sink Holes: A Swiss

Army Knife ISP Security Tool.
http://www.arbornetworks.com/downloads/research36/
Sinkhole Tutorial June03.pdf.

[3] L. T. Heberleid, G. Dias, B. Mukerjeeand Levitt K,
J. Wood, and D. Wolber. A Network Security
Monitor. In Proceedings of the IEEE Symposium on
Research in Privacy, 1990.

[4] IEEE. IEEE 802.1s Multiple Spanning Trees.
http://www.ieee802.org, 2002.

[5] A. Myers, E. Ng, and H. Zhang. Rethinking the
Service: Scaling Ethernet to a Million Nodes. In ACM
SIGCOMM HotNets 2004, San Diego, CA, USA,
November 2004.

[6] D. C. Plummer. RFC 826: Ethernet Address
Resolution Protocol: Or converting network protocol
addresses to 48.bit Ethernet address for transmission
on Ethernet hardware. http://www.ietf.org, November
1982.

[7] M. Roesch. Snort: Lightweight Intrusion Detection for
Networks. In Proceedings of the 13th Conference on
System Administration, November 1999.

[8] S. Sharma, K. Gopalan, S. Nanda, and T. Chiueh.
Viking: A Multi-Spanningtree Ethernet Architecture
for Metropolitan Area and Cluster networks. In IEEE
INFOCOM 2004, Hong Kong, China, March 2004.

[9] Symantec. W32.Blaster Worm.
http://securityresponse.symantec.com/avcenter/
venc/data/w32.blaster.worm.html.

[10] N. Weaver, V. Paxson, S. Staniford, and
R. Cunningham. A Taxonomy of Computer Worms.
In In the First ACM Workshop on Rapid Malcode
(WORM), Washington DC, USA, October 2003.

[11] M. Zec, M. Mikuc, and M. Zagar. Estimating the
Impact of Interrupts Coalescing Delays on Steady
State TCP Throughput. In Proceedings of the 10th
SoftCOM 2002, 2002.

60

