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Abstract Defects in kinematic joints can sometimes highly influence the simulation response of the whole
multibody system within which these joints are included. For instance, the clearance, the friction, the
lubrication and the flexibility affect the transient behaviour, reduce the component life and produce noise
and vibration for classical joints such as prismatics, cylindrics or universal joints. In this work, a new 3D
cylindrical joint model which accounts for the clearance, the misalignment and the friction is presented.
This formulation has been used to represent the link between the planet gears and the planet carrier in an
automotive differential model.
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Kinematic joints are key components in multibody
simulation tools. Most of the time, the joints are repre-
sented with idealized models which restrain the motion
of the entire system by a set of kinematic constraints.
This kind of formulation often considers the joints as
perfect rigid elements without any default but has the
advantages to be simple to implement and are computa-
tionally efficient. However, physical phenomena such as
clearance, misalignment, flexibility, friction, lubrication
or impact can highly influence the dynamic response of
the joints and have a non negligible effect on the accuracy
and reliability of the full multibody model. For instance,
the modelling of the joints between the suspension arm
and the car body with bushing elements strongly influ-
ences the vehicle dynamic simulation [1].

The representation of the bodies submitted to the
kinematic joints with their actual geometry and their
material flexibility properties is without doubt the most
accurate way to model any kind of joints. Contact condi-
tions defined between finite element models of the bodies
subjected to spherical joints are used in [1]. Such detailed
models are able to capture a lot of disruptive factors but
they are often quite complex to achieve and they highly
increase the computational time.

Other models of joints are at an intermediate level of
complexity between the two aforementioned categories.
These global joint representations enable to account for
some disrupting effects without increasing much the num-
ber of degree of freedom. In [2], the influence of clear-
ance and lubrication is studied for the hinge and spheri-
cal joints within the framework of energy preserving and
decaying time integration schemes. A planar revolute
joint model with clearance based on a continuous con-
tact model is described in [3]. The nonsmooth dynamic
approach can also be used to represent kinematic joints
with defects, see for example [4] and [5]. This approach
often allows to use larger time steps but needs specific in-
tegration methods such as time-stepping or event-driven
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schemes.
The objective of this work is to develop a global

model for a cylindrical joint where the clearance, the mis-
alignment and friction force are accounted for. A contin-
uous force law is used to model the contact between the
pin and the internal cylinder which are represented as
rigid bodies. The joint described in this paper has been
tested in a full TORSEN differential multibody model.

This new joint model has been implemented within
the framework of the nonlinear finite element method for
multibody systems described in [6]. This approach en-
ables the modelling of complex mechanical systems com-
posed of rigid and flexible bodies, kinematics joints and
force elements. The configuration is represented using
absolute nodal coordinates with respect to a unique in-
ertial frame. Hence, there is no distinction between rigid
and elastic coordinates which allows accounting in a nat-
ural way for many nonlinear flexible effects and large de-
formations.

The dynamics of a system including holonomic bilat-
eral constraints is described by Eqs. (1-2),

M(q) q̈ + g(q, q̇, t) +ΦT
q (pΦ+ kλ) = 0 (1)

k Φ(q, t) = 0 (2)

where q, q̇ and q̈ are the generalized displacements, ve-
locities and acceleration coordinates, M(q) is the mass
matrix, g(q, q̇, t) = ggyr(q, q̇)+ gint(q, q̇)− gext(t), with
ggyr the vector of the complementary inertia forces,
gint(q, q̇) the vector of the internal forces, e.g. elastic and
dissipations forces, and gext(t) the vector of the external
forces. According to the augmented Lagrangian method,
the constraint forces are formulated by ΦT

q (pΦ + kλ)
where λ is the vector of Lagrange multipliers related to
the algebraic bilateral constraints (Φ = 0); k and p are
respectively a scaling and a penalty factor to improve the
numerical conditioning.

Equations (1-2) form a system of nonlinear
differential-algebraic equations. The solution is evaluated
step by step using a second order accurate time integra-
tion scheme. For this study, the Chung-Hulbert scheme,
which belongs to the family of the generalized α-method,
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has been used (see [7], [8]). At each time step, a system
of nonlinear algebraic equations has to be solved using a
Newton-Raphson method.

The cartesian rotation vector combined with an up-
dated Lagrangian approach is used for the parametriza-
tion of rotations. This choice enables an exact rep-
resentation of large rotations. The tangent operator
(T (Ψinc)) allows computing the material variation of ro-
tations (δΘ) from the variation of the incremental carte-
sian rotation vector (δΨinc).

δΘ = T (Ψinc) δΨinc (3)

In a cylindrical joint, according to the kind of mech-
anism considered the contact between the pin and the
external surface of the hollow cylinder can occur at one
point, at two points or on a line. In this work, in order to
simplify the joint formulation, it is assumed that the con-
tact takes place only at the top or at the bottom of the
pin. The contact element developed in this work models
the interactions between the cylindrical face of the hol-
low cylinder and one extremity of the pin. Therefore, the
joint needs to be used twice for each pin: one time for
each extremity.

The direction of the contact and friction forces de-
pends on the geometry of the pin and the inner cylinder
near the contact point and can be hardly determined in
case of intricate configurations: sharped edge or small
fillet radius on the pin external surface for example. The
objective of this study is not to analyse detailed phenom-
ena at the contact location but to have a global repre-
sentation of the related dynamic phenomena. Therefore,
in order to have a simple formulation for this 3D con-
tact element, the top and the bottom of the cylinder
are considered as having a spherical shape (see Fig. 1).
This assumption seems reasonable in practical situations
where the clearance is small and the relative inclination
of the pin is limited since the contact point would then
remain close to the intersection circle between the sphere
and the cylinder. It would thus be close to the physical
contact point even if the geometry of the cylinder edge
is not precisely represented.

This new joint is defined by two physical nodes at-
tached on the two rigid bodies candidate to contact. The
node A is located on the axis of the hollow cylinder and
the node B is fixed at the center of the top or bottom cir-
cular face of the pin which is also the center of the contact
sphere. The positions and velocities of the twelve abso-
lute nodal coordinates are involved in the expression of
this contact element.

A material local frame attached to each body is used
in the joint formulation. The triads of orthogonal unit
vectors {e′′A1

, e′′A2
, e′′A3

} and {e′′B1
, e′′B2

, e′′B3
} have their

origin fixed respectively at the point A of the hollow
cylinder and at the point B of the pin. The first triad
vectors e′′A1

and e′′B1
are aligned with the axis of the cylin-

ders. The second triad vectors e′′A2
, e′′B2

are arbitrary ori-
ented in the plane perpendicular to e′′A1

and e′′B1
. The
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Fig. 1. Contact Force

third unit vectors e′′A3
, e′′B3

complete the dextrorsum ref-
erence frame.

The vectors eAi , eBi represent the orientation of the
two material frames at the initial configuration. In this
work, for simplicity the pin and the hollow cylinder are
positioned with parallel axis at the initial time. Conse-
quently, the initial orientation is equivalent for the two
material frames:

eAi = R1 Ei = eBi (4)

where R1 is the rotation matrix giving the initial orien-
tation of the material frames with respect to the absolute
inertial frame {E1,E2,E3}.

The rotation operators RA,RB give the orientation
of bodies A and B from the initial to the current config-
uration.

e′′Ai
= RA eAi = RA R1 Ei (5)

e′′Bi
= RB eBi

= RB R1 Ei (6)

The points P and Q in Figure 1 are the approxi-
mated contact points respectively on the rigid bodies A
and B due to the geometrical assumptions introduced
previously. The position vectors xP ,xQ of these con-
tact points can be easily computed according to the posi-
tions xA,xB of the nodes A and B, the rotation matrices
RA,R1 and the radii rA, rB of the contact surfaces near
the contact points (see Eqn. 17-18).

The contact force is defined by the continuous impact
model theory developed in [9]. This penalty method is
based on the Hertz law and uses the penetration (l) as a
representation of the local deformation of the two bodies
in contact. In addition to the stiffness term, this contact
model (Eq. 7) also includes a hysteresis damping term
which enables to represent the kinetic energy loss dur-
ing the impact process. This loss of kinetic energy is
described by a restitution coefficient and depends on the
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shapes and material properties of the colliding bodies as
well as their relative velocities. The restitution coefficient
e has a value comprised between 0 (plastic contact) and
1 (no energy loss) and can be seen as the absolute value
of the ratio of the relative velocity after and before the
impact. In order to avoid a jump at the beginning of the
contact and tension force at the end, the classical viscous
damping term (c l̇) has been multiplied by ln.

The impact-contact force law is expressed as:

fc(l, l̇) =

{
k ln + c ln l̇ if l > 0
0 if l < 0

(7)

with the exponent n equal to 1.5 for circular and elliptic
contact areas. The case when the penetration length l has
a negative value means that the contact is not effective
and consequently no contact force has to be applied.

In case of global multibody models, the contact stiff-
ness parameter k is often determined by analytical formu-
lations. For a sphere in contact with an internal cylinder,
a few approximate expressions are available in literature,
see [10] for a good approximation of the contact stiffness
k.

One way to set the damping parameter c consists in
formulating this coefficient as a function of the restitu-
tion coefficient. According to the contact configuration,
various expressions can be found in the literature, see [11]
for example. The formulation proposed in [12] has been
chosen for the definition of the damping parameter c :

c =
8 (1− e)

5 e

k

l̇s
(8)

where l̇s is the relative normal velocity between bodies at
the time of contact establishment. This expression has
the advantage to can be used whatever the amount of
energy dissipation while most definitions of the damping
parameter c are only valid for high values of the restitu-
tion coefficient (e > 0.8).

The continuous contact force model does not involve
any kinematic constraint. Therefore the contribution of
this force element to the motion equations (Eq. 1) of
the multibody system is only contained in the term of
internal forces, gint(q, q̇). The virtual work principle is
used in order to formulate the internal force vector of this
contact element:

δWn = δxT
P fA + δxT

Q fB (9)

where xP , xQ are the position vectors expressed in the
absolute frame of the contact point P on the body A
and of the contact point Q on the body B (see Figure 1);
fA,fB are the contact forces respectively applied on bod-
ies A and B.

In order to express the virtual displacements δxP and
δxQ, the points P and Q are considered rigidly fixed on
bodies A and B:

δxP = δxA + δθA × xAP (10)

δxQ = δxB + δθB × xBQ (11)

with xij = xj − xi.
The relation between the variation of the spatial an-

gular vector (δθ) and the material angular variation vec-
tor (δΘ) is provided by the initial rotation matrix (R1)
and the rotation operators (RA,RB):

δθA = R1RA δΘA (12)

δθB = R1RB δΘB (13)

In this work, the skew-symmetric matrix ĩ formed
with the components of the vector i is often used to re-

place the cross products by matrix products (i×j = ĩ j).
The virtual displacement of P and Q can be reformulated
as:

δxP = δxA − x̃APR1RA δΘA (14)

δxQ = δxB − x̃BQR1RB δΘB (15)

The unit vector n normal to the collision surface be-
tween the sphere and the hollow cylinder and aligned
with the vector xPQ of maximal indentation l can be
defined as:

n =

(
I − e′′A1

e′′A1

T
)
xAB∥∥∥(I − e′′A1

e′′A1

T
)
xAB

∥∥∥ (16)

where e′′A1
is the first axis of the material local frame

attached to the node A (see Eqn. 5).
The vector xAP and xBQ can be expressed according

to the normal vector n and the distance vector xAB :

xBQ = rB n (17)

xAP = xAB + xBQ + xQP

= xAB + (rB − l) n (18)

with rB the radius of the sphere attached at the top of
the pin.

The contact forces fA and fB are aligned with the
normal direction n and their magnitude fc is given by
the contact law (Eq. 7).

f = fB = −fA = fc n (19)

fc depends on the relative normal deformation (l)

and deformation velocity (l̇), which are computed accord-
ing to the following expressions:

l = xT
PQ n = xT

AB n+ rB − rA (20)

l̇ = ẋT
PQ n+ xT

PQ ṅ (21)

where the second term of l̇ is always null because xPQ

is parallel to n whereas ṅ is perpendicular to n. The
vector ẋPQ can be obtained owing to the difference of
velocity vector of P and Q:

ẋP = ẋA + ωA × xAP (22)

ẋQ = ẋB + ωB × xBQ (23)
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The spatial angular velocity vector ω can be trans-
formed to the material angular velocity vector Ω by:

ωA = R1RA ΩA (24)

ωB = R1RB ΩB (25)

Finally, the virtual work expression (Eq. 9) can be
reformulated as:

δWn =
(
δxT

AB + δΘT
BR

T
BR

T
1 x̃BQ − δΘT

AR
T
AR

T
1 x̃AP

)
f

(26)

The internal force vector gint
n (Eq. 29) of this normal

contact force can be easily obtained by identification of
the last expression with the classical virtual work expres-
sion for a force element:

δW = δqT gint (q, q̇) (27)

where q is the vector of generalized coordinates involved
in the force element. For the contact model developed
here, the vector q includes the absolute nodal degree of
freedom in translation and rotation of the nodes A and
B.

q =


xA

ΨA inc

xB

ΨB inc

 (28)

gint
n (q, q̇) = fc


−n

−T T (ΨA inc)R
T
AR

T
1 x̃AB n

n
0

 (29)

The friction forces fA
fr and fB

fr encountered at the
contact between the bodies A and B are considered ap-
plied on the point M , located at the middle between the
points P and Q (Fig. 2).

The virtual work of the friction forces can be ex-
pressed as:

δWfr = δxA
M

T
fA
fr + δxB

M

T
fB
fr (30)

where δxA
M is the virtual displacement when M is con-

sidered attached to the body A; δxB
M is the virtual dis-

placement when M is considered attached to the body
B. By analogy with Eqs. (14-15), the expression of these
virtual displacements can be easily obtained:

δxA
M = δxA − x̃AMR1RAδΘA (31)

δxB
M = δxB − x̃BMR1RBδΘB (32)

The vectors xAM and xBM between the nodes A and
B and the application point M of the friction force can
be formulated according to xAB , n, rB and l

xAM = xAP +
l

2
n = xAB +

(
rB − l

2

)
n (33)

xBM = xBQ − l

2
n =

(
rB − l

2

)
n (34)
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Fig. 2. Friction Force

The friction forces are aligned with the normal vector
n but have opposite directions (ffr = fB

fr = −fA
fr) and

are defined by:

ffr = −µR(vt) fc t (35)

where fc is the magnitude of the normal contact force
(see Eq. 7), t is the unit tangential vector described here-
after and µR is the regularized friction coefficient which
allows to avoid the large discontinuity when the sign of
the relative sliding velocity shifts.

The unit tangential vector t can be simply expressed

by t =
vt

vt
where vt is the vector of tangential velocity at

the point M where the friction forces are applied:

vt =
(
I − nnT

) (
ẋB
M − ẋA

M

)
(36)

ẋA
M and ẋB

M are the velocity vectors when the point M
is respectively attached to the bodies A and B.

ẋA
M = ẋA + ωA × xAM (37)

ẋB
M = ẋB + ωB × xBM (38)

The virtual work expression of the friction forces can
be reformulated as:

δWfr =
(
δxT

AB + δΘT
BR

T
BR

T
1 x̃BM − δΘT

AR
T
AR

T
1 x̃AM

)
ffr

(39)

The identification with the equation (27) is straight-
forward and allows to obtain the vector of internal forces
gint
fr :

gint
fr (q, q̇) =


−ffr

−T T (ΨA inc)R
T
AR

T
1 x̃AM ffr

ffr

T T (ΨB inc)R
T
BR

T
1 x̃BM ffr

 (40)



5

Fig. 3. Kinematic diagram, exploded view and cut-away view
of type C TORSEN differential

The tangent stiffness and damping matrices have been
computed analytically but are not given in this paper for
the sake of conciseness.

The new joint presented hereabove has been tested to
model the link between the planet gears and the planet
carrier in a type C TORSEN differential. As depicted
in Fig. 3, this central differential is mainly composed of
a epicyclic gear, several thrust washers and a housing in
two parts. The friction encountered by the contact be-
tween the planet gears and the housing as well as between
the gear wheels and the thrust washers is at the origin of
the locking effect and torque transfer of TORSEN differ-
entials.

The assembly of planet gears on planet carrier is par-
ticular in this mechanical device. Indeed, planet gears are
inserted in housing cylindrical cavities without any phys-
ical rotational axis. The clearance between crater and
planet gear diameters allows planet gears to tilt which
involves contact between gear teeth top and crater ex-
ternal surface. The friction occurred by these contacts
tends to slow down the relative rotation and significantly
contributes to the locking effect. The transient behaviour
at the switching time between two working modes is also
highly influenced by this specific assembly.

In addition to the 4 planet gear/housing joints, the
global model also includes 15 rigid bodies, 8 gear pairs,
14 contact elements, and 1 screw joint. The number of
generalized coordinates is about 800.

In order to study in a simple way the behavior of the
new cylindrical joint in the configuration of the TORSEN
differential, only a reduced part of the differential has
been modeled in a first instance. As depicted in Figure 4,
this simple system includes the sun gear, a unique planet
gear, the housing and one thrust washer. The housing
and the thrust washer are clamped to the ground. The
sun gear is linked to the housing with a hinge joint and
is submitted to a torque linearly increasing from 0 Nm
at t = 0 s to reach 10 Nm for the period t = [0.02; 0.04] s
before decreasing following a linear function to −20 Nm

Fig. 4. Test model for the new joint in the geometrical con-
figuration of TORSEN differential

for the period t = [0.06; 0.2] s. The planet gear is mesh-
ing with the sun gear; its displacement in the x−y plane
is constrained by the new joint developed in this work;
its axial displacement in the z-axis is constrained by two
unilateral contact conditions (one defined with the hous-
ing and one defined with the thrust washer).

The displacement in the x − y plane of the top and
bottom face center of the planet gear inside the hous-
ing hole is depicted in Fig. 5. At the initial time, the
planet gear is located at the center of the housing cav-
ity and their axis are parallel. As soon as a torque is
applied on the sun gear, the meshing force tends to in-
crease the distance between gear wheels rotation axis and
the planet gear is deported against the circular face of
housing cavity. After the first impact, the planet gear
undergoes several rebonds and afterwards tends to keep
a constant global orientation until the torque applied on
the gear wheel changes of sign. At this time, the planet
gear quickly moves to negative values of y-axis and also
tend to maintain a fixed position after the transient pe-
riod. Due to the helical gear teeth, the planet gear is
tilted during the transient phases, which explains the
small differences of trajectory observed on Fig. 5(a) com-
pared with Fig. 5(b).

(a)bottom face center (b)top face center

Fig. 5. Trajectory of the face center relative to the center of
the housing cavity.

Figure 6 illustrates for the first impacts the kinetic
energy dissipation which is taken into account by the con-
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tact law (Eq. 7). Indeed, the hysteresis loops encircle the
amount of energy dissipated owing to the damping term
used in the contact force. The areas of these hysteresis
loops highly depends on the choice of the restitution co-
efficient. In this example, this coefficient has been fixed
to 0.8, a frequently used value for contacts between two
metallic bodies.
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Fig. 6. Hysteresis loops of the contact force illustrating the
energy dissipation for the first impacts.

Finally, the new cylindrical joint formulation has
been introduced in a full TORSEN differential model.
For this simulation the same configuration as experimen-
tal settings on testrig has been reproduced. A torque is
progressively applied on one output shaft whereas the ro-
tation velocity is prescribed on the second output and the
housing is clamped on the test bench. Figure 7 depicts
the resistant torque which allows to limit the rotation ve-
locity of the sun gear when a 50 Nm torque is applied in
0.1 s on the coupling. The spikes at the beginning of the
simulation (t = [0; 0.02] s) are caused by the shocks due
to the clearance in the cylindrical joints. The disconti-
nuities observed during the second part of the simulation
are due to the contact establishment between the gear
wheels and the thrust washers. For instance, the friction
inherent to the contact between the internal gear and
the thrust washer #11 modifies the friction torques in
the differential as soon as this unilateral contact is active
and explains the step on the curve at t = [0.07; 0.08] s.
Although the transient behavior is influenced by the im-
perfections of the joints, the mean value of the resistant
torque is similar to the value obtained if the PG/housing
joints are modeled with idealized cylindrics.

In conclusion, the non-ideal cylindrical joint pre-
sented in this paper accounts for several imperfections
often encountered in mechanical joints: clearance, mis-
alignment, friction and impact forces. The formulation
is based on a continuous impact force law to model the
contacts between the pin tips and the lateral face of the
hollow cylinder. The loss of kinetic energy at each impact
is accounted for by a restitution coefficient introduced
inside the damping parameter. This new joint has been
tested within a TORSEN differential multibody model

in order to represent the assembly of the planet gears on
the planet carrier. However, for this kind of complex in-

0 0.02 0.04 0.06 0.08 0.1
−50

−40

−30

−20

−10

0

time [s]

R
ea

ct
io

n 
to

rq
ue

 [N
m

]

Fig. 7. Transient variations of resistant torque on coupling
due to clearance and misalignment at the beginning of the
simulation.

dustrial system which includes numerous discontinuous
and nonlinear phenomena and where the efforts trans-
mitted are high, the continuous contact models require
very small time steps (h ≤ 10−6 s) to insure the conver-
gence of the integration algorithm. The modelling of con-
tacts with nonsmooth techniques may be an alternative
to avoid this drawback and permit faster simulation of
global multibody systems with non-ideal kinematic joints
(see preliminary work in [13]).
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8M. Arnold and O. Brüls, Multibody System Dynamics, 18, 185
(2007).

9H. Lankarani, Canonical equations of motion and estimation of
parameters in the analysis of impact problems, Ph.D. thesis, Uni-
versity of Arizona, USA (1988).

10M. J. Puttock and E. G. Thwaite, “Elastic compression of spheres
and cylinders at point and line contact,” Research Report 25
(Commonwealth Scientific and Industrial Research Organization,
Australia, 1969).

11H. Lankarani and P. Nikravesh, Nonlinear Dynamics, 5, 193
(1994).

12P. Flores, M. Machado, M. T. Silva, and J. M. Martins, Multi-
body System Dynamics, 25, 357 (2011).

13Q.-z. Chen, V. Acary, G. Virlez, and O. Brüls, in Proceedings of
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