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Abstract

The advances in wireless networking and the consequent
emergence of new applications that wireless networks in-
creasingly support inevitably leads to low capability mobile
nodes connecting to peer-to-peer networks. However, the
characteristics of mobile nodes and limitations of access
point coverage often cause mobile nodes to lose connectiv-
ity, which can cause many mobile nodes to simultaneously
leave the network. Continuous departures and joins due to
the mobility of nodes leads to mobility churn, which can
often degrade the performance of the underlying peer-to-
peer network significantly. In this paper, we use simula-
tions to demonstrate that the Stealth Distributed Hash Ta-
ble (Stealth DHT) algorithm is ideally suited for networks
with mobile nodes. By avoiding storing state in unreli-
able nodes, a Stealth DHT prevents mobile nodes from be-
ing used by other nodes to provide services. Consequently,
Stealth DHTs eliminate the mobility churn effect and sig-
nificantly reduce the amount of overhead as compared to a
generic DHT.

1. Introduction

Previously proposed Distributed Hash Table (DHT) al-
gorithms [10][12][14] have commonly assumed connecting
an overlay of autonomous and homogeneous nodes together.
The autonomicity arises in the sense that nodes may join or
leave the network at any time, as well as request and pro-
vide data as they wish. The homogeneity arises from the
fact that devices on the network are assumed to have simi-
lar capabilities in terms of processing power, storage space
and network access.

Mobile devices, however, are likely to be heterogeneous.
They are also often battery powered and prone to moving in
and out of signal range, both of which commonly cause loss
of network connectivity. In a DHT, it is often the case that
a mobile node migrating between access points has to re-
join, as both its own state about other nodes and their state

about it may have been invalidated. This causes what is
termed mobility churn [3]. Mobility churn, just like normal
churn [11], is caused when nodes in a peer-to-peer network
continually join and leave in an unpredictable fashion. This
results is more traffic on the DHT due to churned nodes re-
peating the join procedure, and stale state information hav-
ing to be detected and discarded by existing nodes. Un-
fortunately, this degrades routing efficiency and increases
end to end delay. Many DHT systems have been shown to
simply break down under high levels of churn [6][11]. To
make matters worse, it has been shown that severe levels
of churn are likely for peer-to-peer networks with mobile
nodes [3][9].

Mobile devices are also likely to have slow network con-
nections relative to stationary devices. The GSM standard,
for example, is limited to only 14.4 kbps data transfer.
GPRS offers some improvement, averaging at around 40
kbps as empirically detected by [7]. Even with newer third
generation (3G) devices, transfer rates are still likely to be
far lower than many wired devices. In the case of such low
bandwidth networks, there is the danger of DHT signalling
consuming all the available bandwidth, thus blocking user
traffic.

We believe that the Stealth DHT algorithm proposed
in [1] is an elegant solution which adapts existing DHT al-
gorithms themselves to help resolve these problems.

A Stealth DHT is a distributed hash table that addresses
the problem of heterogeneous capabilities by maintaining
two distinct sets of nodes on the network. One set, referred
to as stealth nodes, are made effectively “invisible” to all
routing operations, meaning that they will never receive any
queries, be requested to forward messages, or asked to store
keys. Consequently, they cannot intercept nor reply mali-
ciously to any messages on the DHT. Ideally, less capable
nodes on the network should be designated as stealth nodes,
as their lack of responsibilities means they have little ef-
fect upon overall routing performance. The remaining set of
nodes on a Stealth DHT are called service nodes, which can
execute all the operations supported in a generic DHT. For
optimal performance, service nodes should be more stable
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and capable than the stealth nodes, thus can be relied upon
for supporting the network.

The Stealth DHT algorithm was initially proposed with
the aim of returning control of the peer-to-peer network to
its operator, circumventing the numerous security problems
and Digital Rights Management issues commonly associ-
ated with such overlays. Service nodes are therefore as-
sumed to be owned by a service provider, which, in addi-
tion to their high capabilities, should mean that they are
also trustworthy. Conversely, stealth nodes would be au-
tonomous devices owned by end-users, who request ser-
vice(s) from the provider. In this paper, we examine the
case of a service provider offering service to wireless users
only, some of whom are mobile, while others are stationary.

We purposefully breaks the pure peer-to-peer paradigm
of treating all nodes as equal. We believe that it is this as-
sumption that causes generic DHTs to perform poorly in a
mobile environment, further hindering the development of
DHT-based mobile applications. By excluding less capable
nodes from routing decisions via the stealth node concept
and designating the most capable nodes as service nodes,
Stealth DHTs help to eliminate the performance problems
associated with mobility and DHTs. Since state informa-
tion regarding the mobile nodes in Stealth DHTs is never
recorded, they will not have any responsibility in the net-
work. Thus, they may join, leave, and request services at
will with relatively little impact on the performance of the
underlying DHT. Better still, if a service provider owns and
manages the service nodes, they will have a complete con-
trol over the provided service. We therefore argue that a
Stealth DHT in mobile environments combines the scalabil-
ity, resilience and self-organization of existing DHT based
networks with the greater performance and control of a con-
tent distribution network (CDN).

The rest of this paper is organized as follows. In sec-
tion 2, we discuss a brief overview of the Stealth DHT al-
gorithm. We then consider Stealth DHTs with mobile nodes
in section 3. We present simulation results and analyze the
performance of a Stealth DHT in comparison with Pastry (a
generic DHT) in section 4. Finally section 5 concludes the
paper.

2. Overview of Stealth DHT

As discussed in [1] we have extended a generic DHT
algorithm to allow for two types of nodes in a the DHT,
namely service nodes and stealth nodes. Service nodes can
execute all operations supported by generic DHTs, whereas
stealth nodes are prevented from storing keys and forward-
ing messages. While it is recommended that the stealth
node population be comprised of less capable nodes, the
assignment of role (service or stealth) to nodes is applica-
tion dependent and in no way prescribed or constrained by

the Stealth DHT itself.
It is important to note that the routing tables of all nodes

in a Stealth DHT consist exclusively of entries for service
nodes. Consequently, a given node of any type may only
send a message to a service node, which will forward it via
other service nodes to its destination (also a service node).
This means that stealth nodes are incapable of communicat-
ing directly with one another, and that service nodes may
only communicate with stealth nodes to reply to a direct re-
quest. Accordingly, stealth nodes cannot normally detect
one another, and when “quiet”, their presence is invisible to
even the service nodes.

In order to achieve the distinction between a service
and a stealth node, stealth nodes employ a lightweight join
mechanism. Unlike service nodes, they do not complete
the classical DHT join procedure by sending announce-
ment messages, thus keeping them from appearing in other
nodes’ routing tables. Correspondingly, when a stealth node
joins the network, no updates are required to routing state,
nor does any state become stale upon such a node leaving
the network.

A side effect of this procedure is that stealth nodes do
not receive routing updates, as no other node knows to up-
date them. Over time, a stealth node therefore has an in-
creasingly stale routing table. To counteract this problem, a
stealth node may attempt to obtain additional state periodi-
cally from the network, either in an active or passive fash-
ion.

An evaluation of Stealth DHTs for wired networks re-
vealed that regardless of churn, Stealth DHTs outperform
Pastry, a generic DHT, in many standard DHT measure-
ments such as the average hop count, relative delay penalty
(often referred to as stretch), join overhead and efficiency
of load balancing [1]. We also found that in a Stealth DHT
increasing the number of stealth nodes had no significant
impact on these metrics. This paper extends the investiga-
tion of Stealth DHT performance to mobile environments.
For a more detailed explanation of the Stealth DHT protocol
the curious reader is referred to our previous work [1].

3. Stealth DHTs with mobile nodes

In this paper we propose using a Stealth DHT in environ-
ments where fixed network infrastructure and mobile nodes
are interconnected. We assume that a mobile node can sim-
ply connect to the system via a nearby wireless access point
or base station. When mobile nodes move they may receive
a new network address upon connection to a new access
point, or they may use an available Mobile IP [8] infrastruc-
ture to retain their existing IP address. In the former case, a
node would have to inform the DHT of its address change,
thus inducing mobility churn. In the latter case a node may
temporarily lose connectivity, but references to its IP ad-
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dress in the DHT will not require updating. A node that
retains its IP address may, however, find that the proximity
data it stores locally has be rendered incorrect. We also as-
sume that a node does not have any prior knowledge of its
mobility pattern, and thus cannot inform other DHT nodes
of any movement or loss of connectivity in advance.

We focus on the case of a peer-to-peer network that of-
fers service to wireless end-users only. The assumption is
made that the provider’s network consists of a number of
servers which form the service node infrastructure for the
Stealth DHT overlay. These service nodes may be installed
at strategic locations such as within close proximity of an
existing mobile provider’s base station, or they may be lo-
cated arbitrarily. On the other hand, the stealth nodes are
made up of end-users’ wireless devices, such as mobile tele-
phones, PDAs, laptops and so on.

We believe that Stealth DHTs offer an elegant solution
to the performance problems caused by mobile nodes in
a twofold manner; by ensuring mobile nodes are not used
as routing intermediaries, and by removing the need for
service nodes to maintain state information about mobile
nodes. We show in the next section that Stealth DHTs help
in preventing stale state information in the peer-to-peer net-
work due to the mobility of nodes, reducing signalling over-
head, and improving routing efficiency.

4. Performance Evaluation

We extended the support for both Pastry and our Stealth
DHT in our own discrete-event packet-level simulator [1] to
cater for wireless networks. The underlying network upon
which the simulations were run consisted of 1,000 routers
in a transit-stub configuration with 4% transit nodes, gen-
erated with GT-ITM [2]. Each stub/edge router was also
designated as a wireless access point. Nodes were attached
to the physical network in a random fashion, with wireless
nodes being attached to the edge routers via a 1 Mbps shared
wireless links, while wired nodes were connected via their
own 1 Mbps link. The wireless nodes had a average latency
of 200 ms while wired nodes had only 5 ms.

Randomly selected nodes performed put operations for a
set of 1,000,000 keys before the simulation. Once the sim-
ulation started 10 get operations were performed by each
node at exponentially distributed intervals with a mean of
six minutes. Keys are requested following a Zipf distribu-
tion with an α parameter of 1.2, thus providing a realistic
access and popularity function as commonly observed in
peer-to-peer networks [13].

We used a mobility model known as the random way-
point model [4] with “thinking times” provided by an expo-
nential distribution around a 60 minute mean (as observed
in [5]) to model mobility patterns of mobile nodes. We are
aware of existing infrastructure that allow mobile nodes to
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Figure 1. Average total no. of messages

preserve their IP addresses when their mobility leads them
to change access points. This, however, does not lead to mo-
bility churn nor does it lead to stale state information on the
network (assuming they do not move out of signal range en-
tirely). Our interest lies in demonstrating the benefits that a
Stealth DHT will have under mobility churn in comparison
with Pastry. Thus, we simulate Stealth and Pastry DHTs and
compare their performances for the case when, upon chang-
ing their access points, mobile nodes also change their IP
addresses. This scenario is perhaps more realistic due to the
relative lack of deployment of mechanisms such as Mobile
IP.

We consider a peer-to-peer network with a fixed number
of 1,000 nodes. For the Stealth DHT simulations, we des-
ignate 99% of the nodes as stealth nodes and the remaining
1% are designated as service nodes. To show the impact of
mobility on the performance of the DHTs, the number of
mobile nodes in the network is increased from zero, where
all stealth nodes on the network are stationary, to 990 nodes
where all stealth nodes are mobile. Service nodes retain
wired connectivity in all of these simulations. For Pastry,
1% of nodes correspondingly remain wired and the remain-
ing 99% of wireless nodes are changed from all stationary
towards all mobile.

Throughout this section we refer to moving and static
DHTs, which are distinguished by the fact that in the for-
mer case, wireless nodes are in fact mobile, whereas in the
latter, wireless nodes remain stationary. Stationary wireless
nodes do not change access points and thus they do not lose
connectivity as with mobile nodes. Yet, they suffer from
high latency links which they have to share, unlike wired
nodes.

4.1. Total number of messages

We first present the results pertaining to the overhead in-
curred as a result of node mobility. Figure 1 shows the mean
total number of exchanged messages on the DHT, inclusive
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Figure 2. Average no. of resent messages

of put, get, getreply and routing state update messages. The
results are displayed for both moving and static Pastry and
Stealth DHTs as a function of the increase in the fraction
of mobile nodes. We observe that the total number of mes-
sages in the Stealth DHT is constant at 21,000 messages,
which indicates that mobility does not lead to DHT over-
head on the network. The figure indicates the same for both
static and moving Stealth DHTs, as well as static Pastry.
This is to be expected, as in these three cases the nodes
which are maintaining state about one another are station-
ary, meaning they do not change IP address and thus do not
need to update one another.

In contrast, mobility has a severe impact on Pastry. Fig-
ure 1 shows that the total number of messages under mov-
ing Pastry is very high and increases with the number of
mobile nodes. The figure illustrates how mobility can lead
to many more messages on the network due to maintenance
overhead, as one might expect.

4.2. Resent messages

Figure 2 shows the average number of resent DHT mes-
sages as a function of the increase in the fraction of mobile
nodes in the network. A message is resent whenever a node
on the routing path fails to receive it due to churn. The
figure shows the results for moving Pastry only, as no mes-
sages were ever resent under static Pastry or Stealth DHTs.
We observe from the figure the number of resent messages
on the moving Pastry increases rapidly with an increase in
mobile nodes.

The existence of resent messages due to node mobility
on a DHT reflects the unavailability of numerous nodes
throughout the simulation. Thus, resent messages lead to
reduced performance in terms of lookup latency, which we
discuss in a later section.
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4.3. Packets to unreachable hosts

When a node sends a get message over the DHT, the re-
cipient will customarily reply directly to them via the source
IP address contained within the request. While this avoids
burdening the DHT overlay with unnecessary traffic, it also
means that getreply messages are not counted in Figure 2,
which refers solely to messages sent over the DHT.

Figure 3, however, shows a count of the number of times
a network packet was sent to a node which had since be-
come unreachable due to a change of address. Again, as
stationary nodes do not change IP address at any point, the
points for the static DHTs and also the first few for the mov-
ing DHTs (where the number of wired nodes is high) are
zero and thus not shown. It is important to note that the
figure shows results for all types of packet, including those
which are never resent (e.g. state messages, nodes ping-
ing one another and so on); this accounts for the discrep-
ancy between the number of unreachable destinations and
the number of resent messages. Unlike Figure 2, results for
the moving Stealth DHT are displayed here; the reason for
this is that while service nodes are fixed, the stealth nodes
making the requests of them are not. As a result, a service
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node may attempt to reply via IP to a stealth node, only to
find that it is no longer reachable. It is clear from this figure,
however, that this situation occurs far more often with Pas-
try than it does in a Stealth DHT; the Stealth DHT does not
even register any unreachable nodes until 50% of its stealth
nodes are mobile.

4.4. Average lookup latency

Figure 4 shows the average lookup latency (defined as
the time elapsed between a node sending a get request
into the DHT until the receipt of the corresponding getre-
ply message) as a function of the fraction of mobile nodes
for moving and static Stealth and Pastry DHTs. The fig-
ure shows that static and moving Stealth DHTs have similar
end-to-end performance, which is less than 1,300 ms for all
considered networks. This shows that Stealth DHTs main-
tain efficient routing performance independent of the num-
ber of mobile nodes on the network. The figure also shows
longer average latency for Pastry than for Stealth DHTs,
as well as the discrepancy increasing with the number of
mobile nodes. We also observe that moving Pastry suffers
from longer average latency than static Pastry. The figure
shows that the maximum average latency under Pastry is
about twice the maximum value for Stealth DHTs. This
is to be expected, as the number of nodes performing for-
warding operations is lower in the Stealth DHT (1% service
nodes), resulting in fewer hops on average.

In general, the figure shows quite high average delays
even for Stealth DHTs (around 1.2 seconds). This is pri-
marily due to the high propagation delays of their access
links (approximately 200ms each).

5. Conclusion

Peer-to-peer networking may increasingly have to
cater for intrinsically underpowered and unreliable mobile
clients. In the case of a generic DHT, its routing infrastruc-
ture may consist of a large number of mobile nodes, leaving
it susceptible to the detrimental effects of mobility churn.
Stealth DHTs offer a solution to this problem by allowing
for the isolation of mobile nodes connected to it in order to
deny the ability to execute any operations that involve re-
laying and forwarding messages on the DHT. Mobile nodes
on the Stealth DHT are stealth nodes, and those remaining
are classed as service nodes. To accomplish the goals of the
Stealth DHT concept, nodes do not keep any state informa-
tion about stealth nodes in their routing state tables.

Using simulations, we have studied the effect of mobility
churn on Stealth DHTs and compared the results to Pastry.
The results show that the Stealth DHT algorithm is com-
paratively much more efficient in reducing overhead on the
network, and that it also offers significantly higher routing

efficiency. As expected, the simulation results show that
the performance of Stealth DHTs are not affected by an in-
crease in the number of mobile nodes on the network. For
Pastry, the results show that its performance degrades dra-
matically as the ratio of mobile nodes to stationary nodes
on the network increases.
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