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ABSTRACT

In this paper we investigate the building of a virtual router plat-
form that ensures isolation and fairness between concurrent virtual
routers. Recent developments in commodity x86 hardware enable
us to take advantage of the flexibility and wealth of resources avail-
able to a software router in order to build a virtual router platform.
Using commodity x86 hardware we show that it is viable to run
highly experimental and untrusted router systems along side a pro-
duction router on the same hardware platform without sacrificing
performance. We investigate the extent to which we can isolate a
virtual router running experimental code from other virtual routers.

Categories and Subject Descriptors

C.2 [Computer-Communication Networks]: Internetworking

General Terms

Design, Experimentation, Performance

Keywords

Virtualization, Routers, Commodity Hardware

1. INTRODUCTION

There has been renewed interest recently in re-evaluating the
Internet architecture. However, for any non-trivial change to be
successful it will have to run concurrently with existing protocols,
firstly in test networks and eventually in production. In Bavier et
al. [1], the authors advocate the use of virtualised routers to aid such
experimentation and deployment; virtual routers, where one box
behaves as several independent logical routers, are one approach
to enable such innovation. Alternative uses for virtual routers in-
clude enabling ISPs to offer each customer control of their edge
router, or as a platform to allow the in-network deployment of new
applications or appliances.
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For our purposes, we define a virtual router to be a router in-
stance able to run concurrently with other instances using the same
physical resources of a virtual router platform. In this work we in-
vestigate the ability of a software virtual router platform to support
a number of virtual routers concurrently, and the extent to which it
is possible to isolate virtual routers from each other. In section 2,
we outline the underlying limitations of commodity x86 hardware
and its impact on the ability of a virtual router platform to share
and isolate virtual routers. In section 3, we investigate three differ-
ent virtual router configurations that increasingly trade isolation for
performance. Section 4 concludes this paper.

2. VIRTUAL ROUTERS

The idea of virtualising a router is not new; indeed, major router
vendors offer variations on this theme that share a common binary
control and data plane that filters packets to their corresponding
virtual router instances. Unfortunately, this approach does not have
the flexibility we desire, as such routers usually have no or very
little programmability.

For research, there is a fine balance between performance and
flexibility; specialist hardware is clearly needed for very high per-
formance forwarding, but modern x86 hardware is actually remark-
ably capable and in principle provides arbitrary flexibility for dif-
ferent virtual routers to use completely different stacks. In this pa-
per we focus on such commodity hardware, and aim to cast light
on the trade-off between performance, flexibility, isolation and fair-
ness.

To investigate these issues we start with the Xen virtualisation
platform [2] running Linux and use the Click modular router pack-
age [3] for forwarding. Click’s modular model is based around
the composition of simple elements that perform basic packet-
processing functions and allows for flexible configuration of dif-
ferent routers. At the same time, Click yields very close to optimal
forwarding performance and supports multi-threading, enabling us
to investigate the potential of modern, multi-core x86 CPUs.

In order to provide the functionality that users might want from
a virtual router platform, we envisage three scenarios. In the first
scenario, all of the virtual routers on the platform have identical
forwarding paths. In the second scenario, each virtual router can
have a different forwarding plane, but each must be built from a
set of trusted and provided Click elements. Finally, in the third
scenario, this last constraint is removed, allowing users to build



forwarding planes from untrusted elements!. For a virtual router
platform to be viable it should be able to concurrently run all three
scenarios while maintaining reasonable performance and providing
isolation. We discuss the complexity associated with each scenario
in section 3.

Figure 1 shows an example of all three scenarios and an alter-
native option for the third scenario. A Xen driver domain (dom0)
hosts a Click forwarding plane composed of standard forwarding
elements for three virtual routers, two are only forwarding via
domO (scenario 1&2), while the third one is also running custom
forwarding software in its domU (scenario 3). The alternative sce-
nario 3 is the fifth Xen domain which has its own private network
interfaces directly mapped, and does its own forwarding by monop-
olising these interfaces.
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Figure 1: Virtual Router Architecture.
2.1 Baseline Performance

Before we can consider how to assign resources to virtual
routers, we must understand the system’s baseline performance.
We chose Dell PowerEdge 2950 servers for these experiments, as
they allow us to tease apart SMP performance issues. By serendip-
ity, these have two 2.66 GHz quad-core Intel X5355 CPUs. How-
ever, these are not true quad-core, as they are effectively two dual-
core CPUs in one package, where each pair shares a 4MB L2 cache.
This combination allows us to investigate the issues when pack-
ets switch CPUs, switch cores within the same package, or switch
cores that share a common cache. These systems have a uniform
memory architecture, with 8GB of 667MHz DDR2 memory con-
nected to the north bridge via four 5.3 GB/s channels. Networking
is handled by three Intel gigabit quad-port cards each using a PCle
x4 channel, for a total of 12 gigabit ports.

SCENARIO 1 & 2

2.1.1 Forwarding Performance

When using Click in a simple bridge configuration, the Dell 2950
has a maximum packet forwarding rate of 7.1 million packets per
second (Mp/s) for minimum-sized, 64-byte packets (equivalent to
3.64 Gb/s). For larger, 1024-byte packets, the rate is 1.43 Mp/s, or
11.72 Gb/s, which is the theoretical maximum bidirectional rate for
all 12 gigabit ports. For minimum-sized packets, however, the rate
is well below the theoretical maximum, indicating a performance
bottleneck.

As it turns out, the reason for this is rather complex and is pri-
marily due to memory latency, exacerbated by numerous transfers
over the PCle bus and FSB per packet forwarded to main memory.
Indeed, the transfers of the small packets between a NIC and mem-
ory, as well as the associated packet descriptor book-keeping, result
in several short read and write memory operations, one cache line
or less, both by the NIC and the CPU. This is compounded by the
fact that with 12 network interfaces concurrently transferring pack-
ets to main memory via DMA, the Memory Controller Hub has to
multiplex these short transfers to and from memory, resulting in

'In each of these scenarios the router control plane for each virtual
router instance would run in its own virtual system.

a sequence of short memory accesses exhibiting poor localisation.
This, in turn, causes poor performance because of the time required
to continually change the memory address lines, thus preventing the
memory controller from entering the more efficient “burst” mode.
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Figure 2: Mean latency induced by our system per forwarding path

Latency is an important characteristic of forwarding perfor-
mance, in Figure 2 we show that the latency induced by the sys-
tem on six static forwarding paths each allocated to a separate core.
The average latency of each forwarding path stays below 700us
up to the point where the machine gets saturated (i.e. it reaches
the 7Mp/s limit, which happens when each forwarding path is for-
warding 1.2Mp/s) and after that the latencies still stay below 1.5ms.
Note, the buffer size on our NICs is 48KB, that induces on its own
573us delay when full (i.e. in overload conditions), showing that
the delay induced by forwarding a packet from the input to the out-
put port is acceptably low.

2.1.2  Sharing CPUs

Given the memory bottleneck, a key goal when allocating cores
to virtual routers is to try to keep a packet on the same core through-
out its processing to improve cache locality and thus reduce mem-
ory accesses. To analyse this effect we measured the performance
of two gigabit forwarding paths with 64-byte packets. With each
forwarding path handled in its entirety by a separate core so that
packets do not change cores, the line-rate of 2.9 Mp/s is achieved.
If, on the other hand, the inbound half of the path is handled on
one core and the outbound half on a different core that shares an L2
cache, then the rate falls to approximately 1.9 Mp/s. Finally, if we
force packets to switch to cores that do not share an L2 cache, the
rate drops to 1.2 Mp/s.

2.1.3 Sharing Interfaces

If a NIC is shared between more than one virtual router, then
packets need to be classified on input so they are handled by the
right router; this classification can be either done in hardware or
in software. Hardware classification is undertaken on the NIC and
presents the system with a separate queue per virtual NIC thereby
allowing the system to poll packets from each queue only when
the associated virtual router is allocated resources and greatly sim-
plifying scheduling. Intel’s VMDq [4] provides such NIC-based
virtualisation, but unfortunately it is still very new and not yet fully
supported by the network driver, Click or Xen.

The alternative is software classification, where packets are
polled from the NIC prior to classifying them into separate queues
for each virtual router. Unfortunately, to avoid livelock under over-
load conditions, we want to discard unwanted packets directly from
the NIC without wasting memory bandwidth. In the case of soft-
ware classification this is not possible, greatly complicating fair
scheduling because the scheduler cannot control the resources used
prior to classification.

We examine this issue by comparing a standard single-queue
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Figure 3: Per-flow forwarding rate on single-queue and (emulated)
multi-queue NICs with forwarding path priorities (1:2)

NIC with an emulated multi-queue NIC. The emulation is achieved
by using two separate NICs and having the switch they are attached
to separate the traffic stream between them. In the standard NIC
we use software classification to separate the traffic stream. In both
single and multi-queue scenarios we destined traffic for two for-
warding paths, one high priority with 67% of the resources and one
low priority with 33% of the resources. The resource allocation
scheme is discussed later in section 3.3.1.

Figure 3 shows the forwarding rate of the forwarding paths in
both the single and multi-queue NIC cases. We generated twice
as many packets per second for the low priority forwarding path
than for the high priority one to illustrate the fair-sharing property
of both scenarios. The difference can be clearly seen in the over-
load condition for generated packet rates of over 0.9Mp/s, where
the forwarding performances in the single-queue NIC case are de-
termined by the arriving traffic pattern and not by the allocated re-
sources since we have no control over which VR’s packet to poll
in next. In contrast, in the multi-queue NIC the performance of
the high priority path continues to increase as the CPU becomes
saturated and the low priority path becomes throttled accordingly.

3. EVALUATION OF THE FORWARDING
PLANES

In this section we examine the problems of fair resource sharing
in the different virtualised forwarding-plane scenarios introduced
in Section 2. We focus on CPU cycles and memory accesses as
these are the key factors in determining forwarding performance.
For each of the three scenarios, we will propose and evaluate a
possible solution for CPU cycle scheduling and suggest extensions
for memory scheduling.

Using virtual multi-queueing is a prerequisite for fair resource
sharing in a virtualised forwarding path environment. Hence, in all
of our scenarios we assume that the NICs are capable of filtering
and demultiplexing the arriving packets into the multiple queues
present on the NIC; each belonging to a separate virtual router. Due
to the lack of such hardware we emulated a VMDq NIC with mul-
tiple, single-queued NICs.

3.1 Scheduling elements

Scheduling multiple CPUs across multiple forwarding paths
(FPs) is a complex operation that can be decoupled into two steps:

1. We have to assign all forwarding paths of each of the virtual
routers to the available CPU cores. To do this, we need to
know the cost of each schedulable element and the resource
entitlement of each virtual router. With this information it is
possible to calculate the most effective forwarding path-to-
core allocation scheme. This operation needs to be carried
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out after setting up the forwarding engine, whenever the cost
of a virtual router’s forwarding path changes significantly, or
whenever resource entitlement is changed.

2. After the first step has been done, we have to deal with
scheduling each core. If there is more than one schedulable
element assigned to a core we ensure fairness is maintained
within the boundaries of that core; this is more complex than
step 1 and needs to be carried out continuously.

The first step is fairly simple (at least to a rough approximation),
so in this paper we focus on the second, more interesting step.

Scheduling memory accesses in a virtual router is not as simple
as scheduling CPU cycles. However, it can be performed indirectly
by extending the CPU scheduler to factor in the average number
of memory accesses (measured in CPU cycles) of the tasks being
scheduled. Modern processors provide very low overhead hard-
ware counters that allow us to measure among other things, statis-
tics related to memory bus operations and L2/L.3 cache events (i.e.
cache hits, misses, etc. that help infer the number of memory ac-
cesses needed per forwarding path per packet). This way we can
sample and then predict the number of memory accesses required
to forward a packet on a forwarding path. In scenarios where the
memory has become the bottleneck, we can adjust the CPU sched-
uler’s parameters so as to ensure a fair memory access rate by con-
trolling the forwarding paths’ CPU resources for example if a for-
warding path is scheduled to use CPU resources less often it will
access the memory less often too.

3.2 Scenario 1:
plane

The simplest virtual router consists of identical concurrent for-
warding paths as shown in Figure 4. In this case, all virtual routers
are identical except perhaps for the number of interfaces allocated
to each, their addresses, and the entries in their forwarding tables.
The cost of processing a packet by any of the forwarding paths is
very similar, with slight differences due to variation of packet sizes
and forwarding table look-ups. However, these differences are not
expected to have a significant effect on the number of CPU cycles
and the number of memory accesses needed to process a packet.

Static virtual forwarding

PollDevice

PollDevice

PollDevice

Packet processing .

P fookup ToDevice
Packet processing N

P fookan ToDevice
Packet processing

IP lookup

Figure 4: Three identical forwarding paths sharing a CPU core.

In the case where all the forwarding paths need a similar amount
of resources to process a packet, a Round-Robin scheduler is suffi-
cient to provide an equal share of the available CPU resources and,
as a consequence, of the memory resources. Such a simple sched-
uler ensures that each of the forwarding paths gets equal access to
the CPU and, because they use a similar number of CPU and mem-
ory cycles each time they are scheduled, fair sharing among the
virtual routers is achieved.

Click’s default CPU scheduler is based on proportional-share
stride scheduling [5], and schedules equally weighed tasks (i.e. for-

2If forwarding paths do need a significantly different number of
CPU cycles and memory accesses per packet, then the slightly more
complex solution proposed for the second scenario (Section 3.3)
can be used.
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Figure 5: Illustrating fair scheduling when packets are arriving at different
rates per forwarding path

warding paths) assigned to the same core in a Round-Robin man-
ner. If different weights need to be given to different forwarding
paths to allow some customers more resources than others, this can
be done fairly simply by extending the forwarding path scheduler
to a Weighted Round-Robin scheduler; our extension to the Click
scheduler discussed in more detail in Section 3.3.1 tackles this re-
quirement as well.

Figures 5 and 6 illustrate the fair-sharing property of the original
CPU scheduler algorithm. In the first case, we created a configu-
ration with three forwarding paths (FPs) representing three virtual
routers that share the resources of a CPU core. The FPs were iden-
tical, but the incoming traffic to each of them was different. More
specifically, we started to generate minimum-sized packets at a rate
of 100Kp/s for all the three FPs and increased the rates of each flow
in increments of 150Kp/s, 100Kp/s, and 50Kp/s, respectively.

Figure 5 shows that the CPU gets saturated after the 6" step,
causing the forwarded packet rate of FP1 (the one receiving the
highest generated packet rate) to drop; the rates of FP2 and FP3
increased further as they were using less than their CPU cycle al-
location. After the 8" step the forwarded packet rate of FP2 starts
to drop too since it exceeded its fair share, while the rate of FP3
was still rising. This phenomenon continues until the generated
packet rates for all the FPs have exceeded one third of the overall
forwarding capability of the core in question.

In the case of Figure 6, we created a configuration with six for-
warding paths representing six virtual routers that share the re-
sources of three CPU cores. The FPs were completely identical
again, but in nearly full compliance with the standards of a unicast
IP router [6] (hence the lower overall forwarding rate per core). The
resources were allocated as shown in the figure’s key. We can see
that the overall throughput of each core is roughly 1.3 Mp/s, and
that this rate is shared by the multiple FPs in accordance with their
allocation ratio.

3.3 Scenario 2: Configurable virtual forward-
ing plane

Even though the previous scenario provides fairly straightfor-
ward resource management, it does not have any flexibility for
users to design their own forwarding path. In this section, we focus
on custom forwarding paths built only from a large range of ap-
proved Click elements. In this case, the forwarding paths can vary
significantly both in structure as well as in cost. As each element
is trusted a priori by the system, they can share the same forward-
ing domain (see Figure 1), but as the number of elements in the
forwarding path and the resource consumption (i.e. cost) of each
element can vary depending on various parameters (e.g. length of
packet being forwarded), providing fairness reduces to:

e Preventing a packet from hogging the CPU for too long.
e Monitoring the total resource consumption of each forward-
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Figure 6: Different weight scheduling of 6 forwarding paths on 3 cores.

ing path, then tuning the packet scheduling parameters.
Rather than forwarding an equal number of packets, unequal
numbers of packets must be scheduled so as to equalise re-
source consumption between competing virtual routers.

The first requirement is essential for responsiveness of all virtual
routers sharing a CPU and can be addressed with a simple watch-
dog mechanism, whereby a timer is triggered every time a packet
enters a forwarding path, and cleared when the packet exits it or
gets dropped. On watchdog expiry, a forwarding path can be de-
clared as non-compliant and removed.

3.3.1 Extended CPU Scheduler

In order to guarantee that all the forwarding paths get access to
the amount of resources they are entitled to and no more, the to-
tal cost of each forwarding path must be monitored and the CPU
scheduling parameters tuned accordingly. Note that we need to
monitor the cost of each forwarding path regularly to ensure that
the current CPU scheduling adjustments reflect the recent resource
usage of all the forwarding paths, including the ones where the
per-packet processing cost can vary significantly depending on the
character of the packet in question. To this end, we extended
Click’s original CPU scheduler by adding the ability to measure
the cost of each forwarding path and adjusting the weight of each
of them according to their costs, thus achieving fair CPU schedul-
ing>. In addition, we can also change the quantity of CPU resources
that the given FPs are entitled to. In an attempt to mitigate the dif-
fering forwarding costs associated with different packets, whilst the
sampling frequency is tunable, we sampled at a rate of one in ev-
ery twenty packets to balance the sampling overhead against the
fidelity of the measurements.

N Packet processing
PollDevice H IP lookup

Packet processing

Packet processing
1P lookup

Expensive .
w111
I

PollDevice

PollDevice

Figure 9: Three FPs sharing a core. Two are identical whilst the third
needs more resources to process a packet.

To illustrate the scheduling properties of the configurable virtual
forwarding plane, we experimented using a similar configuration
to that in Section 3.2, but we changed one of the FPs to include a
few expensive Click elements to increase the cost of forwarding a
packet (Figure 9). Using the default Click scheduler we achieved

3Note that the resource consumption for forwarding a packet can
only be measured when the packet exits the forwarding path and
control is returned to the Click scheduler.
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the same maximum forwarding rate for each of the FPs (approx-
imately 440 Kp/s), meaning that the CPU was not shared equally
as the more expensive FP managed to forward the same number of
packets per second as the others.

Figure 7 illustrates the throughput of the FPs when our sched-
uler extension was used to load balance the FPs’ CPU usage. The
results show that load balancing works properly, since the packet
rate of the expensive FP decreased while that of the other two FPs
increased; it takes approximately 40% more CPU cycles to forward
a packet by FP1 than by FP2 and FP3.

3.4 Scenario 3: Customisable virtual for-
warding plane

In the previous scenario the customers already had plenty of flex-
ibility in designing their own forwarding path, but were allowed to
use only the functionality provided by elements approved by the
system, which might not satisfy their needs. Ideally, we would like
to allow customers to build their own packet processing elements
performing whatever functions they need. However, as we cannot
allow the system to trust these custom-made elements uncondition-
ally, we have to ensure that they are executed in an isolated envi-
ronment.

A practical solution is to use the domUs running the control
plane for the VRs (see Figure 1) to provide an isolated environ-
ment for executing the untrusted, potentially unreliable, custom-
made forwarding path elements. In such a scenario, packets enter
the forwarding path in dom0, are pushed up to the corresponding
domU for processing by the custom-made elements, and come back
to the same point in the forwarding path in dom0, from where the
packets leave the router.

In this case, Xen’s (or any other hypervisor being used) CPU
scheduler plays a role in providing fair CPU sharing among the
VRs. The domUs that perform some functions in the forwarding
path must get a bigger share of the CPU resources than the ones
assigned to only performing control plane functionalities. Simi-
larly, the CPU share of these forwarding paths within domO must
be decreased by the equivalent of the extra share granted by the
Xen scheduler to the domU.

Using multiple domains for packet processing presents addi-
tional challenges. To begin with, we lose the advantage of having
relatively easy access to information about CPU and memory usage
of the FPs and of having a scheduler in the forwarder domain that is
capable of providing the full service of fair scheduling. In addition,
we also have to ensure that the packet transfer between the shared
forwarder domain and the given domU can happen at high rates.
In Xen, the I/O-channel located between dom0O and the domUs is
meant to carry out such tasks. Unfortunately, this channel is perfor-
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mance limited [7]. We found, however, that there is no difference
between a domU’s and dom0’s processing power; only the packet
rate between domUs is limited.

We tested the CPU scheduling and performance properties of
such a split (dom0 — domU — dom0) forwarding path scenario. In
the configuration we had 3 forwarding paths in dom0, and packets
were pushed up to and received back from 3 domUs in parallel via
the I/O-channel. Five cores were used and assigned in the following
manner: FP1 in domO shared a CPU with dom1, while all the other
FPs had their own core.

The forwarding rates of the FPs and domUs reflect this core allo-
cation scheme (see Figure 8). FP1 and dom1 forwarded about half
as many packets per second as their counterparts did, as a conse-
quence of having the CPU for only half the time. It is important to
note the limited rate of approximately 90 Kp/s for dom2 and dom3,
which is similar to the rate the VINI architecture [1] achieves and
is caused by the limitations of the I/O channel.

Figure 10 shows the impact of the memory access time limita-
tion on forwarding performance. This figure also shows that map-
ping interfaces directly to domUs yields the same forwarding per-
formance as when all the forwarding is performed exclusively in
dom0, offering plenty of other possibilities for router virtualisation.
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Figure 10: 5 domains were directly mapped each to a pair of interfaces
between which they forward packet and memory intensive task(s) were run
in different number of other domains.

In this experiment we directly mapped 5 pairs of interfaces to 5
domUs, assigned a separate core to each domU and ran the simplest
forwarding code, allowing us to clearly reach the memory limit of
approximately 7.3 Mp/s (top-most line on the graph). In addition,
we gradually increased the number of domains (up to 8, due to
the limit of cores), with separate cores assigned to each domain.
In each domain we ran a simulated control plane in the form of a
memory-intensive C program that randomly read from and wrote
to a large memory space, causing cache misses and therefore high
memory access rates. As the results show, increasing the mem-



ory access rates in separate domains can significantly decrease the
forwarding performance of other domains. We repeated the same
experiment and achieved very similar results when using 5 cores
assigned to domO to forward packets between 5 pairs of interfaces
instead of mapping the pairs of interfaces into 5 separate domains,
which shows that the forwarding performance is limited by mem-
ory access, and not the domain where the forwarding path runs.

4. CONCLUSION

In this paper we have shown that a virtual router platform based
on commodity hardware can forward large packets simultaneously
on at least 12 Gigabit interfaces at line rate and 64-byte packets at
a very respectable 7 Mp/s. This level of performance demonstrates
the feasibility and viability of cost-effective software virtual router
platforms at the edge of the network or as an experimental system.

Through experiments, we have demonstrated that forwarding
paths composed of trusted elements can be supported with a sig-
nificant degree of isolation (i.e. not only protection, but also lit-
tle perceived performance impact) and fairness between the virtual
routers, while exhibiting performance equivalent to that of a simi-
lar forwarding path running on a single core without virtualisation.
Importantly, we have shown this to be true even in the presence of
forwarding paths with different costs.

In the presence of untrusted forwarding elements, we have
shown that isolation and protection of co-resident trusted forward-
ing paths can be achieved with very little performance penalty.

These results were achieved through a two-step scheduling pro-
cess that first statically binds forwarding paths to CPU cores and
then aims to co-schedule cores and memory access for maximum
performance. However, as the number of cores in a single pro-
cessor increases (e.g. 16-core CPUs have been announced for
2009) and the total number of cores exceeds the number of virtual
routers in the system, sharing the resources of a single core might
not be relevant in the future. Albeit, scheduling the memory ac-
cesses globally and dynamically allocating the forwarding paths to
the available cores based on their current resource usage for maxi-
mum performance will become an even more crucial issue. Indeed,
for lightweight forwarding paths, where little packet processing is
performed, memory turns out to be the main system bottleneck,
while, of course, the CPU can become the scarce resource when
more involved processing is required. The trouble with scheduling
memory access is that it can only be done indirectly, which limits
the precision of the access control and constitutes one of the ma-
jor performance limitations in our proposed system. Nevertheless,
the use of hardware architectures with several independent memory
controllers (such as in NUMA, the non-uniform memory architec-
ture) offer a promising way to alleviate this problem and achieve
increased performance and isolation.

The first step of our scheduling strategy relies on static binding
of virtual routers to cores, which can lead to coarse-grain fairness.
However, a more fine-grained approach consisting of highly dy-
namic forwarding path-to-core mappings could result in poor per-
formance, because of packets potentially switching cache mem-
ory hierarchies. Hence, while we believe that for most practical
purposes coarse-grain fairness is probably acceptable, periodic re-
mapping might be a good compromise when more fine-grained fair-
ness is necessary.

When dealing with untrusted elements, the situation is further
complicated by the fact that another level of scheduling is intro-
duced: virtual OS scheduling is indeed necessary to provide ba-
sic protection between the various forwarding paths. This, how-
ever, seriously undermines the control of memory access needed to
maintain high performance (and therefore isolation).
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Consequently, while our proposed virtual router platform archi-
tecture does exhibit impressive performance and very good fair-
ness, it is clear that further work is needed to break through the cur-
rent performance plateau. Hardware assists such as virtual queuing
on the NICs would improve fairness without losing performance,
while novel, advanced OS techniques for intensive network I/O are
also necessary from a performance perspective. In our experiments
we were using the Click software router, mainly because of its fine-
grained modular structure and its multi-threading capability. How-
ever, as soon as the Linux kernels supports multi-threading for its
IP stack the need for Click may be dissolved.

Our approach differs from that proposed in [8, 9], which relies
on OS-level virtualisation for the control planes whilst sharing the
same data plane. Because it does not rely on tight integration of the
router fast path, our proposal exhibits greater flexibility in terms of
the range of forwarding paths that can be concurrently supported.
When the different virtual routers have similar forwarding paths,
our approach exhibits performance an order of magnitude better.

Another alternative to our proposed architecture would be to fol-
low the approach in [10] where network processors are used to
achieve high performance and isolation. Although such an ap-
proach demonstrates very good performance and isolation, it relies
on custom hardware (IXP) that is complex to program and expen-
sive.

In view of this, we conclude that modern commodity hardware
architectures constitute a viable platform to support high perfor-
mance, cost-effective software virtual routers. However, proper
mechanisms do need to be put in place to overcome the novel sys-
tem issues they present before researchers can properly utilize the
flexibility and sheer raw processing performance exhibited by mod-
ern, many-core CPUs.
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