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Abstract

The study of the brain development and functioning raises many ques-
tion that are tracked using neuroimaging techniques such as positron
emission tomography or (functional) magnetic resonance imaging. Dur-
ing the last decades, various techniques have been developed to analyse
neuroimaging data. These techniques brought valuable insight on neuro-
scientific questions, but encounter limitations which make them unsuit-
able to tackle more complex problems. More recently, machine learning
based models, coming from the field of pattern recognition, have been
promisingly applied to neuroimaging data.

In this work, the assets and limitations of machine learning based models
were investigated and compared to previously developed techniques. To
this end, two applications involving challenging datasets were defined
and the results from widespread methods were compared to the results
obtained using machine learning based modelling.

More specifically, the first application addressed a neuroscience ques-
tion: Is it possible to detect and characterize mnemonic traces? The
fMRI experiment comprised a learning and a control tasks, both flanked
by rest sessions. From previous studies, patterns of brain activity gener-
ated during the learning task should be spontaneously repeated during
the following rest session, while no difference should be observed be-
tween the pre- and post-task rest session in the control condition. Us-
ing univariate and multivariate feature selection steps before a Gaussian
Processes classification, mnemonic traces could be detected and their
spatio-temporal evolution characterized. On the contrary, an analysis
of the rest sessions based on the detection of independent networks did
not provide any results supporting the theory of memory consolidation.

The second application tackled a clinical issue: Can a pattern of brain

activation characteristic to idiopathic Parkinson’s disease be detected

and localized? The dataset considered to address this question com-
prised the fMRI images of aged healthy subjects and Parkinsonian pa-
tients while they were performing a task of mental imagery of gait at
three different paces. The signal comprised in a priori selected regions of
interest allowed for the support vector machines classification of healthy
and diseased volunteers with an accuracy of 86%. To localize the dis-
criminating pattern, a methodology based on the weight in labelled re-
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gions (e.g. from the anatomical automatic labelling or Brodmann at-
lases) was developed, which enabled the comparison between univariate
and multivariate results and showed a nice overlap between them. Fur-
thermore, models could then be compared quantitatively in terms of
pattern localization, using a specifically defined measure of distance.
This measure could then be used to compare the patterns generated
from different folds of a same model, from different feature sets, or from
different modelling techniques.

The present study concluded that machine learning models can clearly
and fruitfully complement other analysis techniques to tackle challenging
questions in neuroscience. On the other hand, more work is needed in
order to render the methodology fully accessible to the neuroscientific
community.

iv



Acknowledgements

I would like to thank my supervisor, Christophe Phillips, for his trust and support
during the whole period of this work. I wish to thank him for his availability, his
patience and for the various opportunities he provided me with during these four
years.

I am also grateful to Professor Pierre Maquet, who gave me the opportunity to start
this thesis and provided constructive advices all along this work.

Thank you to the PRoNTo team, and especially to Janaina Mourão-Miranda who al-
lowed me to take part in an exciting Pascal Harvest project which produced PRoNTo.
Working with this team was a particularly valuable experience in many professional
and personal terms. Special thanks to Maria João Rosa for her warm welcome
during my stay in London.

A large part of this work would not have been possible without Caroline Kussé, who
paired with me for the neuroscience application and endured my Matlab teaching/s-
peaking without complaints. I would also like to thank Gaëtan Garraux and Julien
Cremers for providing the data and advices for the second part of this work.

Thanks to all the members of the Cyclotron Research Centre for their help and
availability, but above all for their friendship and the great moments spent together
during these four years.

Furthermore, I want to thank my family and my friends for their support and
encouragements throughout my studies. A special wink to the “Biomeds”, and in
particular to Laura Symul, who helped me with the figures of this work.

Finally, special thanks to Sylvain Quoilin for his support and insightful advices
during these past six years, as well as for the proofreading of this text.

v



vi



Table of Contents

Abstract iii

Acknowledgements v

Table of Contents v

List of Tables x

List of Figures xiv

List of Acronyms xv

Notation xvii

1 Introduction 1

2 Material and Methods 5
2.1 Acquisition techniques . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Magnetic Resonance Imaging and fMRI . . . . . . . . . . . 6
2.1.2 Positron Emission Tomography . . . . . . . . . . . . . . . 8

2.2 Experimental design . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Within-subject preprocessing . . . . . . . . . . . . . . . . 9
2.3.2 Between-subject preprocessing . . . . . . . . . . . . . . . . 10

2.4 Univariate methods . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.1 Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.2 General Linear Model . . . . . . . . . . . . . . . . . . . . 12
2.4.3 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Multivariate methods . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5.1 Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5.2 Inputs of the model . . . . . . . . . . . . . . . . . . . . . . 17
2.5.3 Classification algorithms . . . . . . . . . . . . . . . . . . . 19

2.5.3.1 SVM . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5.3.2 RVM . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5.3.3 GP . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5.3.4 Kernel trick . . . . . . . . . . . . . . . . . . . . . . 23

2.5.4 Evaluation of the model accuracy . . . . . . . . . . . . . . 23
2.5.5 Interpretation of weights . . . . . . . . . . . . . . . . . . . 26

vii



2.5.6 Multiclass classification . . . . . . . . . . . . . . . . . . . . 26
2.5.7 Softwares . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

I neuroscience Application 31

3 Introduction 33
3.1 Memory consolidation . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 State-of-the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 Activation studies . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.2 Interactions between ROIs . . . . . . . . . . . . . . . . . . 36

3.3 Aim of this study . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Material and Methods 39
4.1 Population . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3 Data acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4 Signal extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.5 Feature selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.6 Modelling constrained brain activity . . . . . . . . . . . . . . . . . 44
4.7 Modelling spontaneous brain activity . . . . . . . . . . . . . . . . 47

4.7.1 Machine learning based models . . . . . . . . . . . . . . . 47
4.7.1.1 Confidence of the classifier . . . . . . . . . . . . . . 47
4.7.1.2 Temporal structure of memory consolidation . . . . 48

4.7.2 Spatial Networks . . . . . . . . . . . . . . . . . . . . . . . 51

5 Results 55
5.1 Behavioural data . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1.1 Scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.1.2 Participants’ performance . . . . . . . . . . . . . . . . . . 56

5.2 Signal extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.3 Feature selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.4 Modelling (semi-)constrained brain activity . . . . . . . . . . . . . 60

5.4.1 Classification accuracy . . . . . . . . . . . . . . . . . . . . 60
5.4.2 Comparison of procedures . . . . . . . . . . . . . . . . . . 62

5.4.2.1 Balanced accuracy . . . . . . . . . . . . . . . . . . 62
5.4.2.2 Class accuracy . . . . . . . . . . . . . . . . . . . . 63
5.4.2.3 Support Vector proportions . . . . . . . . . . . . . 64

5.4.3 Effect of behavioural data . . . . . . . . . . . . . . . . . . 65
5.4.3.1 Behavioural performances . . . . . . . . . . . . . . 65
5.4.3.2 Number of events . . . . . . . . . . . . . . . . . . . 66

5.5 Modelling spontaneous brain activity . . . . . . . . . . . . . . . . 66
5.5.1 Machine learning based models . . . . . . . . . . . . . . . 66

5.5.1.1 Proportions . . . . . . . . . . . . . . . . . . . . . . 66
5.5.1.2 Correlations with behavioural performance . . . . . 68
5.5.1.3 Phase information . . . . . . . . . . . . . . . . . . 68
5.5.1.4 Temporal evolution . . . . . . . . . . . . . . . . . . 69
5.5.1.5 Scaling factor . . . . . . . . . . . . . . . . . . . . . 70

viii



5.5.1.6 Selection of scans significantly linked to the task . 72

5.5.2 Analysis of network interaction . . . . . . . . . . . . . . . 73
5.5.2.1 Manual selection of ROIs . . . . . . . . . . . . . . 73
5.5.2.2 Automatic ROI selection . . . . . . . . . . . . . . . 74
5.5.2.3 Integration . . . . . . . . . . . . . . . . . . . . . . 75

5.5.2.4 Partial correlation . . . . . . . . . . . . . . . . . . 77

6 Discussion 79
6.1 (Semi-) constrained brain activity . . . . . . . . . . . . . . . . . . 79

6.2 Spontaneous brain activity . . . . . . . . . . . . . . . . . . . . . . 81
6.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

II Clinical Application 85

7 Introduction 87
7.1 Clinical challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.2 Machine learning models . . . . . . . . . . . . . . . . . . . . . . . 88

7.2.1 Diagnostic tool . . . . . . . . . . . . . . . . . . . . . . . . 89
7.2.2 Pattern localization . . . . . . . . . . . . . . . . . . . . . . 90

7.3 Aim of this work . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

8 Material and Methods 93
8.1 Data and design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

8.1.1 Population . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
8.1.2 Experimental design . . . . . . . . . . . . . . . . . . . . . 94

8.1.3 Data acquisition . . . . . . . . . . . . . . . . . . . . . . . 94
8.1.4 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . 95

8.2 Multivariate analysis . . . . . . . . . . . . . . . . . . . . . . . . . 95

8.2.1 Pattern discrimination . . . . . . . . . . . . . . . . . . . . 95
8.2.2 Pattern localization . . . . . . . . . . . . . . . . . . . . . . 97

8.2.2.1 Representing the weights . . . . . . . . . . . . . . . 98
8.2.2.2 Compare patterns . . . . . . . . . . . . . . . . . . 100

9 Results 103
9.1 Pattern discrimination . . . . . . . . . . . . . . . . . . . . . . . . 103

9.1.1 Between groups comparison . . . . . . . . . . . . . . . . . 103

9.1.2 Between tasks comparison . . . . . . . . . . . . . . . . . . 104
9.2 Pattern localization . . . . . . . . . . . . . . . . . . . . . . . . . . 105

9.2.1 Representing the weights . . . . . . . . . . . . . . . . . . . 105
9.2.2 Comparing patterns . . . . . . . . . . . . . . . . . . . . . 106

10 Discussion 113
10.1 Pattern discrimination . . . . . . . . . . . . . . . . . . . . . . . . 113
10.2 Pattern localization . . . . . . . . . . . . . . . . . . . . . . . . . . 114

10.2.1 Interpreting the weight . . . . . . . . . . . . . . . . . . . . 115
10.2.2 Comparing patterns . . . . . . . . . . . . . . . . . . . . . 115

ix



11 Conclusions and final remarks 117

Bibliography 119

A Positron Emission Tomography 129
A.1 Comparison with fMRI . . . . . . . . . . . . . . . . . . . . . . . . 129

x



List of Tables

2.1 Binary confusion matrix . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2 Error Correcting Output Code (ECOC) . . . . . . . . . . . . . . . . 28
2.3 Illustration of ECOC for a sample test point. . . . . . . . . . . . . . 28

4.1 Classification procedures . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2 Representation of a transition matrix . . . . . . . . . . . . . . . . . 49

5.1 Participants’ behavioural performances . . . . . . . . . . . . . . . . 57
5.2 Number of events for mental imagery . . . . . . . . . . . . . . . . . 58
5.3 Number of RFA selected features for procedures 3, 4 and 5 . . . . . 59
5.4 Proportions P r for each participant . . . . . . . . . . . . . . . . . . 67
5.5 Average increases in proportions P r . . . . . . . . . . . . . . . . . . 67
5.6 Average increases in proportions P r per class . . . . . . . . . . . . . 68
5.7 Correlations between P r and d′ . . . . . . . . . . . . . . . . . . . . 68
5.8 Differences in the proportions of (inverted) cycles . . . . . . . . . . 70
5.9 Characterizing the episodes of scans significantly linked to the task 71
5.10 Coordinates of ROIs selected manually . . . . . . . . . . . . . . . . 74
5.11 Comparison of the between-NOI integration between conditions . . 77

7.1 Mental gait activation patterns in controls and patients . . . . . . . 90

8.1 Combinations of the three conditions used to discriminate between
IPD and CTRL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

8.2 Illustration of the ranking distance (dr) . . . . . . . . . . . . . . . . 101

9.1 Balanced and class accuracies for the between groups comparison . 104
9.2 Balanced and class accuracies for the between tasks comparison . . 104
9.3 Regions ranked according to their normalized weights . . . . . . . . 107
9.4 Ranking distance between the control and IPD groups . . . . . . . 109
9.5 Ranking distance between the SVM and GP techniques . . . . . . . 110

A.1 Brief comparison of the PET and fMRI acquisition technologies . . 129

xi



xii



List of Figures

2.1 Illustration of neuroimaging data. . . . . . . . . . . . . . . . . . . . 6
2.2 From neuronal activity to BOLD signal. . . . . . . . . . . . . . . . 7
2.3 Principle of the PET scanner. . . . . . . . . . . . . . . . . . . . . . 9
2.4 fMRI within-subject preprocessing. . . . . . . . . . . . . . . . . . . 11
2.5 Between-subject preprocessing. . . . . . . . . . . . . . . . . . . . . 12
2.6 General Linear Model. . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.7 Random field theory: effect of the height threshold. . . . . . . . . . 15
2.8 General Linear Model. . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.9 Principles of machine learning: handwritten digits example. . . . . 17
2.10 Effect of the HRF delay and overlap. . . . . . . . . . . . . . . . . . 18
2.11 Principles of Support Vector Machines. . . . . . . . . . . . . . . . . 20
2.12 Illustration of non-parametric testing using permutations. . . . . . . 25
2.13 Voxels’ weights. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1 Experimental design . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 Experimental setup for the memory condition . . . . . . . . . . . . 42
4.3 Recursive Feature Addition (RFA) and Cross-Validation (CV) . . . 45
4.4 Baseline level of the confidence measure. . . . . . . . . . . . . . . . 49
4.5 Investigating the phase information. . . . . . . . . . . . . . . . . . . 50
4.6 Investigating the Scaling Factor. . . . . . . . . . . . . . . . . . . . . 51
4.7 Procedure to compute functional interactions . . . . . . . . . . . . . 52
4.8 Hierarchical computing of integration. . . . . . . . . . . . . . . . . . 53

5.1 Specific GLM feature selection. . . . . . . . . . . . . . . . . . . . . 58
5.2 Specific GLM and RFA feature selection . . . . . . . . . . . . . . . 60
5.3 Balanced accuracies for the exploration . . . . . . . . . . . . . . . . 61
5.4 Balanced accuracies for the mental imagery . . . . . . . . . . . . . 62
5.5 Schematic comparisons between procedures . . . . . . . . . . . . . . 63
5.6 Comparison of procedures 1 and 4 . . . . . . . . . . . . . . . . . . . 64
5.7 Correlation between P r and d′ . . . . . . . . . . . . . . . . . . . . . 69
5.8 Evolution of Pr along time . . . . . . . . . . . . . . . . . . . . . . . 71
5.9 Proportions of episodes . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.10 Duration of episodes . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.11 Varying the p-value assessing scans as linked to the task . . . . . . 73
5.12 Manually selected ROIs . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.13 Networks of interest manually selected . . . . . . . . . . . . . . . . 75
5.14 Within-NOI integration . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.15 Between-NOI integration . . . . . . . . . . . . . . . . . . . . . . . . 76

xiii



5.16 Connectivity of the hippocampal ROIs . . . . . . . . . . . . . . . . 78

7.1 Number of people with dementia . . . . . . . . . . . . . . . . . . . 88

8.1 Design of the mental imagery of gait experiment . . . . . . . . . . . 94
8.2 Masks used for the CTRL vs. IPD discrimination . . . . . . . . . . 96
8.3 AAL atlas with pons, medulla and midbrain regions . . . . . . . . . 99
8.4 Account for mask-atlas overlap . . . . . . . . . . . . . . . . . . . . 100

9.1 Weights of the IPD vs. CTRL model . . . . . . . . . . . . . . . . . 105
9.2 Smoothed weights of the whole brain IPD vs. CTRL model . . . . . 107
9.3 Ranking distance across folds in each group . . . . . . . . . . . . . 108
9.4 Ranking distance across folds of the group comparison . . . . . . . 108
9.5 Permuted ranking distance between CTRL and IPD . . . . . . . . . 109
9.6 Permuted ranking distance between SVM and GP . . . . . . . . . . 111

xiv



List of Acronyms

(N)REM (Non-)Rapid Eye Movement

AA Animals Area

AAL Automated Anatomical Labelling

AD Alzheimer’s Disease

ARD Automatic Relevance Distribution

BOLD Blood Oxygen Level Dependent

CBS CorticoBasal Syndrome

CSF Cerebro-Spinal Fluid

CV Cross-Validation

EEG Electro-EncephaloGraphy

EP Expectation Propagation

FFA Fusiform Face Area

fMRI functional Magnetic Resonance Imaging

FN False Negative

FP False Positive

FWHM Full Width at Half Maximum

GLM General Linear Model

GP Gaussian Processes

HR(F) Haemodynamic Response (Function)

IC(A) Independent Component (Analysis)

IDPC Integrated Difference in Partial Correlation

IPD Idiopathic Parkinson’s Disease

LOO Leave-One-Out

xv



MNI Montreal Neurological Institute, standard stereotactic space

MSA Multiple Systems Atrophy

MV Majority Vote

MVPA Multi-Variate Pattern Analysis

NOI(s) Network(s) of Interest

PD Parkinson’s Disease

PDF Probability Density Function

PET Positron Emission Tomography

PPA Parahippocampal Place Area

PPS Parkinson Plus Syndromes

PPV Positive Predictive Value

PRoNTo Pattern Recognition for Neuroimaging Toolbox

PSP Progressive Supranuclear Palsy

RFA Recursive Feature Addition

RFT Random Field Theory

ROI(s) Region(s) of Interest

RVM Relevance Vector Machines

sMRI structural Magnetic Resonance Imaging

SPM Statistical Parametric Mapping

SV(M) Support Vector (Machines)

TN True Negative

TP True Positive

TPM Tissue Probability Map

TR Repetition Time

VBM Voxel-Based Morphometry

voxel Volume element in an image

xvi



Notation

βj Parameters of the general linear model

β̂ Estimated parameters β

ε Noise model

γ Margin of the SVM classifier

λ(a) Sigmoid function squashing variable a into the [0, 1] interval

Φ Proportion of transitions according to the forward sequence

Φinv Proportion of transitions according to the inverse sequence

σ2 Variance of a normal distribution

N Gaussian distribution

B0 External magnetic field in MRI

c Index representing confounds, i.e. effects of no interest

C Soft-margin parameter of the SVM classifier

f Function mapping inputs to outputs

F F -distribution

I Index representing effects of interest

K Covariance or similarity matrix

L(k, k′) Loss function between classes k and k’

m Number of features/voxels in dataset

M Design matrix

n Number of samples in dataset

p Probability value

xvii



p(a|b) Conditional probability of a, knowing b

t Student’s t-distribution

T Tesla

w Parameters or weights of the machine learning based model

xi Vector of features/voxels for the ith sample

xj Series of samples for the jth feature/voxel

x⋆ New/unseen sample, i.e. vector of features

X Data matrix comprising xj for j = 1 · · · m

yi Model output. Label or target associated to sample i

accb Balanced accuracy

Cx Correlation between P r(x) and behavioural performance

d′ D-prime, measure of behavioural performance

dr Distance between Rankings

mROI Number of regions of interest ROIs

NWROI Normalized Weight for one ROI

P r(x) Proportions of scans significantly linked to the task x

R1x Pre-task rest session, for condition x

R2x Post-task rest session, for condition x

SF Scaling Factor of memory traces

WROI Absolute weights for one ROI

xviii



Chapter 1

Introduction

Neuroscience is a challenging field of study, trying to unravel the mysteries of
brain development and functioning, in health but also in disease. Two of the
most fundamental questions in the field of neuroscience are how information is
represented in different brain structures, and how this information evolves over
time. To investigate these questions, different powerful tools have been developed to
record brain activity, within which functional Magnetic Resonance Imaging (fMRI).
fMRI can map brain activity with a spatial resolution of a few cubic millimeters
and a typical temporal resolution in the order of 1 or 2 seconds.

During the last decades, various methodologies have been developed to analyse
such data. A well-known technique is Statistical Parametric Mapping (SPM, Fris-
ton et al., 2007), detecting which volume elements (a.k.a. “voxels”) show a sta-
tistically significant response to the experimental conditions. However, there are
limitations on what can be learned about the representation of information by ex-
amining voxels in a univariate fashion, i.e. independently from one another. For
instance, sets of voxels considered as non-significant by the SPM analysis of one
experimental condition might still carry information about the presence or absence
of that condition. Furthermore, univariate analytic techniques are agnostic of any
a priori information, for example disease-specific information. They are also mainly
designed to perform group-wise comparisons and would therefore be unsuitable to
evaluate the state of the disease of each individual.

To overcome these issues, multivariate pattern analyses (see Haynes and Rees, 2006;
Pereira et al., 2009 for reviews) have been successfully applied to neuroimaging
data. Multivariate pattern analysis derives from the field of pattern recognition,
which is concerned with the automatic discovery of regularities in data. Those
regularities then serve as the basis for the classification of new data, which means
that those models allow for predictions. When applied to neuroimaging data,
multivariate methods, and more specifically machine learning based modelling, aim
at associating a particular cognitive, behavioural or perceptual state to specific
patterns of brain functional activity. Application of these methods enabled to
decode the category of a seen object [Spiridon and Kanwisher, 2002; Cox and
Savoy, 2003; Shinkareva et al., 2008] or the orientation of a stripped pattern seen
by the subject [Kamitani and Tong, 2005; Haynes and Rees, 2005] from the brain
activation of the imaged subject. Advances in pattern-classification algorithms also
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allowed the decoding of less-controlled conditions such as memory retrieval tasks
[Polyn et al., 2005; Chadwick et al., 2010].

When applied to neuroimaging data (which have multivariate properties), machine
learning methods are able to detect subtle, spatially distributed activations and
patterns of brain anatomy and should therefore achieve greater sensitivity than
univariate techniques. Furthermore, those models generate predictions, which al-
lows their use as diagnostic tools (see Klöppel et al., 2008; Vemuri et al., 2008;
Phillips et al., 2011; Orrù et al., 2012 for examples). The predictive aspect of ma-
chine learning methods is an important asset since they enable the characterization
of new/unseen patterns that were not associated to any perceptual or behavioural
state (i.e. labelled). In univariate analyses, the labels are inputs of the models,
while in machine learning analyses the labels are inputs, but also outputs of the
model. These techniques therefore allow for missing data (in terms of labelling). In
regards of those advantages, machine learning based models seem to enable further
investigations of the two fundamental questions in neuroscience.

In this work, we investigated the assets of machine learning models applied to
neuroimaging data. More specifically, two applications were examined: the first
defined a neuroscience question and the second was based on a clinical question.
These two applications involved complex datasets, that could not be successfully
analysed using classical techniques. The aim of this work was therefore to prove the
advantages of multivariate modelling over previous methods, but also to establish
and discuss the limits of those recent analysis techniques.

The present work was therefore divided into two parts, one for each application.
After an introduction to the techniques of acquisition and analysis common to both
parts (chapter 2), the neuroscience application (chapters 3 to 6) studied the forma-
tion of memory traces after a learning task. This study involved the modelling of
complex data, based on constrained, semi-constrained and spontaneous brain ac-
tivity. The second part (chapters 7 to 10) investigated the discrimination between
healthy subjects and Parkinson’s disease patients. For this application, particular
attention was paid to the localization of the pattern (section 8.2.2), which is an
important aspect of the analysis, especially for neuroscientists. In both applica-
tions, the results of the machine learning modelling were compared to the results
obtained from other, widely used, analysis techniques. After a separate discussion
(chapters 6 and 10), the results were discussed in chapter 11, as well as future work.

Aim: Investigate the assets and the limits of machine learning based models ap-
plied to neuroimaging data via a neuroscience and a clinical application, each in-
volving complex datasets.
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Contributions of this thesis: The modelling of semi-constrained brain activ-
ity required the selection of discriminative features. A forward wrapper selection
method was hence developed, based on binary support vector machine classifiers
[Burges, 1998]. Decoding spontaneous brain activity represented the main chal-
lenge of this work. To this end, a specific methodology was developed, based
on an error-correcting output code scheme [Dietterich and Bakiri, 1995]. This ap-
proach was further refined to characterize the spatio-temporal evolution of memory
traces. To localize the pattern discriminating between Parkinson’s disease patients
and healthy subjects, local averages of the pattern were computed, according to
anatomical or functional atlases. Based on these averages, different models could
then be compared in terms of their localization using a specific distance measure.
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In this chapter, the type of brain images used throughout this thesis is introduced,
as well as the methods considered to analyse them. Please note that this chapter
only provides a general overview of the material and methods. Further details on
the conducted experiments and analyses can be found in chapters 5 and 8, for each
application respectively.

2.1 Acquisition techniques

The present work focused on neuroimaging data, i.e. on images of the brain, ac-
quired using a non-invasive technique. The images consist in volume elements,
called voxels in which an aspect of brain activity or structure is recorded (see
Figure 2.1). The acquired aspect depends on the considered technique/hardware.



6 Material and Methods

The type of images used in this work was “functional Magnetic Resonance Imag-
ing” (fMRI). A brief explanation of Positron Emission Tomography (PET) is also
provided in this introductory section, since it is further mentioned (see chapter 7).

Figure 2.1: Illustration of neuroimaging data. The brain is divided into cubic
volume elements called voxels. Each voxel contains one value representing the level
of the functional/anatomical measure considered. Illustration by Laura Symul.

2.1.1 Magnetic Resonance Imaging and fMRI

Structural Magnetic Resonance Imaging (sMRI) is a medical imaging technique
used to visualize internal body structures in detail. As indicated by its name, it
makes use of the magnetic properties of the different tissues, and specifically of
the hydrogen nuclei (protons). These can be viewed as small rotating magnets,
due to their spin. In the presence of a large external magnetic field (B0 >1 Tesla,
a.k.a. static field), the protons, at first randomly distributed, align in a (anti-
)parallel way with the field. They keep rotating in a precessing movement, at a
frequency called the Larmor frequency and which is proportional to the static field
B0. If excited by a radiofrequency pulse at their particular precessing frequency,
the protons absorb electromagnetic energy, which is then emitted when the protons
return to the equilibrium (relaxation). From a macroscopic point of view, the
relaxation process follows a time constant which is different across tissues and
directions. These differences are measured and allow the construction of contrast
images, enhancing one tissue property or another based on various parameters, such
as the time between two excitation pulses and the time elapsed before acquiring the
signal. Typically, a T1 contrast is used to obtain structural images (relaxation along
the z-axis, differentiation between grey and white matter) while a T2⋆ contrast
defines functional images (relaxation along the xy-plane, increased contrast for
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venous blood). The acquisition of a whole brain fMRI volume proceeds in the
successive acquisition of signal from different slices along the z-axis.

In functional MRI (fMRI), it is not the contrast between tissues which is investi-
gated but rather the contrast between ratios of oxygenated versus de-oxygenated
blood: when neurons in one brain region are firing, their metabolism is increased,
which means that they need more energy, delivered under the form of glucose and
oxygen (Figure 2.2). This results in an increase in oxygenated blood flow (following
the Haemodynamic Response, HR) to this region, which can be measured by the
scanner due to its magnetic properties (diamagnetic in oxygenated form and para-
magnetic when de-oxygenated). As illustrated in Figure 2.2, the Haemodynamic
Response takes several seconds to peak and then come back to its baseline level.
The time course of the neuronal activity therefore passes through a filter that has
an assumed HR function.

Figure 2.2: From neuronal activity to BOLD signal. This illustration displays
the cascade of effects to generate a BOLD signal from neuronal activity: neuronal
activity increases the glucose and oxygen intake, resulting in a metabolic change
(signal acquired in FDG-PET). This metabolic change affects the blood oxygena-
tion, according to the Haemodynamic Response Function (HRF, illustrated on the
right side of the figure), which in turn affects the magnetic field uniformity that can
be detected by the MR scanner to finally build T2⋆-weighted images. See [Hashemi
and Bradley, 1997] for more details. Source: Doug Noll’s primer, modified by Laura
Symul.

The signal acquired in each voxel is called the Blood Oxygen Level Dependent
signal (BOLD, Ogawa et al., 1990). Functional MRI thus allows the investigation
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of brain activity voxel per voxel. The Repetition Time (TR), i.e. the time between
two successive acquisitions of a whole brain volume, is nowadays around 2 seconds
which therefore enables to track changes in haemodynamic brain activity. However,
the shape of the Haemodynamic Response Function (HRF) limits this resolution
and has thus to be taken into account in further analyses.

2.1.2 Positron Emission Tomography

Positron Emission Tomography (PET) is a nuclear medical imaging technique,
mainly used for the diagnosis of cancer or dementias. It implies the injection in the
blood stream of a radiotracer that emits a positron when its radioactive isotope
decays (see Figure 2.3 for an illustration of the PET principle). The positron then
annihilates when encountering an electron, which results in the emission of two
gamma photons in opposite directions. These gamma photons are then detected
and when sufficient data is available, the distribution of radiotracers in the body
can be reconstructed, i.e. an image of the spatial distribution of tracer uptake
can be built. A commonly used tracer is fluorodeoxyglucose (18FDG), allowing the
mapping of metabolic activity of the tissues, in terms of regional glucose uptake.
For practical details and a comparison with fMRI, please refer to appendix A.

2.2 Experimental design

fMRI investigations often imply the design of an experiment involving controlled
stimulation in terms of content, timing and duration of the events. The brain
response to these stimuli are then modelled in order to find differences between
conditions (e.g. viewing a face versus viewing a building) or between (groups of)
subjects (e.g. healthy controls versus diseased). Experiments can be designed in
“block”, i.e. periods of time during which the subject performs the task, separated
by rest periods (usually lasting between 10 to 15 seconds). This allows for the
BOLD signal to reach a plateau, providing a high signal-to-noise ratio, especially
if the images are averaged over one block. On the other hand, experiments can
consists of temporally isolated events. This is referred to as “event-related” designs
and enables the investigation of brain responses to transient events (at the price of a
lower signal-to-noise ratio). In the present work, particular experiments have been
designed for both the neuroscience and the clinical applications. In the neuroscience
application, transient events were investigated in each subject, while for the clinical
application, a block-design experiment studied the (correct) discrimination between
groups of subjects.

2.3 Preprocessing

For further analysis, the data from a specific voxel is assumed to correspond to
the same region in the brain across volumes (time points or subjects). Movements
or different brain shapes may lead to violation of this assumption. Furthermore,
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Figure 2.3: Principle of the PET scanner. The radiotracer contains unsta-
ble nuclei which decay into stable nuclei by emitting a positron. This positron
randomly travels into the surrounding tissues (a few millimetres depending on the
emitting atom) until it meets an electron, which results in the annihilation of both
particles and in the emission of two (opposite) gamma rays. The gamma rays are
detected by the scanner which then builds a PET image using a reconstruction
algorithm. For more details, see [Valk et al., 2003]. Source [Lancelot and Zimmer,
2010], modified by Laura Symul.

structured or random noise can be added to the signal of interest (e.g. physiolog-
ical noise due to heartbeat or breathing, intensity spikes). Corrections for these
potential variabilities should therefore be performed before any further analysis,
using temporal and spatial transformations.

Preprocessing usually consists in multiple steps, successively applying corrections
for different sources of potential noise. These steps depend on the type of data
(PET or fMRI) and level of analysis (within or between subjects). In this work,
within-subject analysis will be conducted for the fMRI neuroscience application
only. Therefore, the preprocessing steps described in section 2.3.1 are specific for
fMRI.

2.3.1 Within-subject preprocessing

An example of classical within-subject preprocessing is presented in Figure 2.4, the
different steps are described hereunder:

• Slice time correction: In fMRI, the slices (along the z-axis) are acquired
successively, leading to differences in their sampling time. To correct this
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discrepancy, each volume was temporally realigned by interpolating the signal
over time across volumes.

• Realign and unwrap: The two main sources of noise (i.e. variability unre-
lated to neuronal activity) for fMRI acquisition are movement of the subject
and field inhomogeneities. While B0 (the static magnetic field) is spatially
homogeneous, introducing the subject in the scanner disrupts it, leading to
field inhomogeneities. Since the reconstruction of the contrast image is exact
only under the assumption of a homogeneous static field, these field inhomo-
geneities can lead to distortions in the acquired images and must be accounted
for. In this work, spatial deformations induced by the field inhomogeneities
were estimated using the FieldMap toolbox [Hutton et al., 2002]. To correct
for possible movement artefacts, rigid-body transformations were applied to
realign the volumes on their mean (by estimating movement parameters at
each TR). Simultaneously, the images were unwrapped, i.e. corrected for the
elastic/non-linear deformations induced by the static field inhomogeneities
and for the interaction between the subject’s movements and the spatial de-
formations [Andersson et al., 2001].

• Coregister: The functional images were co-registered with the structural im-
age, such that the anatomical localisation of single subject activations would
be more accurate.

• Smooth: Finally, to increase the signal to noise ratio, the images are smoothed
using a spatial low-pass Gaussian filter, characterized by its Full Width at
Half Maximum (FWHM ).

2.3.2 Between-subject preprocessing

The main problem when dealing with multi-subject analysis is that brains of differ-
ent subjects vary in size and shape. To examine homologous brain regions across
subjects, all images thus need to be brought into a common reference space, by nor-
malizing them in the MNI space (Montreal Neurological Institute,Mazziotta et al.,
2001). The “unified segmentation” [Ashburner and Friston, 2005] was used here.
This approach relies on the optimization of the parameters of a generative model,
including tissue segmentation, intensity non-uniformity correction and non-linear
image registration. These deformations are then applied to all the images of a
same subject (i.e. to the structural and the functional images in the case of fMRI,
to the FDG uptake image in the case of PET). The normalisation does not per-
fectly match the images from different subjects, leaving some residual inter-subject
anatomical variability. To dampen this variability, smoothing is usually applied,
the size of the FWHM depending on the modality. For fMRI, the images enter-
ing the normalisation step have first undergone the within-subject preprocessing,
except for the smoothing (performed at a later stage).
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Figure 2.4: fMRI within-subject preprocessing. A typical fMRI within-
subject preprocessing involves 4 main steps: the slice-time correction, correction
for the field inhomogeneities, for motion and for their interaction, coregistering
with an anatomical image and a smoothing (optional) using a Gaussian filter. See
text for further details. Source: SPM course slides, modified by Laura Symul.

2.4 Univariate methods

This section briefly presents statistical parametric mapping, a widely used univari-
ate technique to model neuroimaging data. For more details, see [Friston et al.,
2007].

2.4.1 Principles

An fMRI time series can either be seen as a succession of 3D volumes, or as the
collection of many voxels, each with its own temporal evolution. In univariate
analysis, the second version is used: the time series of each voxel are modelled
independently, the results being assembled into parametric images, from which
statistical maps can be derived. When dealing with multiple subjects having only
one image, each “time point” corresponds to a subject. Therefore, we’ll refer to
each scan (time point of fMRI time series or subject) as a sample.

Statistical Parametric Mapping (SPM, Friston et al., 2007) identifies regionally
specific effects in neuroimaging data. These effects may be due to structural dif-
ferences (e.g. in voxel-based morphometry, VBM, Ashburner and Friston, 2000) or
to changes over a sequence of observations (as in fMRI). SPMs are images whose
voxels are, under the null hypothesis, distributed according to a specific proba-
bility density function, such as the Student’s t or the F -distribution. Observing
“unlikely” large values or topological features is then interpreted as a regionally
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Figure 2.5: Between subject preprocessing. The images of each individual has
to be transformed into a common, standard space. This operation is performed by
first segmenting the co-registered anatomical image. Grey matter, white matter
and cerebro-spinal fluid tissue probability maps (TPM) are included in the segmen-
tation and define the reference space. The parameters of the spatial normalisation
are then estimated, resulting in non-linear deformations, which can be applied
on the (time-corrected and realigned) functional images. Finally, the images are
smoothed using a spatial Gaussian filter. Source: SPM course slides, modified by
Laura Symul.

specific effect, caused by the experimental design. In order to control for the risk
of false positives across the whole image, it is then necessary to account for the
problem of “multiple comparison”. Statistical parametric mapping therefore con-
sists in two steps: the modelling, using a General Linear Model (GLM) and the
inference via random field theory (RFT).

2.4.2 General Linear Model

The general linear model, GLM, assumes that the responses to experimental con-
ditions can be partitioned into three components: components of interest (such as
the different conditions of stimulation), confounds (i.e. components affecting the
signal but of no experimental interest, such as the movement parameters computed
during the realignment) and the error, i.e. unexplained variance. It is expressed
as:

xj = Mβj + εj (2.1)
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Where xj is a vector representing the series of samples of the jth voxel and is viewed
as a random variable, M is the design matrix, containing both the components of
interest and the confounds, βj are the (unknown) parameters and εj is the error
term. εj follows a probability density function (PDF) whose shape is fixed a priori.
A GLM therefore consists in two parts: the model of the design, M , comprising
components of interest and of no interest, and the model of the error εj.

One column in the design matrix corresponds to a regressor, modelling an effect of
interest or confound. Typically, effects of interest are represented by the onsets and
the durations of the corresponding stimuli, convolved with a canonical haemody-
namic response function and its derivatives (to account for possible voxel-specific
variability of the HR in terms of delay and amplitude). Confounds are usually
noise effects which can be accounted for, such as events of no interest (like button
presses), movement parameters or low frequency drift that can bias the results.
Equation 2.1 can hence be written as:

xj =
[

MIMc

]

[

βjI

βjc

]

+ εj (2.2)

With I corresponding to the components of interest and c to the confounds. Figure
2.6 shows an example of design matrix with components of interest and of no
interest.

Figure 2.6: General Linear Model. The General Linear Model assumes that
the acquired neuroimaging signal (data matrix X) is the combination of three
components: the components of interest reflecting the design of the experiment
(onsets of the stimuli convolved with the HRF, MI), confounds (Mc) containing the
sources of noise which can be modelled, such as the previously modelled movement
parameters, and an error term ε. The weight assigned to each component of interest
(βI) or confound (βc) are the parameters of the models and need to be estimated.
Source: SPM8 software.

The parameters βj are then estimated using ordinary or weighted least squares,

giving β̂j . Once the parameters have been estimated, inference in terms of t or F
statistics can be performed.
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2.4.3 Inference

t- or F -scores are constructed from “contrasts”, i.e. linear combinations of the
parameters β, and an estimation of the residual variance. A contrast defines the
neuroscientific question driving the univariate analysis. For example, when consid-
ering two conditions of interest, a t-contrast of [1 − 1] will investigate the differ-
ential regional effect of condition 1 compared to condition 2. On the other hand,
a F -contrast with equation

(

1 0
0 1

)

will sum the effect of the two conditions. The
statistical scores are then compared to the expected distribution under the null
hypothesis, allowing the computation of a p-value for each voxel. However, p-
values should be corrected for multiple comparisons (the number of comparisons
being the number of voxels), especially in the case of an anatomically open hy-
pothesis. Bonferroni correction [Dunn, 1961] could be used to correct for multiple
comparisons but, as it assumes that all tests are independent (which is not true
in neuroimaging), the adjustment becomes very severe when dealing with many
voxels, as is usual in fMRI or PET data (> 100,000). Random field theory, on the
contrary, takes into account the fact that neighbouring voxels are not independent
and provides a more parsimonious approach: With the estimated smoothness of
the residuals of the GLM, the number of expected false positives in a statistical
map can be controlled. A statistical map can then be thresholded, using some
height and spatial extent thresholds of the clusters that are user-specified (Figure
2.7).

The results of a statistical parametric analysis are 3D maps, one per specified t or
F -contrast. An example is shown in Figure 2.8, the design includes 3 stimulation
conditions, all are considered as active in the corresponding F -contrast, while the
movement parameters and low frequency drift are modelled as confounds. The
map displayed is thresholded at p < 0.05, corrected for multiple comparisons using
RFT.

2.5 Multivariate methods

Although mass univariate analysis brought significant insight on regionally specific
inferences on brain function and structure, there are limitations on what can be
learned by examining voxels in a univariate fashion. For instance, spatially dis-
tributed sets of voxels considered as non-significant by a SPM analysis of one ex-
perimental condition might still carry information about the presence or absence of
that condition. Furthermore, classic univariate analytic techniques are also mainly
designed to perform group-wise comparisons and would therefore be unsuitable to
evaluate the state of a disease in individuals.

On the other hand, machine learning based Multi-Variate Pattern Analyses (MVPA,
see Norman et al., 2008, Friston et al., 2008 and Haynes and Rees, 2006 for a re-
view) allow an increased sensitivity to detect the presence of a particular mental
representation. These multivariate methods, also known as brain decoding or mind
reading, attempt to link a particular cognitive, behavioural, perceptual or medical
state to specific patterns of voxels’ activity. Application of these methods made
it possible to decode the category of a seen object [Spiridon and Kanwisher, 2002;
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Figure 2.7: Random field theory. The theory assumes that the statistical para-
metric map is a discrete approximation of a smooth and continuous random field.
The expected properties of a thresholded field can then be estimated and signif-
icance can be assessed in terms of voxel amplitude and cluster extent. In this
figure showing a synthetic Gaussian random field, the height threshold is varied,
displaying its impact on cluster number and extent. Source: SPM course slides.

Cox and Savoy, 2003; Shinkareva et al., 2008] or the orientation of a stripped pat-
tern seen by the subject [Kamitani and Tong, 2005; Haynes and Rees, 2005] from
the brain activation of the imaged subject. Advances in pattern-classification al-
gorithms also allowed the decoding of less-controlled conditions such as memory
retrieval tasks [Polyn et al., 2005; Chadwick et al., 2010].

2.5.1 Principles

Brain decoding derives from the fields of pattern recognition and machine learning,
which are concerned with the automatic discovery of regularities in data. Those
regularities then serve as basis for the classification of new data [Bishop, 2006]. A
classical example of pattern recognition is the automatic classification of handwrit-
ten digits (illustrated in Figure 2.9 from Bishop, 2006): each digit is represented by
a grey scale image of 256×256 pixels and the goal is to build an algorithm capable
of classifying each image into the correct category (i.e. 0, 1,. . ., 9).

We therefore need to build a function (or machine), f , which will take images
as inputs, xi, i = 1 . . . n, with n the number of image samples, and produce their
corresponding digit as outputs, yi. Due to the high variability in handwritings, this
operation is not trivial and the use of machine learning is necessary. This means
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Figure 2.8: Example of thresholded F-map. Axial, coronal and sagittal views
of a thresholded F-map (colour-coded F-values, p < 0.05, corrected for multiple
comparisons), overlaid over a single subject anatomical image.

that the computer has to learn which pattern in the images corresponds to which
digit (learning phase). This learning is achieved providing a learning set, which
is a set comprising both images (inputs) and corresponding digit (outputs), which
are known a priori and often hand-labelled. This is called supervised learning. The
machine can then build the required function using this learning set and finally
predict outputs, y⋆ when given new/unseen inputs, x⋆ (test phase):

f : X → y (2.3)

f : x⋆ → y⋆ (2.4)

More specifically, the function f represents the “true” underlying function of the
data from which only noisy samples can be observed:

y = f(X) + ε (2.5)

With ε, the noise, being distributed according to a Gaussian with zero mean and
variance σ2.

There are three main approaches to determine f : the discriminant function, the
discriminative and the generative approaches. A discriminant function directly
assigns a label y⋆ = +1 or y⋆ = −1 via sign(f(X)) (in the binary case). The
predictions are referred to as “hard” predictions, because they cannot be associ-
ated to any confidence measure such as a probability. On the other hand, the
discriminative and generative approaches model the conditional probability distri-
bution p(y|X) in an inference stage, which is then used to make optimal decisions.
This distribution can either be modelled directly (discriminative) or using Bayes’
theorem (generative):
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Figure 2.9: Handwritten digits example. The machine has to learn a model
able to correctly assign a 256×256 pixels image of a handwritten digit to the
corresponding number (i.e. 0 to 9). This is not a trivial task due to the multiplicity
of the handwritings.

p(y|X) =
p(y) · p(X|y)

p(X)
(2.6)

In the latter, the likelihood p(X|y) is the core of the model since it is possible to
sample from this distribution afterwards. However, the aim here is to distinguish
between different categories (of conditions or groups of subjects) such that only
discriminant functions and discriminative models will be considered.

The built model is then evaluated in terms of generalization ability, i.e. its ability
to (correctly) classify new samples (see section 2.5.4).

2.5.2 Inputs of the model

The learning set is generally represented under the form of a matrix X ∈ R
n×m:

each sample xi is represented by a feature vector, which is the collection of the
m variables to feed in the machine, and a label, the output of the function. xi

corresponds to a point in the input space and the dimensionality of the space
corresponds to the number of features in the samples. In the case of neuroimaging
data, the variables are the values of the signal in each considered voxel and the
samples are either the points of the time-series corresponding to a condition (after
correction for HRF delay) or the images of a multi-subject analysis. Compared to
the GLM approach, the inputs are:

X =
[

xj

]

, j = 1...m (2.7)

With m being the number of voxels, i.e. features. However, since X contains noise
that can be modelled (i.e. the confounds of the design matrix), it is usually an
adjusted version of X which is used as input of the machine learning based model:

Xa = X − M ×

[

0

β̂C

]

(2.8)



18 Material and Methods

In general for fMRI, only the samples corresponding to a condition are considered
for further modelling. The selection of the samples has to take the HRF shape
into account, in terms of its delay to peak and its width (see Figure 2.10). In the
present work, the onset of an event was computed as:

onseta = round
(

onset + HRFdelay

TR

)

(2.9)

Where onseta is the adjusted onset in TRs, onset is the onset as in the design,
in seconds and HRFdelay is a principled value, usually comprised between 3 and 6
seconds [Frackowiak et al., 2004].

The duration of each event was computed as:

durationa = ⌊
duration

TR
⌋ (2.10)

Where durationa is the adjusted duration in TRs, duration is the duration as in
the design, in seconds.

To ensure limited overlap of BOLD signal between different conditions, following
samples of different categories had to be separated by at least ⌈HRFwidth/TR⌉
scans/TRs. The HRFwidth can be set between 0 and 10 seconds, depending on
the experimental design and application, since it influences the number of selected
samples (as illustrated in Figure 2.10). A trade-off therefore exists between the
number of samples n and their signal-to-noise ratio, especially in the case of fast
event-related designs.

Figure 2.10: Effect of the HRF delay and overlap. On the left is the standard
HRF response. On the right is the effect of the delay and overlap on the number
of independent scans (cond 1, 2 and 3 correspond to three different experimental
conditions and the blue boxes correspond to various scans acquired during each
condition). In fMRI datasets, the nature of the HRF (i.e. being a delayed and
dispersed version of the neuronal response to an experimental event) might lead to
less independent scans/events than the ones originally acquired. Here, this issue is
accounted for by discarding overlapping scans in terms of BOLD signal.

The outputs of the model, y (called labels or targets) are usually coded depending
on the algorithm. In a binary case (i.e. one class versus another), the first category
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is usually attributed a +1 label, while the second category has a −1 or 0 label. In
a multiclass classification, the labels are usually represented by the index of the
class, i.e. yi = 1 . . . K, with K being the number of disjoint classes/conditions.
They are provided along their corresponding feature vector xi, i = 1 . . . n, during
the learning phase (i.e. as inputs) and are predicted for new samples during the
test phase (i.e. as outputs).

2.5.3 Classification algorithms

In this section, the linear model is presented, as well as three different methods to
evaluate it. Please note that although most formulations hold for the multiclass
case, this section focuses on binary classification.

The function f divides the input space into decision regions whose boundaries are
defined by parameters learned during the learning phase. For example, a linear
function defining (m − 1)-dimensional hyperplanes has the form:

f(X) = wT X + w0 (2.11)

Where w ∈ R
m and w0 are the parameters of the classifier, also called weights and

bias, respectively. They represent the relative contribution of each feature to the
predictive task. For simplicity, w0 is usually comprised in w by augmenting X.

According to equation 2.5, the outputs y are continuous and comprised in the
[−∞, +∞] interval. However, for classification, the outputs have to be “coded”,
either as +1/ − 1 predictions or as probabilities lying in the [0 1] interval. When
building a binary discriminant function, the sign of the output determines its class
(see 2.5.3.1), such that the coding to the +1/ − 1 labels is direct. On the other
hand, probabilities cannot be obtained directly. The values of f(X) have thus to
be “squashed” using a logistic function λ(f(X)) (eq. 2.12).

λ(f(X)) =
1

1 + exp(−f(X))
(2.12)

To make predictions, the class leading to the highest probability is naturally cho-
sen. This actually corresponds to the optimal decision rule under a zero-one loss
function, for which any misclassification is penalized by one unit and correct clas-
sification by 0. Although the space of possible loss functions is infinite (with
L(k, k′) 6= L(k′, k)), the zero-one loss function is a common choice. It is also
the one made here.

In the present work, three algorithms were considered to estimate f : the Support
Vector Machines (SVM, Burges, 1998), the Relevance Vector Machines (RVM, Tip-
ping, 2001) and Gaussian Processes (GP, Rasmussen and Williams, 2006).

2.5.3.1 SVM

Support Vector Machines (SVM, Burges [1998]) are binary discriminant functions,
which define decision boundaries to assign a label to each input. In the case of a
linear SVM (eq. 2.11), this decision boundary can be drawn in many ways. This
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is shown in Figure 2.11 (left panel) for the case of two-dimensional samples. To
find the solution leading to the best generalization ability, SVM makes use of the
concept of functional margin, which is defined as the smallest distance between
the decision hyperplane and any of the samples. For each sample xi, its geometric
margin is defined as:

γi =
yi(w

T xi)

||w||2
(2.13)

The geometric margin γ over the training set is then the minimum of γi, i = 1 . . . n.
The selected decision hyperplane is then the one leading to the largest margin
(Figure 2.11, right panel):

minimize 1
2
||w||22 over w, w0

Subject to yi(w
T xi) ≥ 1

Figure 2.11: SVM principle. A When distinguishing between two classes (e.g.
yellow versus blue), there are multiple ways of defining the decision boundary.
The margin is defined as the distance from the closest point from one class to the
decision boundary (in red). B Intuitively, the selected hyperplane would lead to the
maximum margin. This results in the definition of Support Vectors (SV, circled
in purple) which characterize the decision boundary. Thereby, SVM is a sparse
technique.

The location of this boundary is determined by a subset of data points, the support
vectors (circled in purple on Figure 2.11), satisfying the constraints exactly. The
number of support vectors being smaller than the number of samples makes SVM
a sparse technique.

In the case of non-separable classes, violations of the constraint are allowed but
penalized:

Minimize 1
2
||w||22 + C

∑n
i=1(1 − yif(xi))+

Subject to yi(w
T xi) ≥ 1
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with (z)+ = z if z > 0, 0 otherwise and C being a hyperparameter whose value has
to be optimized. This variation of SVM is called a “soft-margin” SVM classifier
and might be more robust to outliers than the classical SVM. In neuroimaging,
m > n, such that linear separability can usually be assumed and C is set to 1
[Mourão-Miranda et al., 2006; Hassabis et al., 2009].

While SVM is widely used to classify neuroimaging data (Laconte et al., 2005;
Mourão-Miranda et al., 2006; Vemuri et al., 2008 for example), it has the dis-
advantage of not providing posterior probabilities, which might bring important
information, especially in the case of clinical applications: a subject classified as
healthy with an associated probability of 99% does not have the same implication
as a subject classified as healthy with a probability of 51% and for which more
testing might be needed.

2.5.3.2 RVM

Relevance Vector Machines (RVM, Tipping, 2001) follow the discriminative ap-
proach, such that this technique provides probabilistic predictions. Using eq. 2.5
and 2.11, the posterior in the Bayesian formulation (eq. 2.6) can be written as:

p(yi|X, w) = N (yi|λ(f(xi)), σ2) (2.14)

With λ(z) representing any sigmoid function (e.g. eq2.12).

To limit overfitting, additional constraints have to be imposed on the parameters w.
This is usually done by adding a complexity term (regularization) and is performed
implicitly in SVM using the notion of margin. Here however, the constraints are
“preference bias”, i.e. the constraint is in the form of a prior distribution over the
parameters. To increase smoothness, these are chosen as:

p(w|α) =
n

∏

i=0

N (wi|0, α−1
i ) (2.15)

With α, the n + 1 hyperparameters, having a Gamma distribution.

It is important to note that there is one hyperparameter per weight, which con-
sists in an Automatic Relevance Distribution (ARD, MacKay, 1994) prior. During
evaluation, this prior makes the probability mass concentrate at very high values
of α, such that the distribution over w peaks at 0 mean with a variance around
0 and the corresponding weights are then pruned. As SVM, RVM is thus also a
sparse method.

To estimate the model, Bayesian inference proceeds by:

• Computing, using Bayes’ rule, the posterior over all unknowns given the data:

p(w, α, σ2|y) =
p(y|w, α, σ2) · p(w, α, σ2)

p(y)
(2.16)
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• Making predictions for a new test point in terms of the predictive distribution:

p(y⋆|y) =
∫

p(y⋆|w, α, σ2) · p(w, α, σ2|y)dwdαdσ2 (2.17)

Both steps include normalising integrals, whose expression cannot be derived ana-
lytically because of the non-Gaussianity induced by the sigmoid function. Those in-
tegrals are thus approximated using Laplace’s method as implemented in [MacKay,
1992]. It should be noted that the analytical and computational aspects of infer-
ence are out of the scope of this work and will therefore be only briefly mentioned.
The interested reader can refer to [MacKay, 1992; Tipping, 2001; Rasmussen and
Williams, 2006].

2.5.3.3 GP

A more general approach to the machine learning problem is the Gaussian Processes
[Rasmussen and Williams, 2006], which assumes a Gaussian distribution over the
latent function f(X). In this model, the prior is placed on the function values
fi = wT xi, and the posterior can be written:

p(f|X, y) =
p(y|f, X) · p(f|X)

p(y|X)
(2.18)

Contrarily to the SVM and RVM techniques, the “function space” now replaces
the weight space. The linear function f(X) is replaced by a Gaussian Process,
f|X ∼ N (0, K), with K, the n × n covariance matrix with entries depending on
the samples (see 2.5.3.4). The log of the GP prior on f has the form:

log p(f|X) = −
1

2
fT K−1f −

1

2
log|K| −

n

2
log2π (2.19)

The prior on f also places a prior on the posterior π(X) = p(y = +1|X) = λ(f(X)).
In this model, we are not interested in the values of the latent function f but rather
in π(X), such that f , although allowing a convenient formulation of the model, will
be integrated out.

Inference is then divided in two steps:

• Compute the distribution of f corresponding to a test case x⋆:

p(f⋆|X, y, x⋆) =
∫

p(f⋆|X, x⋆, f) p(f|X, y)df (2.20)

• Use this distribution to produce a probabilistic prediction π⋆:

π⋆ =
∫

λ(f⋆) p(f⋆|X, y, x⋆)df⋆ (2.21)

As for RVM, exact inference of the GP model isn’t possible. Two approximation
techniques have been used in this work: the Laplace method, which approximates
the non-Gaussian posterior p(y = +1|X, w) by the Gaussian q(y = +1|X, w), using
a second-order Taylor expansion, and the Expectation Propagation (EP) method,
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which uses local approximations of the likelihood p(yi|fi) and optimizes the local
parameters via constraints on the moments of the distribution. Both give similar
accuracies in a binary context, but it has been shown in [Rasmussen and Williams,
2006] that the EP approximation is closer to the “true” distribution than Laplace’s
approximation. For binary problems, the EP inference method was therefore used.
Both methods are fully described in [Rasmussen and Williams, 2006].

2.5.3.4 Kernel trick

In neuroimaging, the number of variables or features m is usually large, such that
a linear separability of the classes can reasonably be assumed. However, m is
also larger than the number of samples n, in such a way that solving equation
2.11 is an ill-posed problem. One possible solution to overcome this issue is to use
regularization, which constrains the number of solutions. To perform regularization
efficiently, kernels are usually computed, consisting in pair-wise similarity measures
between all samples or patterns, summarized in a kernel matrix (n×n dimensions,
instead of n×m). An example of a feature space mapping φ(X) is the linear kernel:

K(xp, xq) = φ(xp)T φ(xq) (2.22)

= xT
p xq (2.23)

with φ(xp) = xp, the identity mapping and xp, xq, two feature vectors.

In the algorithms in which the feature vectors xi, i = 1 . . . n, enter only in the
form of dot products, these can be substituted by the kernel. This is called the
kernel trick and leads to dual formulation of the algorithms, which become kernel
methods [Laconte et al., 2005]. Kernel methods are extremely useful, and allow
to perform the learning using the kernel matrix instead of the data matrix, which
is computationally more efficient. In addition to the computational advantages,
using the kernel formulation together with proper regularization (i.e. restricting
the choice of functions to favour those having a small norm) enables the solution of
ill-conditioned problems and therefore avoids over-fitting [Shawe-Taylor and Cris-
tianini, 2004]. SVM, RVM and GP can all be expressed as kernel methods [Bishop,
2006; Rasmussen and Williams, 2006] and have been implemented using the kernel
trick.

2.5.4 Evaluation of the model accuracy

Once the model has been built, its performance has to be assessed. The quality
of a model is evaluated as its ability to predict the labels for unseen/new samples,
which is also defined as the generalization ability of the model. An error rate is
then computed using a loss function (see section 2.5.3), which assigns a “penalty”
to any misclassification. Computing the error rate on the dataset used to build
the model would lead to overoptimistic results, since a function complex enough
would lead to the perfect modelling of the training set [Hastie et al., 2003]. To this
end, a test set, completely separated from the training set, must be provided to
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the classifier. The predicted labels for the test samples are then compared to the
“true” labels and accuracy measures (1-error rate) can be derived.

In the present work, the zero-one loss function was used to present accuracies
in terms of total, balanced and class accuracies, as well as under the form of a
confusion matrix. This corresponds to a penalty of 1 for any misclassification and
no penalty for a correct classification.

Table 2.1: Confusion matrix: example for the binary problem. TP stands for True
Positives, the number of correctly classified positives (label: +1), FP for False
Positives, the number of incorrectly classified positives, FN for False Negatives,
the number of incorrectly classified negatives, and TN for True Negatives, the
number of correctly classified negatives (label: -1). P and N represent the total
numbers of +1 and -1 labelled samples, respectively.

Truth
P

re
d

ic
te

d +1 -1

+1 TP FP

-1 FN TN

Total P N

From the confusion matrix, the total accuracy is defined as:

Acct =
TP + TN

P + N
(2.24)

However, when P and N are not balanced, the total accuracy is over-optimistic.
The total accuracy is then replaced by the balanced accuracy:

Accb =
1

2
{

TP

P
+

TN

N
} (2.25)

which actually corresponds to the mean of the class accuracies. For diagnosis
purposes, when making errors in one class or the other do not have the same
implications, results are usually reported in terms of sensitivity (if a disease is
present, true label: +1, it is indeed detected, predicted label: +1), specificity (the
disease is absent and is not reported) and positive predictive value (PPV, equivalent
to a false discovery rate), defined as follows:

Sensitivity =
TP

TP + FN
(2.26)

Specificity =
TN

TN + FP
(2.27)

P P V =
TP

TP + FP
(2.28)

There are many ways to split the dataset into train and test sets. However, in
neuroimaging, the data are scarce and this split is usually performed in a cross-
validation (CV) scheme, which rotates the partition. A model is then estimated
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and tested for each partition, called fold, leading to measures of accuracy for each
fold. The model quality is finally presented in terms of averaged accuracies across
folds. In this work, a leave-one-out (LOO) CV approach was used, either to leave
one subject out (all the samples related to one subject) or one block out (one block
of contiguous samples, in a within-subject fMRI analysis).

More than just assessing the performance of the model, it is necessary to know
if the observed result could be obtained by chance. In the present case, the null
hypothesis stating that the labels do not bring any information was tested for
rejection at a certain significance threshold (typically, p < 0.05). Assessment of the
significance can be performed using either parametric or non-parametric statistic
tests. The first category leads to confidence intervals at the specified threshold
(e.g. 95%) but present the disadvantages of making assumptions about the data
distribution. More specifically, statistical parametric tests assume that the test
samples are identically and independently distributed. This condition is usually
not fulfilled, especially when dealing with fMRI which induces a correlation between
successive scans due to the shape of the HRF. Therefore, non-parametric testing
was used in this work, the data distribution being built (as a histogram) instead
of assumed. Under the null hypothesis, the labels would not bring any information
and thus any random permutation of the labels should lead to the same level of
performance (Figure 2.12).

Figure 2.12: Non-parametric testing using permutations. To assess the sig-
nificance of the performance of a machine learning based model, permutations
are used: the labels of the training set are randomly permuted to obtain “base-
line” model performances. The “true” model performance is then compared to the
baseline level obtained from the permutations. Typically, a model performance is
significant if the performance obtained by chance does not exceed or equal the true
model performance more than 5% of the time (p < 0.05).

It is thus possible to associate a p-value to the model performance (the balanced
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accuracy in this case), by computing p as the number of times that a random per-
mutation of the labels led to equal or higher performance than the performance
obtained with the original labels. If the performance with the original labels signifi-
cantly exceeds the level that would be expected by randomly attributing the labels,
the researcher can conclude that the algorithm has truly learned some property of
the data, and can therefore reject the null hypothesis that there is no information
in the data about the label being predicted.

2.5.5 Interpretation of weights

As mentioned earlier, the weights represent the relative contribution of each of
the features to the classification. In neuroimaging, the features correspond to the
signal in each voxel, and a relative contribution of each voxel to the linear decision
function is therefore obtained (see Figure 2.13 for an example of weight map).
Unlike in statistical parametric mapping, it is not possible to threshold this map
because the weights at each voxel are dependent on one another and no direct
localization inferences or voxel-wise statistical test assuming independence can be
performed on them. Although no regionally specific effects can be determined from
the weight map, intuitions on which regions participated in the classification into
one class or another can still be obtained. Furthermore, feature selection strategies
can make use of the weights as the selection criterion to determine which voxels
contribute most to the considered discrimination (see section 5.3).

2.5.6 Multiclass classification

Up to now, only binary classification was considered. However, distinguishing
between more than two categories is often desirable (e.g. in the case of multiple
forms of a disease). Different strategies allow performing multiclass classification:
using K binary one-versus-all classifiers, using K(K − 1)/2 binary one-versus-one
classifiers [Fürnkranz, 2002] or using a multiclass model.

In the binary one-versus-all approach, the samples of one class have a +1 label
while all the others a -1 or 0 label. This problem can be solved via fast and ex-
tensively tested algorithms, such as RVM or GP. For predictions, the class leading
to the largest value of the decision function is selected. The main disadvantage of
this technique is that it implies imbalances across categories. To avoid this issue,
binary classifiers were used in a one-versus-one fashion, in which the classifiers be-
tween all possible pairs of classes are estimated, leading to K(K −1)/2 predictions
and/or probabilities. These outputs then need to be recombined in order to obtain
a unique multiclass prediction. Different techniques exist to perform the recom-
bination, starting by a simple vote. However, an Error-Correcting Output Code
(ECOC, Dietterich and Bakiri, 1995), based on [Hassabis et al., 2009] was used
here: each class was represented by a codeword of length K(K − 1)/2, the num-
ber of binary classifications. Each classifier votes for the two classes it was built
for, and for each class the votes of all the classifiers are assembled to constitute a
“codeword”, which is further used for comparison with test points. For each test
instance, the distance between the vector computed from the predictions of the set
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Figure 2.13: Voxels’ weights. (Adapted from [Phillips et al., 2011]). Distribution
over the brain volume of the voxel relevance for a machine trained to discriminate
between PET images of vegetative state patients and healthy subjects. A positive
value (yellow-red) indicates that relatively large metabolic activity in those voxels
will drive the classification towards the control group. On the contrary, a negative
value (blue) indicates that relatively large metabolic activity in those voxels will
drive the classification towards the patients’ group. The voxels with little relevance
(green) hardly contribute to the classification of data. Image from [Schrouff and
Phillips, 2012].

of classifiers and the correct codewords associated to each possible class can then be
computed and the class characterized by the smallest distance from the predicted
vector is selected. With SVM binary classifiers, the outputs are defined by +1/-1
labels (see Table 2.2, left) and the final class of a test point was attributed accord-
ing to the smallest Hamming distance between this vector and all the candidate
class codewords [Hassabis et al., 2009]. With GP classifiers, the codewords were
defined in terms of probabilities obtained from each binary classification (see Table
2.2, right, Schrouff et al., 2012), and the distance was computed as the sum of
the differences between the table and the probabilities obtained from each binary
classifier (L1 distance).

The difference between the two tables, binary and probabilistic, lies in the precision
of the distance between the vector of predictions associated to a test instance and
the different codewords. This is illustrated in Table 2.3.

When using the SVM predictions, the distance measure used to assign the final
class is the Hamming distance (i.e. the number of differing bits), which would give
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Table 2.2: Example of codewords for a 3 classes problem using predictions (left
part) and probabilities (right part) of the binary classifier. The lines correspond to
the considered classes while the columns represent the different binary comparisons
(A, B, C, any three classes).

Prediction codewords Probabilistic codewords

A-B A-C B-C A-B A-C B-C

class A 1 1 0 1 1 0.5

class B -1 0 1 0 0.5 1

class C 0 -1 -1 0.5 0 0

Table 2.3: Outputs of SVM and GP classifiers (second and third rows respectively)
applied on one example data point (true class B) for a 3 classes problem.

Test point (B) A-B A-C B-C

SVM predictions -1 -1 -1

GP probabilities 0.2 0.3 0.5

for the three classes:

LA = 1 + 1 + 1 = 3

LB = 0 + 1 + 1 = 2

LC = 1 + 0 + 0 = 1

where L represents the final score of each class. In the present case, the class C
is assigned to the test point since it shows the smallest final score L, which leads
to a misclassification (true class: B, see Table 2.3). It is interesting to note that
a simple vote would lead to the same result, i.e. a misclassification. On the other
hand, the probability based codewords lead to the following scores:

LA = |1 − 0.2| + |1 − 0.3| + |0.5 − 0.5| = 1.5

LB = |0 − 0.2| + |0.5 − 0.3| + |1 − 0.5| = 0.9

LC = |0.5 − 0.2| + |0 − 0.3| + |0 − 0.5| = 1.1

Where class B was correctly assigned to the test point. Therefore, whenever possi-
ble (i.e. when the classifier returned probabilities), the probability based codewords
were used to perform the ECOC scheme.

Finally, multiclass classification can also be performed by replacing the logistic
function by a softmax function λ(fc(X)) for each class:

λ(fc(X)) =
exp(fc(X))

∑K
c′=1 exp(fc′(X))

(2.29)
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In a GP formulation, generalisation to a multi-class case can be performed quite
directly in the Laplace method, but not in the EP method, such that Laplace ap-
proximation was used in the case of multi-class problems [Rasmussen and Williams,
2006]. While many other multiclass models exist (e.g. DAGSVM, Platt et al., 2000,
. . . ), it was shown that their use doesn’t bring any improvement in terms of gener-
alization ability when compared to combinations of binary classifiers [Hsu and Lin,
2002; Rifkin and Klautau, 2004]. Therefore, we limited our choice of multiclass
models to a multiclass GP, with Laplace inference.

2.5.7 Softwares

All methods described here and in following chapters were implemented in Mat-
lab (Mathworks). Preprocessing and univariate analysis of the images was per-
formed using SPM8 (www.fil.ion.ucl.ac.uk/spm). The SVM implementation
used is the LIBSVM toolbox (Chang C. C. and Lin, C. J., www.csie.ntu.edu.tw/

~cjlin/libsvm) with a PROBID interface (A. Marquand and J. Mourão-Miranda,
www.brainmap.co.uk), which is a standard implementation of a classical SVM as
is commonly employed in decoding neuroimaging data. RVM was implemented
by M. Tipping (www.miketipping.com, Tipping [2001]). The GP implementation
used is the compiled version coded by C. E. Rasmussen and C. K. I. Williams (Ras-
mussen and Williams [2006], www.gaussianprocess.org/gpml) and also interfaced
in PROBID.

The codes written during the first part of this work (i.e. for the neuroscience
application) helped in the implementation of a new software, in collaboration with
J. Mourão-Miranda, J. Richiardi, J. Ashburner, A. Marquand, C. Chu, C. Phillips,
J. Rondina and M.J. Rosa. This software, called PRoNTo (Pattern Recognition for
Neuroimaging Toolbox, Schrouff et al., 2013, www.mlnl.cs.ucl.ac.uk/pronto),
was then used in the second part of this work (clinical application).

www.fil.ion.ucl.ac.uk/spm
www.csie.ntu.edu.tw/~cjlin/libsvm
www.csie.ntu.edu.tw/~cjlin/libsvm
www.brainmap.co.uk
www.miketipping.com
www.gaussianprocess.org/gpml
www.mlnl.cs.ucl.ac.uk/pronto
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Classically, brain operations are considered as essentially reflexive and mainly
driven by external stimuli. In this perspective, brain function is predominantly
geared to interpreting incoming stimuli and programming motor output. Another
view posits that the bulk of brain’s activity is intrinsic, spontaneous (i.e., it emerges
in the absence of any identified external stimulus), and essentially aims at main-
taining and processing information [Raichle, 2006]. Consistent with this view, the
energy required for the brain to respond to external stimuli is extremely small com-
pared to the ongoing amount of energy that the brain normally and continuously
expends [Raichle and Mintun, 2006]. It is assumed that perception, memory, and
even the stream of consciousness result from this spontaneous activity. In conse-
quence, the characterization of spontaneous brain activity now stands as a central
issue in understanding how human brain processes information conveyed by exter-
nal stimuli or endogenous processes, including those related to past experience or
current stream of thoughts.

The application of machine learning based models on functional neuroimaging data
has recently made it possible to decode mental states, based on objective measure-
ments of regional brain activity. Although decoding spontaneous brain activity
stands as a fascinating challenge, it faces a number of technical, methodological
and ethical difficulties. First, the absence of objective control of mental representa-
tions associated with spontaneous brain activity complicates the signal extraction
and feature selection steps. Second, to be able to decode, a model needs to be
trained on a specific problem. This is in contradiction with the multiple possi-
ble states thought to take place during spontaneous activity and would suppose a
model with innumerable categories to distinguish. Finally, decoding spontaneous
brain activity brings up ethical questions: how much would you like your personal
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thoughts to be revealed? Although mind reading is still far away, applications of
machine learning based models to lie detection is now investigated, showing that
ethical issues already arise and should be carefully taken into account.

A first step in the decoding of spontaneous brain activity would be to consider
experimental conditions in which the nature of spontaneously active mental repre-
sentations is constrained by the experimental protocol. Such a situation can arise
in the framework of a study of human declarative memory, and more specifically
in the context of memory consolidation.

In this chapter, we briefly introduce the theories on memory, and memory con-
solidation, as well as previous attempts to characterize its functioning in animals.
State-of-the art methods to investigate this phenomenon in healthy humans are
then presented in section 3.2, along with their promising results and limitations.
Finally, section 3.3 presents how machine learning based models might bring new
insight on the characterization of mnemonic traces and summarizes the aim of the
present study.

3.1 Memory consolidation

Although being able to memorize information is necessary for living, little is known
about how new memories are formed and can then be accessed as long as years after.
According to [Gazzangina et al., 2002], the theory of memory actually assumes three
steps:

• the encoding, which is the processing of incoming information.

• the mnemonic consolidation, during which a permanent record of that infor-
mation is created and maintained.

• the retrieval, which consists in retrieving the information on purpose.

Memory consolidation is a necessary step to retain information in the long-term
(from days to years). Current research suggests that the brain activity patterns
generated during the encoding phase are spontaneously repeated and that this
repetition arises predominantly when the cortex is “off-line”, i.e. not engaged in
the processing of external stimulation, which is referred to as spontaneous brain
activity. Mnemonic traces have hence been detected in animals during different
vigilance states such as Non-Rapid Eye Movement (NREM) sleep [Ji and Wilson,
2007], Rapid Eye Movement (REM) sleep [Louie and Wilson, 2001] or resting-state
wakefulness [Hoffman and McNaughton, 2002]. Their exact timing and duration
is still poorly characterized but previous works suggest that the time frame of
these patterns is compressed or expanded according to an unknown scaling factor,
SF [Louie and Wilson, 2001; Lee and Wilson, 2002]. [Ji and Wilson, 2007] also
showed that the number of mnemonic traces decreases in time, starting around 30
minutes after the encoding. These studies therefore support the theory of memory
consolidation and give hints on its temporal aspect.
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Regarding its spatial location, the theory suggests that episodic memory consoli-
dation takes place in the hippocampus [Gazzangina et al., 2002; Peigneux et al.,
2006]. However, case studies have shown that impairing the medial temporal lobe
(containing the hippocampus) did not impair remote memories, suggesting that
consolidated memories are not located in the hippocampus, but rather in the neo-
cortex [Gazzangina et al., 2002]. This further implies that memory consolidation
moves the burden of retention from hippocampo-noecortical circuits to purely cor-
tical long-term stores, as suggested by [Ji and Wilson, 2007].

Detailed characterization of firing replays during memory consolidation revealed
their specific temporal structure: [Louie and Wilson, 2001] and [Lee and Wilson,
2002] showed a reactivation of temporally sequenced information in sleeping rats
and [Foster and Wilson, 2006] discovered a reverse replay of behavioural sequences
in the awake state in rats. Although the direction of the replay is different, it seems
that the structure of the learning material (referred to as the "phase" information)
has to be maintained during consolidation of memories.

Finally, [Girardeau et al., 2009] showed that disrupting memory consolidation by
hippocampal stimulation during post-training sleep resulted in impairments in be-
havioural performance to a spatial memory task, suggesting that the “strength” of
reactivation could be linked to behavioural performance.

While these studies provide some evidence supporting the theory of memory con-
solidation, they were performed on animals, using intra-cranial recordings. Apart
from the obvious fact that intra-cranial recording cannot be done on healthy hu-
mans, the conclusions hold for individual neurons only and need to be verified for
large neuronal populations. This is particularly the case for the hypothesis regard-
ing the phase information: showing that discharges of individual neurons follow the
sequence imposed by previous waking activity does not show whether this firing in
sequences involves large neuronal populations. Furthermore, in most experiments,
the animals had to be trained before the experiment, such that the actual learning
achieved could not be estimated.

3.2 State-of-the art

In humans, non-invasive neuroimaging techniques such as PET and fMRI have
been used to investigate memory consolidation. Spontaneous activity was acquired
in “resting-state” sessions, during which the subject lies (in the scanner), eyes
closed, and is not submitted to any external stimulation. Analyzing rest sessions
represents a big challenge, due to their dimensionality (number of scans ×m, the
number of voxels) and to the absence of “ground truth”. Up to now, researchers
aimed at reducing the dimensionality of the data [Margulies et al., 2010], mostly
by computing activation maps (GLM analysis) or by selecting Regions of Inter-
est (ROIs). This allowed indirect characterization of mnemonic traces, through
its effect on other tasks [Peigneux et al., 2006] or via seed-correlations [Tambini
et al., 2010]. Although these studies only brought indirect support of the theory
of memory consolidation, they are in line with what was shown in animals using
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intra-cranial recordings (see further).

Previous work on memory consolidation can be classified in two groups: the "acti-
vation" studies and the analyses of ROI interactions.

3.2.1 Activation studies

Activation studies usually consist in searching brain areas responding to an exter-
nal stimulation. In the case of memory consolidation, GLM analyses are usually
performed on both the learning task and the rest sessions and the obtained maps
are then compared in search for (statistical) overlap.

Experience-dependent reactivations in the processing of mnemonic traces could be
observed during human REM sleep following a sequence learning task [Maquet
et al., 2000]. Moreover, [Peigneux et al., 2003] showed that this reactivation re-
flected the reprocessing of high-order components of sequence learning, i.e. the
sequential contingencies contained in the learning material. They further showed
that the strengthening of memories only occurs when the learning material is struc-
tured, which is in line with the work of [Louie and Wilson, 2001] on rats.

When investigating declarative memories (in contrast with motor sequence learning
which involves implicit, non-declarative memories), [Peigneux et al., 2004] showed
that the amount of hippocampal activity during NREM sleep (and more particu-
larly in the deep sleep stage) was related to the subject’s overnight improvement
in behavioural performance. This confirms the hypothesis linking the “strength”
of the reactivation to the behavioural performance.

As shown in animals, evidence about memory consolidation was also found during
active wakefulness following a learning task [Peigneux et al., 2006]. The authors
indeed showed that the brain responses to an unrelated task were modulated by
a previous learning task and that this post-training activity correlates with be-
havioural performance.

While these studies support the theory of memory consolidation, they do not al-
low a direct characterization of mnemonic traces during resting-state wakefulness.
Furthermore, some activation studies are not immune to confounds such as order
effects not controlled for or, more importantly, concurrent practice of the learned
material.

3.2.2 Interactions between ROIs

When computing interactions between regions of interest in the search of mnemonic
traces, the functional connectivity between specific ROIs thought to be activated
during the learning process is usually computed.

Different techniques exist to select and compute functional interactions between
ROIs. This work focuses on two main procedures: the seed-correlation and spatial
network analyses, which both average the signal within each ROI, giving mROI (the
number of ROIs) time-courses serving as the basis to compute interactions between
ROIs.
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A seed-correlation analysis is simply the manual selection of ROIs. This selection
can be based on an a priori hypothesis about the problem or on (previous) ac-
tivation studies. After signal averaging within each ROI, comparison of different
resting conditions is performed via the correlation coefficients computed between all
possible pairs of ROIs. Regarding the detection of mnemonic traces, this technique
has proven useful to detect changes in ROI interactions before and after a mem-
ory task. More specifically, Tambini et al. [Tambini et al., 2010] investigated the
off-line transfer of information between the hippocampus and the neocortex. They
showed an enhanced marginal correlation between the hippocampus and neocortex
(lateral occipital cortex) during post-task rest compared to baseline rest, which
predicted individual differences in later associative memory. While their results
are promising, they do not directly characterize mnemonic consolidation. Further-
more, this technique presents the disadvantage of an arbitrary selection of ROIs
as well as becoming quickly intractable since the number of pairwise comparisons

increases according to O(
m2

ROI

2
), with mROI the number of regions.

A more advanced technique relies on the selection of extended large-scale func-
tional brain networks, which consist of segregated regions (potentially spread over
the brain) that interact in order to perform a functional task [Marrelec et al.,
2008]. When using networks of regions, integration measures can be computed
hierarchically, i.e. at the whole brain, network and ROI levels. This hierarchical
decomposition of the problem enables a deeper insight on the results and reduces
the tractability issue since interactions are not computed pairwise but on a within-
and between-networks basis (usually no more than 10 networks, [Damoiseaux et al.,
2006]), based on the entropy of each ROI ( O(mROI)). The analysis of interactions
within- and between-networks allowed investigating the differences in integration
between various states of consciousness, such as between wakefulness and sleep
[Boly et al., 2012] or wakefulness and anaesthesia [Schrouff et al., 2011].

To compare the results from machine learning based models with state-of-the art
methods, integration within- and between-networks will be computed to try to de-
tect mnemonic traces. More specifically, an increase in integration between ROIs in
the hippocampus and ROIs in the neocortex would be expected. Due to the visual
and auditory character of the considered experiment (see section 4.2), changes in
integration within the early visual and/or auditory areas would also be expected.

3.3 Aim of this study

When looking for mnemonic traces, spatially distributed and, more importantly,
transient events are expected. In the analysis of ROI interactions, the whole time
series is reduced to only one measure per ROI (its entropy or its pair-wise cor-
relation coefficient). This temporal reduction is also performed in the activation
studies since they rely on the β parameters of a GLM analysis (one parameter per
condition and per voxel). We can therefore suppose that these techniques are not
the most appropriate to directly highlight memory consolidation or characterize
its temporal evolution. Furthermore, they usually rely on a (manual) selection of
ROIs, which can lead to biases in the results as explained in [Schrouff et al., 2011].
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Due to the limitations of both the activation studies and ROI interaction analyses,
models based on machine learning were considered to help supporting the theory of
mnemonic consolidation. The first argument in favour of machine learning based
models is that they detect patterns and therefore do not assume the voxels to be
independent or reduce the spatial dimensionality of the data. Mnemonic traces can
thus be assimilated to the reactivation of patterns of brain activity generated during
encoding. Furthermore, there is no need to reduce the temporal dimension since
the scans can be treated as a succession of samples. This enables the detection
of mnemonic traces in each scan and thereby allows investigating the temporal
evolution of memory consolidation.

In this work, we aim at finding evidence supporting the theory of memory con-
solidation by characterizing its different aspects as suggested by previous studies.
More specifically, a specific experiment was designed, comprising a control and
a memory conditions, both consisting of a control or memory task, respectively,
flanked by two rest sessions (see section 4.2). If the theory is valid, we expect to
find:

1. Scans in the resting-state sessions which can be linked to the task [Hoffman
and McNaughton, 2002], named here reactivation patterns. Note that the
detection of false positives is expected, such that reactivation patterns should
be found in all the considered rest sessions.

2. The proportion of these reactivation patterns should be higher in the post-
task than in the pre-task rest session in the memory condition, their difference
being (significantly) larger than in the control condition [Tambini et al., 2010].

3. The increase in proportion of scans linked to the task should be related to the
subject’s behavioural performance, and this for the memory condition only
[Peigneux et al., 2006].

4. If the learning material contains temporally structured spatial locations, the
strengthening of the material should follow this structure (or its reverse)
[Louie and Wilson, 2001; Lee and Wilson, 2002; Foster and Wilson, 2006].

5. The proportion of scans linked to the task in the post-task rest session (for
the memory condition) should decrease along time [Ji and Wilson, 2007].

Finally, a prospective scaling factor, SF [Louie and Wilson, 2001], will be investi-
gated since no previous work could study this parameter of memory consolidation
in resting-state healthy humans.

Aim: Apply machine learning based models to detect and characterize patterns
of brain activity generated during a learning task unconsciously rehearsed during
following spontaneous activity.
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In this chapter, the data considered to investigate mnemonic consolidation is pre-
sented. Particular attention was paid to the design of the experiment, especially
in terms of means of control since this was a limitation in previous studies. The
techniques envisaged to model both the constrained and spontaneous brain activ-
ity are further exposed. Finally, section 4.7.2 details the computation of functional
interactions between resting-state networks, as detected on the spontaneous brain
activity sessions.

4.1 Population

A group of 14 volunteers (7 females), aged between 19 and 29 years (mean 24.44),
participated in the study. This study was approved by the Ethical Committee of
the Faculty of Medicine of the University of Liège. All participants were fully in-
formed, gave their written informed consent and were paid for their participation.
All included participants were non-smoking, healthy right-handed students. The
volunteers were screened for anxiety (Beck anxiety inventory,[Beck et al., 1988]),
depression (Beck depression inventory II, [Steer et al., 1997]), sleep quality (Pitts-
burgh sleep quality index, [Buysse et al., 1989]), chronotype (Horne and Ostberg
morningness - eveningness questionnaire, [Horne and Ostberg, 1976]), excessive
daytime sleepiness (Epworth sleepiness scale, [Johns, 1991]), laterality (Edinburgh
Inventory, [Oldfield, 1971]), amount and content of daydreams (Imaginal Process
Inventory- www.themeasurementgroup.com/evaluationtools/ipi). The partici-

www.themeasurementgroup.com/evaluationtools/ipi
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pants presented no medical, traumatic, psychiatric or sleep disorders. During the 7
days preceding the experiment, volunteers followed a regular sleep schedule, verified
by wrist actigraphy and sleep diaries.

4.2 Experimental Design

fMRI acquisition for all the volunteers was split into two main activation condi-
tions: a control condition and a memory condition, their order being randomized
(Figure 4.1). The control condition (represented by “o”) consisted in an auditory
discrimination task based on the oddball paradigm [Squires et al., 1975], flanked
by two rest sessions lasting 10 minutes each and further referred to as R1o and
R2o, respectively.

Figure 4.1: Experimental design. Subjects underwent a control task flanked
by two rest sessions and a memory task, flanked by two rest sessions and followed
by a recall or mental imagery session. A functional localizer preceded the memory
condition to avoid novelty effects. Finally, the subjects were tested on their learning
of the memory task outside the scanner.

The memory condition (represented by “m”) consisted in five successive sessions:

• Localizer. During the first session, images of faces, buildings and animals
were presented in random order at the centre of the screen during 500 ms
with an inter-stimulus interval of 1500ms (Figure 4.2, A). The purpose of
this session was both to identify brain areas responding to the three image
types and to eschew novelty effects during subsequent sessions.

• R1m. Pre-task rest session, eyes closed during 10 minutes. No instruction.

• Exploration. During the memory task, the images shown during the lo-
calizer session were displayed one at a time for 3 seconds, each image being
assigned a specific location on the screen. The order of presentation followed
a predefined sequence of contiguous screen positions in such a way that vol-
unteers had the impression of following a path throughout a bidimensional
maze (Figure 4.2, B). The complete maze consisted of three blocks of 27
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consecutive images within which the 3 categories of images were always pre-
sented in the same order (i.e. 9 faces, 9 buildings and 9 animals). Between
blocks, a fixation cross was displayed for 15 to 18 seconds. To ensure optimal
encoding, the whole path was repeated five times during the scanning session.
Volunteers were instructed to pay attention to each image, to their location
on the screen and to their succession.

• R2m. Post-task rest session, eyes closed during 10 minutes. No instruction.

• Mental imagery. During the last session, volunteers were presented with
54 memory tests. During each test, two images, simultaneously displayed
on the screen for 4 seconds, represented the starting and target positions of
a trajectory that the volunteers would have to follow mentally (Figure 4.2,
C). The mental trajectories included 3 to 6 images (average 4.5) of a same
category. For each image that they could conjure up during this mental travel,
volunteers had to signal by a key press whether it was a face, a building or
an animal (one finger and key per condition). However, participants had
the possibility to skip a path if they could not remember any part of it.
The expected number of images of each type was perfectly balanced between
categories.

A memory test was finally performed outside the scanner, in order to behaviourally
assess the accuracy of the spatial knowledge acquired by the volunteers. They
were presented with the previously seen pictures and 48 novel images in random
order. For each trial, an image was displayed on the screen at a specific location
and participants had to specify whether this image was part of the maze and, if
they believed it was, if it was displayed at its correct location. The behavioural
performance was then computed using a d′ [Green and Swets, 1966] measure, which
takes into account the percentage of hits (i.e. recognition when the image has been
previously displayed) and of false alarms (i.e. recognition although the image was
not included in the memory task).

The classification procedures were first applied on the exploration and mental im-
agery sessions. These were designed such that the participant performed a totally
controlled task during the exploration session, whereas during mental imagery,
the pace and succession of mental representations were not constrained by external
stimuli but only by the volunteer’s capacity to retrieve the learned stimuli and their
location. The latter led to possibly unbalanced data across categories if one type
of images was better remembered than the others. A further characteristic of the
exploration session was that within a block, no rest period was introduced at the
transition between images of different categories. As a consequence, fMRI signals
of different classes of events were expected to overlap, making correct classification
more complex. Furthermore, during the mental imagery session, the event dura-
tion was not fixed and depended entirely on the speed at which each participant
recalled the requested images. This resulted in event durations varying between
200 ms and 4000 ms, with most events during less than 2000 ms.

Finally, the previously built models were applied to all rest sessions (both from
the control and memory conditions) to try to highlight mnemonic traces. The pro-
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Figure 4.2: Illustration of the experimental setup for the memory con-
dition. A Example of images of faces, buildings and animals presented to the
subject. In total, 81 different images were used. B Synoptic view of the maze,
green areas stand for images of faces, blue areas, buildings and yellow areas, an-
imals. The succession of three areas of each color is called a block. C A mental
trajectory begins with the start and stop points being displayed on the screen.
The subject then travels mentally in the maze, mentally visualizing all the images
comprised in the path and pressing a key every time he visualizes the required
image.

portions of detected patterns were then compared across conditions and correlated
with the participant’s behavioural performance.

4.3 Data acquisition

Functional MRI time series were acquired on a 3T head-only scanner (Magnetom
Allegra, Siemens Medical Solutions, Erlangen, Germany) operated with the stan-
dard transmit-receive quadrature head coil. Multislice T2⋆-weighted functional
images were acquired with a gradient-echo echo-planar imaging sequence using ax-
ial slice orientation and covering the whole brain (34 slices, FoV = 192×192 mm2,
voxel size= 3×3×3 mm3, 25% interslice gap, matrix size 64×64×34, TR = 2040
ms, TE = 30 ms, FA = 90◦). The three initial volumes were discarded to avoid
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T1 saturation effect. The static field inhomogeneities were measured using a field
mapping sequence (32 slices, FoV =220×220 mm2, voxel size = 3.4×3.4×3 mm3,
30% interslice gap, TR of one slice=517 ms, TE= 4.92 and 7.38 ms, FA= 90◦),
using the same brain coverage and slice orientation as for the EPI sequence. Fi-
nally, a high-resolution T1-weighted image was acquired for each participant (3D
MDEFT Deichmann et al., 2004; TR of one slice = 7.92 ms, TE = 2.4 ms, TI =
910 ms, FA = 15◦, FoV = 256 ×224×176 mm3, 1 mm isotropic spatial resolution).

4.4 Signal extraction

For the sessions considered for further modelling, the whole time series of all vox-
els were extracted. The data matrix X was then adjusted for movement effects
(estimated by realignment parameters) and low frequency drifts (cutoff: 1/128
Hz) using a GLM, as described in section 2.5.2. For exploration and mental im-
agery, the signal corresponding to stimulus onsets was then extracted, considering
a hemodynamic response function (HRF) delay of 6 seconds (according to Frack-
owiak et al., 2004) and an HRF width of 0 seconds to keep as many samples as
possible. To avoid decoding the signal linked to motor activity in the mental im-
agery session, the scans selected for further classification were the ones preceding
the key presses (after correction for HRF delay). The signal was finally averaged
over specific time-windows to increase the Signal-to-Noise Ratio (SNR; Kamitani
and Tong, 2005; Mourão-Miranda et al., 2006). For the exploration session, the
average was performed over the time the stimulus was presented (i.e. 3 seconds).
For the mental imagery session, this average was performed over the interval be-
tween two key presses, with a maximum of 2 scans (i.e. 4.080 seconds) to avoid
the inclusion of episodes of task-unrelated thoughts. For rest sessions, each scan
was considered as a sample and the adjusted data matrix directly entered the test
phase of the classification, without any further treatment.

4.5 Feature selection

Feature selection consists in selecting a subset of features which contains as much
information as the whole set with the advantages of reducing memory requirement
[Formisano et al., 2008] and increasing the signal-to-noise ratio, thereby improv-
ing overall performance [Guyon and Elisseeff, 2003]. There are three families of
methods to select features (please see [Guyon and Elisseeff, 2003] for a complete
description of each method):

• filters, which rank the variables according to a predefined criterion. A filter
is a preprocessing step, independent of the choice of the predictor.

• wrappers, which build subsets of features according to their relevance to a
given classifier.

• embedded methods, which penalize large number of features during the esti-
mation of model parameters.
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In this work, a univariate filter based on the results of a GLM analysis and a
multivariate wrapper were considered, selecting features according to the accuracy
of SVM classifiers, both separately and then joined as suggested in [Guyon and
Elisseeff, 2003].

The univariate filter determined (from a GLM analysis) the subset of “active”
voxels (i.e. whose activity was statistically significantly correlated with the three
conditions, Mitchell et al., 2004). From the resulting F -maps, two voxel sets were
selected: (1) all voxels above an F-threshold of 0.5 (referred to as “global GLM
feature selection”) and (2) the 1000 most significant voxels [Shinkareva et al., 2008]
(referred to as “specific GLM feature selection”). This number of 1000 was chosen
as the trade-off between an under-constrained space (dimensionality much larger
than 1000), which might lead to overfitting, and an over-constrained space (dimen-
sionality much smaller than 1000), which would make the second feature selection
step useless. The GLM feature selection was performed on the training set only,
to ensure unbiased estimations of the accuracy.

As mentioned earlier, the weights of a machine learning model represent the rela-
tive contribution of each of the variables to the classification. These weights can
then be used as a criterion to select features: a binary SVM using linear kernels
was used to rank the voxels according to their “discriminating power”, which was
computed from their specific weights [Mitchell et al., 2004]. The voxels with the
largest absolute weights were selected for further modelling. The number of se-
lected voxels systematically varied from 5 (per condition and binary comparison)
to 150 at most, by increments of 25 (respectively mmin, mmax and ∆m in Figure
4.3). These parameters were fixed arbitrarily. At each iteration, the sum of the ac-
curacy of the three binary models on a left-out block was taken as a global accuracy
measurement. In general, the addition of relevant features increases the accuracy
of the classification while adding irrelevant features leads to a decrease in accuracy
[Bishop, 2006]. When recursively adding features, the global accuracy is therefore
expected to increase and then decrease (when irrelevant features are being added
to the relevant ones). The set of voxels leading to the highest global accuracy (i.e.
when the global accuracy starts decreasing compared to the 2 previous iterations)
was then selected for the classification analysis (see Figure 4.3 for an illustration
of the process). Features are thus added recursively following a “Recursive Fea-
ture Addition” (RFA) procedure, in contrast to “Recursive Feature Elimination”
in which features are recursively discarded [De Martino et al., 2008]. RFA can then
be assimilated to a forward wrapper feature selection, with a cost function based
on the global accuracy as objective.

4.6 Modelling constrained brain activity

Classification was performed using binary SVM and GP classifiers with the ECOC
approach to obtain multiclass predictions. While exploration and mental imagery
can be treated the same way, rest sessions present a different issue which has
to be solved separately. Therefore, the (semi-) constrained brain activity was first
modelled by testing different combinations of feature selection and classifiers. Then,
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Figure 4.3: Recursive Feature Addition (RFA) process and Cross-
Validations (CV) used in procedures 3 to 5. The accuracy measure is presented
in the left box: from the outer CV, one block (containing nblock events) is left out
which will be used later to test the final classification accuracy and does not enter
the feature selection process. The N − 1 other blocks enter the RFA process (right
box) to define the optimal set of features, which will be used to build the model:
the inner CV tests an SVM model built on N − 2 blocks, leading to a value for
the global accuracy (sum of the accuracies obtained for each binary comparison).
This inner CV loop is repeated until the accuracy curve starts to decrease and
hence a maximum value of global accuracy is reached, corresponding to an optimal
subset of variables. N represents the number of blocks, mmin (respectively mmax)
represents the minimum (respectively maximum) number of selected features and
∆m, the step size.

the procedure leading to the best results was selected for modelling the rest sessions
and to detect mnemonic traces.

The different feature extraction, GLM and Recursive Feature Addition (RFA), and
classification (SVM and GP) methods were combined in five distinct “procedures”
(Table 4.1), which were conducted as follows:

• Procedure 1: The specific GLM feature selection method identifies the 1000
most active voxels in the considered experimental design. SVM binary clas-
sification is then performed for each pair of image types.

• Procedure 2: The specific GLM feature selection method identifies the 1000
most active voxels in the considered experimental design. GP binary classi-
fication is then performed for each pair of image types.
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• Procedure 3: The global GLM feature selection method identifies all active
voxels above the F -threshold of 0.5. Then, RFA is performed with a range
of selected features from 5 to 150, selecting the number of features leading to
the best generalization accuracy. GP classification is then performed using
this number of selected features.

• Procedure 4: The specific GLM feature selection method identifies the 1000
most active voxels in the considered experimental design. RFA is then per-
formed with a range of selected features from 5 to 150 [Shinkareva et al.,
2008], selecting the number of features leading to the best generalization ac-
curacy. GP classification is then performed using this number of selected
features.

• Procedure 5: The specific GLM feature selection method identifies the 1000
most active voxels in the considered experimental design. RFA is then per-
formed with a range of selected features from 5 to 150 [Shinkareva et al.,
2008], selecting the number of features leading to the best generalization ac-
curacy. SVM classification is then performed using this number of selected
features.

Table 4.1: Outline of the different combinations of features extraction and classi-
fication methods used in the present study.

Feature selection Classification technique

GLM SVM SVM GP

Procedure 1 specific x

Procedure 2 specific x

Procedure 3 global x x

Procedure 4 specific x x

Procedure 5 specific x x

With procedures 1 and 2, features were only selected by a GLM analysis and
accuracies were computed in terms of leave-one-block-out cross-validations: at each
step, one block containing nblock data (i.e. 27 consecutive images of faces, buildings
and animals for the maze exploration session, and all the mentally represented
images of 6 consecutive paths for the mental imagery session) was left out as a test
set while the others were used as a training set to build the SVM or GP model. With
procedures 3, 4 and 5, a nested leave-one-block-out cross-validation was needed
(Figure 4.3) to ensure the independence of feature extraction and classification
[Mitchell et al., 2004; Guyon and Elisseeff, 2003]. The inner cross-validation was
used to determine the number of features to be selected by RFA and therefore
obtain an optimal SVM model on N-1 blocks while the outer leave-one-block-out
cross-validation tested the built SVM or GP model. The outer cross-validation
was performed on the same folds for all procedures, which therefore allowed their
comparison.
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Due to class imbalance in the mental imagery session, balanced accuracies were
computed (as the mean of the class accuracies) to take the different frequencies of
the classes into account and therefore replaced the total accuracy. To assess the
significance of the classification of each procedure on each participant, permutations
of the training set labels were performed (labels were permuted within each block
to preserve class frequencies in each temporally correlated block). P -values were
then associated to the balanced accuracy value of each participant, by comparing
it to the balanced accuracy obtained when shuffling the labels 100 times per cross-
validation step (i.e. 1500 times for exploration and 900 times for mental imagery
in total).

Finally, the different procedures were compared using Friedman tests based on the
balanced accuracy across participants but also on the accuracies for each class,
which allowed a better insight on the particularities of each modelling technique.
In particular, the proportions of Support Vectors (SV) for each class was computed
for the three SVM binary classifiers of procedure 5 to investigate the effect of an
unbalanced data set on the SVM technique and link them to class accuracies.

4.7 Modelling spontaneous brain activity

As mentioned in chapter 3, analysing spontaneous brain activity is usually per-
formed by reducing the temporal and spatial spaces (spatial network analysis or
analysis of Regions of Interest, ROIs). However, when looking for mnemonic traces,
spatially distributed and transient events are expected. Therefore, it seems that
neither of those methods would be able to directly highlight memory consolidation.
Machine learning based models were hence considered, which do not (directly) re-
duce the temporal or spatial space.

4.7.1 Machine learning based models

Assessing the modelling of spontaneous brain activity (as in rest sessions) is a
bigger challenge due to the absence of ground “truth”: there are no means of
checking the accuracy of the model or comparing different rest sessions. To solve
this issue, the “confidence” of the classifier was used, rather than its predictions.
It was indeed assumed that if a scan was really linked to the task, the classifier
would be more confident about its prediction than for a random prediction. This
confidence measure allowed assessing scans which were significantly linked to the
task. Finally, to compare the memory and control conditions, each rest session was
summarized by only one value.

4.7.1.1 Confidence of the classifier

More specifically, the model built on the mental imagery session was applied to each
scan of the rest sessions. In this case, the ECOC approach was not used to associate
a label to each scan but to assess the confidence of the prediction by computing
the distance between the two most probable classes (in terms of distances to the
codewords in Table 4.1, [Dietterich and Bakiri, 1995]). A unique measure, referred



48 Material and Methods

to as L, is therefore attributed to each scan and is computed as:

L = Lk1 − Lk2 (4.1)

with Lk1 = min
k=1...K

Lk and Lk2 = min
k=1...K\k1

Lk, the difference between the two most

likely classes.

The baseline-level of L was then computed using permutations of the training labels
(Figure 4.4, P = 1000). For each permutation, the maximum of L was considered
(as in the correction for multiple comparisons), which allowed comparing the L
value of each scan (Li) to the 1000 L values of the permutations and thereby asso-
ciating a probability to each scan. The proportion of scans linked to the memory
task was then computed as the percentage of scans for which the associated p-value
was smaller than 0.05.

Lperm = Lp, p = 1 . . . P (4.2)

p(i) =
Lperm > Li

Lperm

(4.3)

P r(Rest) =
1

n

n
∑

i=1

p(i) < 0.05 (4.4)

For each participant, four values were obtained (one per rest session), referred to
as P r.

To support the theory of mnemonic consolidation, an increase in Pr from pre-task
to post-task rest in the memory condition should be observed, and this increase
should be significantly larger than that observed in control condition. This is the
first hypothesis and can be translated as:

P r(m) = P r(R2m) − P r(R1m) > P r(o) = P r(R2o) − P r(R1o) (4.5)

The significance of the result being assessed by a Friedman statistical test.

The second hypothesis relates to the link between the proportion of mnemonic
traces and the participant’s behavioural performance. According to the theory, the
higher P r(m), the higher the participant’s performance, and there should be a pos-
itive correlation between P r(m) and d′, denoted by Cm. This correlation coefficient
should be larger than the one obtained for the control condition (denoted by Co).
To assess the significance of both Cm and Co, the values of d′ were randomly per-
muted 1000 times, which allowed computing the baseline level of both correlation
coefficients and thereby associating a p-value to Cm, Co and also to their difference
Cm − Co.

4.7.1.2 Temporal structure of memory consolidation

The temporal structure of the mnemonic consolidation was then investigated by
assuming that the sequence followed in the exploration session (i.e. faces-buildings-
animals) would be replayed during the rest session. When considering a scan
significantly linked to the task (i.e. p(i) < 0.05), its transition should hence follow
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Figure 4.4: Baseline level of the confidence measure. The baseline level of
the confidence measure, L, is computed by permuting the labels of the training set
(mental imagery) and applying the built model on the test set (rest sessions). For
each scan and permutation, one measure of L is obtained (Li). The maximum of
Li per permutation is retained (Lp) to be compared with each of the Li computed
using the true labels.

Table 4.2: Possible transitions for the considered experimental design. The diag-
onal terms represent identical transitions. The blue off-diagonal terms represent
transitions according to the forward sequence, i.e. the sequence designed in the ex-
ploration session. The red off-diagonal terms represent the inverse sequence, which
will be used as control. F:faces, B:buildings, A:animals, i:ith scan, x:number of
transitions.

Fi Bi Ai

Fi−1 × × ×

Bi−1 × × ×

Ai−1 × × ×

the sequence (Figure 4.5). In this experiment, there are 3 classes, and 9 possible
transitions which can be represented by the Table 4.2.

In this table, the selected transitions are the ones from i − 1 to i (Figure 4.5). It
is hence possible that the i − 1th scan is not significantly linked to the task. This
should especially arise in the case of false positives or during the start of a succession
of scans with p < 0.05 (further referred to as an “episode”). Although this might
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Figure 4.5: Investigating the phase information. The p-value of each scan
can be binarized into “significant” (sign.) or “not significant” (n.s.) to form a
vector of 0s and 1s of the size of the time-series (t). To investigate the phase
information, a transition matrix was built, counting the number of transitions
from one class to another, considering the transition between the scan at (t-1) and
the scan significantly linked to the task at (t). The transitions taken into account
are represented by arrows.

result in a bias, the bias should be equally present in all rest sessions and both
conditions. Increases in proportions of transitions corresponding to the sequence
from the pre-task to the post-task rest session will therefore be investigated and
compared between the memory and the control conditions.

Φ(Rest) =

∑

p(i)<0.05 ×

n
(4.6)

with × representing any transition following the sequence imposed during learning
and n, the total number of scans in the considered rest session.

To ensure that this increase is not only reflecting an increase in Pr, the inverted
sequence will be used as control, with the hypothesis that there is no increase
in Φ from R1m to R2m when considering the inverted sequence. Regarding the
diagonal terms corresponding to identical transitions, they could pertain to either
the forward or inverted sequence and will therefore not be taken into account.

The fourth and last hypothesis suggests a decrease in P r(m) with time. This is
investigated by dividing the time-series in two parts, early and late, and computing
P r1 and P r2 for each rest session. If the hypothesis is verified, a decrease in P r
should be observed in time, i.e. P r1(R2m) > P r2(R2m). For the other sessions,
the temporal evolution of P r should be random, but not necessarily stable or
increasing. Performing statistical tests on the decreases in P r would therefore be
difficult and will not be conducted in this work. Only a qualitative impression can
thus be given.

A possible scaling factor (i.e. factor of compression or expansion of the pattern
time frame) was also investigated by computing the number of successive scans sig-
nificantly linked to the task. By assuming that most false positives will be isolated
(i.e. with a duration of 1 scan), the proportions of episodes with a duration larger
than a certain threshold (ranging from 1 to 10 scans), as well as their duration,
were computed for each rest session and then compared. This is illustrated by a
toy example in Figure 4.6.
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Figure 4.6: Investigating the Scaling Factor. The p-value of each scan can
be binarized into “significant” (sign.) or “not significant” (n.s.) to form a vector
of 0s and 1s of the size of the time-series (t). An episode is the succession of one
or more scans with p < 0.05. To investigate the Scaling Factor, SF, we computed
the proportion and duration of episodes lasting a defined threshold or more. If the
threshold is set to 2 scans, the duration is 4.5 scans (= 5+4

2
), and the proportion

of episodes lasting at least two scans is 0.4 (2
5
).

Finally, the effect of the threshold at p < 0.05 to define a scan as significantly
linked to the task was investigated. More specifically, this threshold was varied
from p < 0.01 to p < 0.1 with a step of 0.01 and the proportions P ro and P rm as
well as the significance of the correlations Co and Cm were computed.

4.7.2 Spatial Networks

To compare the results from machine learning based models with a state-of-the-art
analysis of resting-state fMRI data, a three-step procedure was used to compute
functional interactions between networks (Figure 4.7), as implemented in the Net-
BrainWork toolbox (sites.google.com/site/netbrainwork).

First, the detection of functional networks at the group level was achieved using
NEDICA (NEtwork Detection using ICA, [Perlbarg et al., 2008]), which detects net-
works at the individual level using spatial independent component analysis (ICA).
After registration into the MNI standardized space (using the SPM2 software), a
hierarchical clustering was performed on the independent components (IC) from
all participants, yielding a similarity tree. The partitioning of the similarity tree
into classes relied on the idea that each class should ideally be composed of one
and only one IC from each participant. Two parameters were computed to quan-
tify this idea, which allowed selecting the consistent classes across participants. A
group t-map was associated with each selected class [Perlbarg et al., 2008]. The
group representative classes, the spatial structure of which was characteristic of
known functional networks according to the literature [Damoiseaux et al., 2006;
Smith et al., 2009], were used for subsequent analysis as the main networks of in-
terest (NOIs). Maps corresponding to noise processes or not characteristic of any
previously identified functional network were discarded.

Second, 20-voxels regions of interest were selected around the peaks of each group
t-map and corresponded to the main nodes of functional networks. At this stage,
none of these nodes correspond to the main activated areas during the learning task
since they were detected on all rest sessions concatenated. We therefore manually
added the regions which were significantly activated during the exploration session,

sites.google.com/site/netbrainwork
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Figure 4.7: Three-step procedure used to compute integration and partial
correlations at the group level. A Spatial ICA was applied on each subject,
leading to 40 IC (default value). These S ×40 IC were then hierarchically clustered
and IC corresponding to cardiorespiratory artefacts were discarded. Group t-maps
were then computed revealing functional networks at the group level. B From
these maps, ROIs were automatically selected and used for the computation C of
integration and partial correlations via a 1000 samples Bayesian numerical sampling
scheme of the posterior distribution.

as assessed by a GLM and defined two NOIs: one “hippocampal” comprising three
regions in the hippocampus and one “maze” comprising the Fusiform Face Area
(FFA), the Parahippocampal Place Area (PPA) and two regions activated during
the display of images of animals (Animals Area, AA).

Third, the functional interactions within and between the NOIs were quantified
using two types of measures, hierarchical integration and partial correlation. As
a preprocessing step before the computation of functional interactions, the COR-
SICA method (CORrection of Structured noise using Spatial Independent Com-
ponent Analysis, [Perlbarg et al., 2007]) was used to take physiological noise into
account. This technique takes advantage of the fact that the spatial distribution of
physiological noise or head motion signals is independent of the TR of the acqui-
sitions. In particular, CSF pools such as the ventricles appear to act as detectors
of head motion and physiology-related movements, and the major blood vessels
as detectors of cardiac activity. CORSICA includes three successive steps: spa-
tial ICA decomposition, selection of noise-related components using specific masks
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of interest comprising the ventricles, the brainstem and the basilar arteries, and
removal of those components.

Hierarchical integration corresponds to the mutual information between time courses
of BOLD signal recorded in the various ROIs [Marrelec et al., 2005, 2009] . It
provides a global measure of functional information exchanges within and/or be-
tween brain systems. Furthermore, if a system is divided into subsystems, the
total integration of this system can be decomposed into within-subsystem and
between-subsystem integration (Marrelec et al., 2008, illustrated in Figure 4.8). In
particular, the total integration of the brain is equal to the sum of within-NOIs
integration and between-SOIs integration. To infer the integration measures, a
Bayesian numerical sampling scheme approximating the posterior distribution of
the parameters of interest in a group analysis is necessary [Marrelec et al., 2006].
In the present work, 1000 samples were used to perform this approximation, there-
fore leading to a thousand estimations of integration measures. The results are
presented in terms of the mean and standard deviation of the 1000 estimates. The
interested reader can find further information about the concept and the compu-
tation of hierarchical integration in [Marrelec et al., 2008].

Figure 4.8: Illustration of the hierarchical computing of integration. The
hierarchical tree comprises the whole brain, NNOI networks of interest (NOIs),
and NROI regions of interest (ROIs). The top level is the level denoted “whole
brain” and is associated with total integration. Total integration is computed as
the sum of NNOI terms of within-NOI integration and one term of between-NOI
integration. Both within- and between-NOI integrations are computed at the NOI
level using the entropy of the ROIs, which is calculated at the bottom level of the
hierarchy.

Since hierarchical integration provides a global measure of interaction, it is unable
to quantify pairwise functional connectivity between ROIs. To do so in a given
network, we resorted to partial correlation. Partial correlation is a measure of
functional connectivity that is more closely related to effective connectivity than
simple correlation [Marrelec et al., 2007, 2009; Smith et al., 2011]. It was computed
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in the same manner as integration (by using the 1000 samples of the Bayesian nu-
merical sampling scheme, [Marrelec et al., 2005, 2009]). The density of connections
at a given threshold was computed as the number of ROI pairs for which partial
correlation was above the threshold. A “connectivity” curve was derived by com-
puting the density of connections across a range of thresholds. Finally, the integral
of the difference between two curves obtained under different conditions, hereafter
referred to as Integrated Difference in Partial Correlations (IDPC) was computed.
IDPC is independent from the partial correlation threshold and quantitatively es-
timates the differences in connectivity between conditions.

According to [Smith et al., 2009], networks can be detected both at rest and when
the brain performs a task. The authors also showed that functional networks at
rest corresponded to the brain maps of activation under certain tasks. In partic-
ular, a cognition and memory task would mainly activate regions related to the
executive and ventral attentional networks. However, such relationship between
the behavioural domain and the detected networks cannot be thresholded and all
networks should therefore be considered when performing integration, correlation
or partial correlation analyses.

In the present case, it is tempting to use only the regions which were detected as
the main peaks during the exploration session in the GLM analysis. While this can
be justified in view of the considered hypotheses, this however does not represent
the reality, since the signal from each supplementary region is taken into account in
integration and partial correlation measures. Therefore, the results depend heavily
on the selected number of components and ROIs. To avoid the (possibly biased)
selection of components, all detected networks were considered for further analysis,
as well as the manually detected ROIs.
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In this chapter, we present the results corresponding to the different steps of the
analysis and for all sessions. The first results (section 5.1) are used to ensure the
absence of any outlier subject in terms of behavioural parameters (e.g. anxiety, de-
pression and sleep quality), as well as the participants’ performance to the learning
task. Secondly, the data and feature sets were built in sections 5.2 and 5.3, re-
spectively. The results of the different modelling procedures are then reported and
compared in section 5.4 for constrained (exploration session) and semi-constrained
(mental imagery) brain activity. Application of the best procedure to spontaneous
brain activity is exposed in section 5.5.1. The rest sessions were also analysed in
terms of interactions within- and between-networks (section 5.5.2). In both cases
and when possible, each aspect of the memory consolidation theory was investi-
gated.

5.1 Behavioural data

The behavioural results are presented in terms of scores to the different question-
naires and behavioural performance d′ computed from the test led outside the
scanner.
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5.1.1 Scores

During screening, two participants were identified as outliers in terms of anxiety
and depression. Since the potential effects of these parameters are still poorly
understood, results for these participants will be displayed in red.

Another participant admitted to have used a strategy based on the alphabet to
mentally represent the maze (i.e. as an alphabetical explicit list not relying on
mental image representation). This might affect our ability to decode the rest ses-
sions since our model is based on mental imaging only. Results for this participant
will be displayed in blue.

Furthermore, these three participants admitted having consciously rehearsed the
bi-dimensional maze during the post-task rest session. This might lead to either a
facilitated detection of mnemonic traces or, on the opposite, to increased noise in
the considered session.

The different hypotheses supporting the theory of memory consolidation will there-
fore be investigated considering (1) all participants and (2) without the behavioural
outliers.

5.1.2 Participants’ performance

The participants’ performance to the learning task was computed by taking into
account the hits, misses, false alarms and correct rejection rates to the memory test
conducted outside the scanner, as assessed by d′ in terms of content of the images
(Table 5.1).

A Friedman test showed an effect of category on the participants’ performance
(p=0.0042). Post hoc paired Wilcoxon signed rank tests showed that d′ in the
faces and animals categories was significantly larger than in the buildings category
(F-B: p = 0.0017, A-B: p=6 ∗ 10−4, Bonferroni corrected for multiples comparison)
whereas no significant difference was detected between d′ corresponding to faces
and animals (p = 0.8508).

5.2 Signal extraction

The results of the signal extraction step are presented in terms of number of events
extracted for each session. These numbers rely on the considered formulation for
event onset and duration (see equations 2.9, 2.10) but also on the participant’s
ability to mentally retrieve the images in the mental imagery session.

During exploration, 135 events were extracted for each category, each one lasting
3 seconds. During mental imagery, the number of extracted events and their cor-
responding duration were variable depending on the volunteer’s ability to retrieve
the different images forming the requested mental path (Table 5.2).

These findings were consistent with the participants’ performance d′: the number
of events is significantly lower (Friedman test: p = 0.0054, Post hoc Wilcoxon tests,
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Table 5.1: Participants’ behavioural performances for each class as well as for all
categories confounded (d’ on the content). Statistical outliers in terms of behaviour
are highlighted with a different colour.

Participant d’(Faces) d’ (Buildings) d’ (Animals) d’ (Total)

S1 2.73 2.40 3.56 3.61

S2 4.74 1.99 3.87 3.17

S3 4.74 3.87 3.56 4.69

S4 4.74 2.08 3.87 3.23

S5 3.87 2.93 4.74 4.29

S6 4.74 2.44 4.74 3.57

S7 4.74 1.65 3.87 2.96

S8 3.56 3.19 3.87 4.29

S9 4.74 0.72 3.19 2.17

S10 2.33 3.05 2.60 2.54

S11 3.19 1.68 2.47 3.18

S12 2.44 0.94 3.13 1.94

S13 2.35 1.99 3.87 2.56

S14 2.60 2.64 4.74 3.01

p < 0.05, Bonferroni corrected for multiple comparisons) for the buildings category
than for the other 2 categories whereas no significant difference was detected be-
tween the number of events in the faces and animals categories (p = 0.0347, does
not survive the Bonferroni correction).

This result potentially affects the classification based on fRMI data as it relies on
binary comparisons.

It should be noted that no direct interaction could be detected between the perfor-
mances of the participant and the number of events in each category (correlations:
p > 0.05).

5.3 Feature selection

Figure 5.1 displays the 1000 voxels selected from the “specific GLM” feature se-
lection, for both the exploration and mental imagery session of participant S1.

The “global GLM” feature selection option considered in procedure 3 led to about
35,000 selected voxels for both sessions (range: 30,372-40,527, mean: 36,203 for
the exploration session; range: 29,996-38,541, mean: 34,172 for the mental imagery
session).
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Table 5.2: Number of extracted events for the mental imagery session. Percentages
are in brackets and show the possible imbalances between categories. Statistical
outliers in terms of behaviour are highlighted with a different colour.

Subject Faces Buildings Animals Total

S1 69 (44.23%) 30 (19.23%) 57 (36.54%) 156

S2 76 (55.07%) 11 (07.97%) 51 (36.96%) 138

S3 47 (30.32%) 58 (37.42%) 50 (32.29%) 155

S4 63 (37.72%) 50 (29.94%) 54 (32.34%) 167

S5 74 (39.36%) 42 (22.34%) 72 (38.30%) 188

S6 65 (39.39%) 43 (26.06%) 57 (34.55%) 165

S7 70 (41.42%) 36 (21.30%) 63 (37.28%) 169

S8 43 (40.19%) 31 (28.97%) 33 (30.84%) 107

S9 67 (38.29%) 44 (25.14%) 64 (36.57%) 175

S10 18 (21.69%) 32 (38.55%) 33 (39.76%) 83

S11 37 (45.68%) 20 (24.69%) 24 (29.63%) 81

S12 69 (41.07%) 31 (18.45%) 68 (40.48%) 168

S13 55 (32.54%) 58 (34.32%) 56 (33.14%) 169

S14 77 (38.89%) 53 (26.77%) 68 (34.34%) 198

Mean 59.29
(39.17%)

38.50
(25.44%)

53.57
(35.39%)

151.36

Figure 5.1: Specific GLM feature selection. Voxels selected after the “spe-
cific” GLM feature selection in the exploration (top) and mental imagery (bottom)
sessions, for subject 1, when leaving the first block out. The z-coordinate of the
slices are displayed on top.
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The number of features extracted by RFA in procedures 3, 4 and 5 are summarized
in Table 5.3.

Table 5.3: Number of RFA selected features for procedures 3, 4 and 5. The optimal
subset of variables is represented for each participant by its average size (second and
fourth columns) and standard deviation (third and fifth columns) across blocks for
the exploration (second and third column) and mental imagery (fourth and fifth)
sessions. The last line gives the mean and standard deviation across participants.
Results are presented in terms of mean and standard deviation across the number
of features obtained after each cross-validation step. Statistical outliers in terms of
behaviour are highlighted with a different colour.

Procedure 3 Procedures 4 and 5

Exploration Imagery Exploration Imagery

Subject Mean Std Mean Std Mean Std Mean Std

S1 369 5 220 142 337 65 254 173

S2 360 66 385 149 277 88 258 150

S3 369 3 191 134 274 76 272 185

S4 324 88 351 245 310 78 314 164

S5 341 89 357 274 326 67 297 163

S6 363 55 266 249 338 66 290 172

S7 375 4 349 262 365 29 278 204

S8 234 100 225 256 216 88 217 134

S9 354 89 346 153 314 103 306 190

S10 364 54 258 168 313 65 148 185

S11 352 58 509 201 366 28 304 222

S12 344 85 313 108 333 40 294 183

S13 391 45 272 139 291 109 326 227

S14 370 30 241 201 327 67 205 165

All 350.71 55.07 305.93 182.36 313.36 69.21 268.79 179.79

Procedure 3 identified 350.71 optimal features (305.93 for mental imagery, mean
across blocks and across participants) while procedures 4 and 5 selected 313.36 fea-
tures (268.79 for mental imagery), the difference between procedures being signifi-
cant (Friedman test, p < 10−4) for exploration. Standard deviations in the number
of voxels selected indicate a high variability across blocks for mental imagery, inde-
pendently of the procedure. This high variability across blocks, precluding from any
conclusion at the procedure level, is directly linked to the design of the session. For
exploration, the variability across blocks is small for both procedures, suggesting
that the computation of a GLM for each LOO-CV does not induce much variabil-
ity in the subset of voxels selected (Friedman test on the residuals, p = 0.7276).
Procedure 5 being identical to procedure 4 in terms of feature selection, Table 5.3
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displays the sizes of the selected subsets of features for both procedures.

Figure 5.2: Specific GLM and RFA feature selection. Voxels selected after
the “specific” GLM feature selection followed by RFA (procedures 4 and 5) in the
exploration (top) and mental imagery (bottom) sessions, for subject 1. The images
across blocks have been averaged, such that darker areas correspond to voxels
commonly selected for different LOO-CV folds, while lighter areas correspond to
“outliers”. We can see that the selection is more consistent across blocks for the
exploration than for the mental imagery session. The z-coordinate of the slices are
displayed on top.

For both sessions and all procedures, the selected voxels were mostly comprised in
the ventral visual path (primary areas, Fusiform Face Area), parietal regions linked
to spatial features and hippocampus related to navigation (see Figure 5.2 for an
average across blocks for participant 1, procedures 4 and 5). Activation in these
areas represented properly the different aspects of both tasks.

5.4 Modelling (semi-)constrained brain activity

5.4.1 Classification accuracy

The exploration session was first modelled, before considering the mental imagery
session. In the following sections, the results for both sessions and the five proce-
dures are expressed for each category in terms of balanced accuracy (mean across
blocks and significance for each participant, Figures 5.3 and 5.4).

Procedure 1. For exploration, the mean balanced accuracies were all above chance
level, ranging from 54.57 to 89.88 % (p < 0.05). For mental imagery, mean balanced
accuracies ranged from 26.59 to 67.01 %. Low accuracy measures led to non-
significant results for participants S5, S10 and S13 (p > 0.05).

Procedure 2. For exploration, GP classification provided mean balanced accura-
cies ranging from 56.05 to 90.12% (p < 0.05). For mental imagery, mean balanced
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Figure 5.3: Exploration: Mean balanced accuracies obtained in the dif-
ferent procedures for all subjects. Procedure 1: specific GLM feature se-
lection and SVM classification. Procedure 2: specific GLM feature selection and
GP classification. Procedure 3: global GLM and RFA feature selections and GP
classification. Procedure 4: specific GLM and RFA feature selections with GP
classification. Procedure 5: specific GLM and RFA feature selections with SVM
classification. All results are significant.

accuracies were comprised between 24.09 and 63.48%. The classification was not
significant for participants S2, S10, S11 and S13 (p > 0.05).

Procedure 3. For exploration, mean balanced accuracies obtained using the RFA
feature selection ranged from 55.56 to 90.12 % (p < 0.05). For mental imagery,
mean balanced accuracies ranged from 27.82 to 61.65%. These results were not
significant for participants S5, S10, S11 and S13 (p > 0.05).

Procedure 4. For exploration, the optimal subsets of features defined by GLM
and RFA were associated with mean balanced accuracies ranging from 55.80 to
90.86 % (p < 0.05). For mental imagery, mean balanced ranged from 32.55 to
69.78 %. However, non-significant results were found for participants S10, S11 and
S13 (p > 0.05).

Procedure 5. For exploration, the optimal subsets of features defined by GLM
and RFA were associated with mean balanced accuracies ranging from 53.33 to
89.63 % (p < 0.05). For mental imagery, mean balanced accuracies ranged from
33.04 to 67.50 %, leading to non significant results for participants S5, S10, S11
and S13.

Overall mean balanced accuracies for the exploration session were significantly
above chance for all the participants and all procedures. For the mental imagery
sessions, mean balanced accuracies were not significant for some participants and
some procedures: S2 (procedure 2), S5 (procedures 1, 3, 5), S10 (all procedures),
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Figure 5.4: Mental imagery: Mean balanced accuracies obtained in the
different procedures for all subjects. Procedure 1: specific GLM feature
selection and SVM classification. Procedure 2: specific GLM feature selection and
GP classification. Procedure 3: global GLM and RFA feature selections and GP
classification. Procedure 4: specific GLM and RFA feature selections with GP
classification. E Procedure 5: specific GLM and RFA feature selections with SVM
classification. Significant classification accuracies are marked by stars ⋆.

S11 (all except procedure 1) and S13 (all procedures).

5.4.2 Comparison of procedures

The different procedures were first compared in terms of balanced accuracy. To
obtain more insight on the results, they were also compared based on the class
accuracies. Finally, since SVM seems to behave differently with unbalanced data
sets, the number of Support Vectors, SV for each binary comparison were reported
and correlated with the model accuracy.

5.4.2.1 Balanced accuracy

For exploration, the Friedman test on the over categories accuracy measures re-
vealed significant differences (p < 10−4) between procedures. Paired Wilcoxon
signed rank tests showed that procedures 1 and 5 (SVM classification) performed
significantly worse than procedures 2, 3 and 4 (p < 0.05, Bonferroni corrected for
multiple comparisons, Figure 5.5.A.I).

Similarly, for mental imagery, a Friedman test on the balanced accuracies showed
a significant effect of procedure (p = 0.0094). The paired Wilcoxon signed rank
tests showed that procedure 4 performed significantly better than procedure 3
(p = 6.1 ∗ 10−4) and better than all other procedures (p < 0.05, but does not
survive Bonferroni correction for multiple comparisons). Procedure 3 also tended
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Figure 5.5: Schematic comparisons between procedures. The full arrows
represent a significant difference (p < 0.05, survives Bonferroni correction for mul-
tiple comparisons) in performance between the two procedures linked, the arrow
pointing to the best. The dashed arrows represent trends (p < 0.05, but does
not survive Bonferroni correction). A.I Exploration: differences in balanced accu-
racy. Procedures 2, 3 and 4 (GP) performed best. A.II Exploration: differences
in animals class accuracy. B.I Mental imagery: differences in balanced accuracy.
Procedure 4 tended to perform best. B.II Mental imagery: differences in faces
class accuracy. Procedures 1 and 5 (SVM) tended to perform best. B.III Mental
imagery: differences in buildings class accuracy. Procedures 3 and 4 (tended to)
perform best.

to perform worse than procedure 1 (p = 0.0437, not significant after Bonferroni
correction, Figure 5.5.B.I).

5.4.2.2 Class accuracy

For exploration, there was an effect of procedure on the class accuracy measures
only for the animal category (F: p = 0.0672, B:p = 0.1594 and A: p = 0.0017).
Paired Wilcoxon signed rank tests showed that procedures 1 and 5 tended to per-
form worse than procedures 2, 3 and 4 for the animal category (p < 0.05, corrected
for multiple comparisons using Bonferroni correction, Figure 5.5.A.II).

For mental imagery, Friedman tests showed a significant effect of procedure on
the classification of faces and buildings (p < 10−3). Paired Wilcoxon signed rank
tests on the class accuracy for faces showed that procedure 1 performed significantly
better than procedures 2, 3 and 4 (p < 0.05, Bonferroni correction, Figure 5.5.B.II).
Trends also indicated that procedure 5 led to higher accuracies than procedures 2
and 3 (2-5: p = 0.0068, 3-5: p = 0.0269, do not survive Bonferroni correction).
The paired Wilcoxon signed rank tests on the class accuracy for buildings showed
that procedure 4 performed significantly better than procedures 1 and 5 (p <
0.05, Bonferroni corrected for multiple comparisons) and tended to perform better
than procedures 2 and 3 (2-4: p = 0.0353, 3-4:p = 0.0081). Trends showing
better performance of procedure 3 over procedures 1 and 5 were also noticed but
not significant (1-3: p = 0.0327, 3-5: p = 0.0327, do not survive the Bonferroni
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correction, Figure 5.5.B.III). No other significant differences in class accuracies
were noted.

Figure 5.6: Class accuracies obtained by the procedures 1 and 4 for all
subjects. The faces category is represented in blue, the buildings category, in
green, and the animals category, in yellow. A Comparison of the accuracy val-
ues. x-axis: class accuracies obtained using procedure 1. y-axis: class accuracies
obtained using procedure 4. Most points corresponding to class accuracies of build-
ings (represented by green circles) are above the 45◦ line (in light grey), meaning
that the buildings were better classified using procedure 4. B Average difference in
class accuracy between procedures 1 and 4. This figure shows that the difference
in buildings classification is significant across subjects, while this is not the case
for the faces and animals categories.

This result is illustrated in Figure 5.6, comparing the class accuracies obtained
for each participant with procedures 1 and 4 (Figure 5.6.A). It was observed that
procedure 4 performed always better than procedure 1 to classify buildings. Figure
5.6.B assessed the significance of this difference in performance between procedure
1 and procedure 4. Only the building classification was significantly different, i.e.
worse for procedure 1 compared to procedure 4. Similar results were obtained when
comparing procedures 4 and 5 in terms of buildings accuracy (not shown).

5.4.2.3 Support Vector proportions

Procedures 1 and 5 showing no significant difference in balanced or class accuracies,
support vectors (SV) proportions were computed from each SVM binary classifier
of procedure 5 (percentage of faces SV for the F-B and F-A comparisons and
percentage of animals SV for the B-A comparison).

For exploration, a significant effect of the binary classifier on the proportions of SV
was assessed (p < 0.05): post hoc Wilcoxon tests revealed that the proportion of
SV in the faces category (F-B classifier) was significantly higher than in the faces
category for the F-A classifier and in the animals category for the B-A classifier
(p < 0.05, Bonferroni corrected). Whilst the proportions of faces SV in the F-B
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and F-A classifiers differed significantly from 50% (F-B>50%: p = 0.0084, F-
A<50%: p = 0.0045), no significant correlation could be found between the SV
proportions and the class accuracies (0.1350 < p < 0.6479). Moreover, the sign of
some correlation coefficients were not consistent with the expected effect on class
accuracy (for example, a positive correlation was found between the proportion
of faces SV and the class accuracy of buildings, while one would expect the class
accuracy of buildings to decrease when increasing the proportion of faces SV).

For mental imagery, a Friedman test also showed an effect of the binary classifier
on the proportions of SV (p = 1.25 ∗ 10−5). Post hoc Wilcoxon signed rank tests
revealed that the proportions of SV in the faces (for the F-B classifier) and in the
animals (for the B-A classifier) categories were significantly higher than in the faces
category for the F-A classifier (p < 0.05, Bonferroni corrected). SV proportions in
the faces (F-B) and animals (B-A) categories were significantly higher than 50%
(faces in F-B: p = 0.0151 and animals in B-A: p = 0.0013). Significant anti-
correlations were found between the class accuracy of buildings and the proportion
of faces SV in the F-B classifier (p = 0.0166), and the proportion of animals SV
in the B-A classifier (p = 0.0166). Although no other significant correlation was
assessed between class accuracy and SV proportions, the signs of all correlation
coefficients were consistent with the expected effects.

5.4.3 Effect of behavioural data

In this section, we investigated whether participant’s behaviour impacts the per-
formance of the machine learning based model, using two parameters: the partic-
ipants’ behavioural performance as computed by d′ and the number of extracted
events.

5.4.3.1 Behavioural performances

No significant correlations were found between the accuracy of all classifiers and
the performance of the participants at the test session led outside the scanner. The
same result was obtained when taking into account the procedures individually.

It should be noted that when considering only the proportions of hits (i.e. by
computing the percentage of correct answers), trends indicated an effect of the
total number of correct answers on the balanced accuracy (p = 0.0867) as well as a
correlation between the classification of buildings and the number of correct answers
in the buildings category (p = 0.0575). In particular, procedures 2 and 3 (resp. 3,
4 and 5) showed significant correlation between the participants’ performances and
the balanced accuracy over the three categories (resp. for the buildings category).
The other procedures still showed trends, but the correlations were not significant
(over categories: p(P 1) = 0.1367, p(P 4) = 0.0560, p(P 5) = 0.092, buildings:
p(P 1) = 0.0509, p(P 2) = 0.0686).
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5.4.3.2 Number of events

When considering the classification of mental imagery using all procedures (i.e.
accuracies have been averaged across procedures), trends indicating an effect of
the number of events could be detected for the faces and buildings category (cor-
relations, faces: ρ = 0.5189, p = 0.0573, buildings: ρ = 0.4804,p = 0.0821). When
investigating the procedures individually, significant correlations were found be-
tween the number of faces events and the classification of faces in procedure 5.
Furthermore, procedures 1 and 5 (SVM classifier) showed a significant correlation
between the number of buildings events and the classification of images of that
category (p < 0.05).

5.5 Modelling spontaneous brain activity

In this section, we present the results from the modelling of spontaneous brain
activity using (1) a new methodological approach based on machine learning models
(section 5.5.1) and (2) a state-of-the art technique to analyse interactions between
spatial networks (section 5.5.2, Margulies et al., 2010).

5.5.1 Machine learning based models

From the results of section 5.4, procedure 4 was selected as the best procedure to
model mental imagery. In this case, only one LOO-CV was needed to select voxels
via RFA and build the model on the whole session (no test set apart).

5.5.1.1 Proportions

The proportions P r (see section 4.7.1) can be found for each participant and rest
session in Table 5.4. This table shows that the proportions P r are non-null for all
rest sessions, suggesting either that spontaneous brain activity is associated with
recurrent activation of these areas or that the considered methodology might detect
false positives. Results are also highly variable across participants, which may be
due to different levels of noise and/or the quality of the model of mental imagery.

To support the second hypothesis (formulated in section 3.3), the increases in P r
from pre-task to post-task rest in both conditions were compared. These results
are reported in Table 5.4, under “Pr(m/o)”, as computed in equation 4.5.

Surprisingly, Table 5.4 shows that the statistical outliers in terms of behaviour
display a large decrease in P r from pre-task to post-task rest in the memory condi-
tion. Furthermore, their results prevent any significant difference between P r(m)
and P r(o), as reported in Table 5.5.

The Friedman test on the differences in P r between the memory and control condi-
tions shows a clear trend in support of the second hypothesis formulated in section
3.3, when the statistical outliers are discarded. Furthermore, a one-tailed Wilcoxon
signed rank test showed that the increase in P r is significantly larger in the mem-
ory condition than in the control condition (p = 0.0293). This suggests that the
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Table 5.4: : Proportions P r of scans significantly linked to the task for each par-
ticipant and rest session. Increases from the pre-task to the post-task rest sessions
are reported under Pr(m) and Pr(o), as computed in equation 4.5. Behavioural
outliers are highlighted in colour.

Memory Control

Subject R1m R2m P r(m) R1o R2o P r(o)

S1 38.11 38.44 0.33 40.07 38.76 -1.30

S2 19.54 17.27 -2.28 14.01 13.03 -0.98

S3 50.49 57.66 7.17 50.81 47.23 -3.58

S4 33.55 22.15 -11.40 33.55 33.22 -0.33

S5 62.54 64.50 1.95 60.59 61.24 0.65

S6 34.20 28.01 -6.19 27.69 28.34 0.65

S7 51.14 53.09 1.95 48.86 50.49 1.63

S8 24.76 14.01 -10.75 20.52 20.52 0.00

S9 50.98 51.79 0.81 44.44 42.81 -1.63

S10 2.32 5.96 3.64 4.30 3.64 -0.66

S11 25.83 26.82 0.99 27.81 28.81 0.99

S12 38.74 39.40 0.66 49.34 49.34 0.00

S13 43.05 39.07 -3.97 41.72 33.77 -7.95

S14 51.32 52.32 0.99 38.08 48.01 9.93

Table 5.5: : Increases in proportions P r from pre-task to post-task rest sessions for
both the memory and the control conditions (with standard deviations). The last
column represents the p-value obtained from a Friedman test comparing P r(m)
and P r(o). “No outliers” means that behavioural outliers have been discarded.

Selection P r(m) P r(o) p

All subjects -1.15 (5.28) -0.18 (3.77) 0.4054

No outliers 1.11 (2.88) -0.26 (4.29) 0.0578

proportions of scans significantly linked to the learning task is larger in the post-
task than in the pre-task rest session, and this effect is significant in comparison
to a control condition.

Since each scan significantly linked to the task also has a categorical prediction, we
can derive the increases in P r for each class (Table 5.6).

No significant differences could be found between the memory and control condi-
tions (although p≃0.1 for buildings). One can however observe that the increase
is the largest for the buildings category.
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Table 5.6: : Increases in proportions P r from pre-task to post-task rest sessions
for both the memory and the control conditions for each category (with standard
deviation). “No outliers” means that behavioural outliers have been discarded.

P r(m) P r(o)

Selection Faces Buildings Animals Faces Buildings Animals

All subjects -1.06
(3.38)

0.94
(2.40)

-1.03
(2.37)

0.04
(3.00)

0.27
(2.62)

-0.49
(2.23)

No outliers -0.14
(2.83)

1.52
(2.09)

-0.27
(1.81)

-0.28
(3.26)

0.49
(2.82)

-0.48
(2.53)

5.5.1.2 Correlations with behavioural performance

The values of P r(m) and P r(o) were then correlated with the participants’ be-
havioural performance d′ to investigate the third hypothesis of section 3.3. Permu-
tations of d′ allowed assigning p-values to the correlation coefficient as well as to
their difference (see Table 5.7 and Figure 5.7).

Table 5.7: : Correlation coefficients between P r and d′, the participants’ be-
havioural performance, as well as their attributed p-value. p(difC) represents the
p-value assigned to the difference between the two correlations Cm and Co. “No
outliers” means that behavioural outliers have been discarded.

Selection Cm p(Cm) Co p(Co) p(difC)

All subjects -0.06 0.5880 0.00 0.5060 0.3970

No outliers 0.50 0.0580 -0.01 0.5040 0.040

As shown in Table 5.7 and Figure 5.7, a clear trend suggests that there is a link
between the increase in P r from the pre-task to the post-task rest session in the
memory condition and the participant’s behavioural performance d′. Furthermore,
this link is absent in the control condition and the difference in correlation coeffi-
cients between both conditions is significant. These results bring evidence regarding
the validation of the third hypothesis of section 3.3.

No significant correlation could be found between the participants’ behavioural
performance in each category and the increase in P r for the respective class. This
might be due to the decrease in statistical power.

5.5.1.3 Phase information

During encoding, the learning material is temporally structured according to the
cycle “F-B-A”, i.e. images of faces, buildings and animals are always presented
in this order (see section 4.2). To control for both the condition and the order
of the cycle, the proportions of transitions according to the forward cycle (“F-
B-A”) and to the inverted cycle (“A-B-F”) were computed for the memory and
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Figure 5.7: Correlation between the differences in proportion Pr and the
subjects’ behavioural performances. The correlation coefficients between the
increases in Pr from the pre-task to the post-task rest sessions and the subjects’
behavioural performance d′ are represented by the blue and green circles on the top
of the plot, for the memory and control conditions, respectively. The distribution
of the correlation coefficient obtained from permutations of d′ are displayed as a
histogram, for the memory (light blue) and control (light green) conditions.

control conditions. Results are presented in terms of increases in the proportions
of transitions from the pre-task to the post-task rest session 5.8.

When considering all participants, no significant difference could be found between
the two conditions or the order of the cycle. However, discarding the behavioural
outliers led to a significant difference between conditions when considering the
forward cycle (F-B-A, p = 0.0305). Furthermore, this difference was absent when
considering the inverted cycle (A-B-F, p = 0.2179). Although these results support
the fourth hypothesis regarding the temporal structure of the replay, no statistically
significant difference was found between the proportion of forward and reverse
cycles, suggesting that the increase in P r follows both the forward and the inverted
cycle, with a slight preference for the forward cycle, as shown by the median (No
outliers) in Table 5.8.

5.5.1.4 Temporal evolution

Separating the time-series in two equal parts led to the computation of P r1 and P r2

for each rest session and participant. As represented in Figure 5.8, no clear decrease
in P r was observed during the post-task rest session in the memory condition: it
rather seems that the level of P r is maintained across time. In the other rest
sessions, P r increased from the first to the last 5 minutes.
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Table 5.8: : Increases in the proportions of transitions following the forward,
F-B-A cycle (“forward”) or the inverted, A-B-F cycle (“reverse”) from pre-task
to post-task rest sessions for both the memory and the control conditions. The
median of the presented values are also shown for all participants (All subjects)
and when discarding the behavioural outliers (No outliers).

Memory Control

Subject Forward Reverse Forward Reverse

S1 0.98 -0.98 -2.93 -2.61

S2 -1.30 0.00 -0.65 -2.28

S3 -1.63 2.61 0.65 -0.33

S4 -4.89 -3.26 1.30 1.95

S5 0.33 1.95 -2.61 -1.30

S6 0.33 -0.33 -0.98 0.00

S7 -2.9316 -2.2801 -0.6515 -0.0000

S8 -0.33 -0.33 -0.65 -0.65

S9 -0.03 1.94 -0.65 0.00

S10 0.66 -0.33 0.00 0.33

S11 0.33 -2.32 -2.32 2.32

S12 0.99 0.99 -2.65 2.98

S13 1.66 -2.32 -3.64 -3.64

S14 0.99 3.64 0.00 -1.32

All subjects 0.33 -0.33 -0.65 -0.16

No outliers 0.33 0.00 -0.65 -0.33

5.5.1.5 Scaling factor

A possible scaling factor was investigated by computing the proportions and aver-
age duration of episodes lasting a fixed duration. This duration was varied from
1 to 10 scans. The median of these values across participants are represented in
Figures 5.9 and 5.10, and in Table 5.9 for thresholds th = 1 and th = 2.

When considering all participants, no significant difference could be found, for any
of the computed measures. Discarding the behavioural outliers does not lead to
significant differences for the proportion of long episodes or for the duration of
all episodes (th = 1). However, it leads to a significant effect of the session on
the duration of longer episodes (th = 2, Friedman test, p = 0.0493), and more
specifically with the episodes in R2m lasting longer than in R1o and R2o (R2m-
R1o: p = 0.0420, R2m-R2o: p = 0.0137). Although this result is not represented
by the median across participants, it is better highlighted using the mean across
participants (R1m:2.79, R2m:3.14, R1o:2.82, R2o:2.79).
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Figure 5.8: Evolution of Pr along time. A Average across subjects of P r1 (0
to 5 minutes) and P r2 (5 to 10 minutes) for each rest session. B Decrease of Pr
along time for each session (i.e. P r1 – P r2). Except for R2m, all show an increase
in Pr along time.

Table 5.9: : Proportion (in %) of episodes of scans significantly linked to the
task having a duration larger than one scan, average duration (in scans) of these
episodes and average duration of all episodes (i.e. those having a duration of one
scan included). These values are summarized by the median across participants
for each rest session. “No outliers” means that behavioural outliers have been
discarded.

Median (All subjects) R1m R2m R1o R2o

Proportion (th = 2) 40.42 37.20 41.56 40.34

Duration (th = 2) 2.93 2.89 2.71 2.74

Duration (th = 1) 1.82 1.68 1.68 1.68

Median (No outliers) R1m R2m R1o R2o

Proportion (th = 2) 41.10 46.97 43.10 41.79

Duration (th = 2) 3.24 2.91 2.89 2.74

Duration (th = 1) 1.89 1.79 1.73 1.89

These results show that the average duration of an episode is around 2 scans (when
taking all episodes into account, th = 1). However, this duration increases when
discarding the episodes lasting only one scan, i.e. those that can be suspected to
be mostly false positives. This increase is larger in the post-task rest session of
the memory condition than in the other rest sessions, as shown by Figure 5.10 for
thresholds of 2 to 4 scans. This result suggests an average duration of episode
comprising 2 to 4 scans, i.e. between 4 and 8 seconds. It should be noted that this
duration was measured from the BOLD signal and does not represent the neuronal
activity, which supposedly comprises more fast and transient events.
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Figure 5.9: Proportions of episodes. When increasing the threshold on the
duration of the episodes from 1 to 10 scans (x-axis), the average proportions of
episodes lasting at least as long as the threshold decrease (A). However, it seems
that the proportions of episodes lasting from 2 to 4 scans are larger in the post-
task rest session in the memory condition, than in any other rest session. This is
further confirmed by the differences between pre-task and post-task rest sessions
(B), displayed for the memory (blue) and control (green) conditions (without the
behavioural outliers).

Figure 5.10: Duration of episodes. X-axis: threshold on the minimal duration
of one episode. Y-axis: Average across subjects (without the behavioural outliers)
of the difference between the duration of episodes in the pre- and post-task rest
sessions, for the memory (blue) and control (green) conditions. As for the propor-
tions of episodes, the duration of the episodes in the post-task rest session showed
an increase compared to the pre-task rest session for episodes lasting 2 to 4 scans.

5.5.1.6 Selection of scans significantly linked to the task

During the definition of the methodology, certain choices were made that might
have affected the results presented above. To ascertain that some of these choices
did not randomly lead to the observed results, we investigated the effect of the
threshold deciding whether a scan is significantly linked to the task or not.
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First, P r was computed for each threshold and rest session, discarding the be-
havioural outliers. This allowed plotting the increases in P r from the pre-task
to the post-task rest sessions in both the memory and control conditions (Figure
5.11) as a function of this threshold. Although the p-value threshold clearly af-
fects the increases in P r, P r(m) is always larger than P r(o). Furthermore, the
p-values assigned to the correlations between the increase in P r and the partic-
ipant’s behavioural performance seem to stabilize around the reported values for
0.05 < p < 0.1 (Figure 5.11).

Figure 5.11: Varying the p-value assessing scans as significantly linked to
the task. X-axis: p-value varied from 0.01 to 0.1. A Increases in Pr (in %) from
the pre-task to the post-task rest session in the memory condition (blue) and in
the control condition (green). B P -value assigned to Cm (memory condition, in
blue) and Co, (control condition, in green).

Therefore, although the choice of the threshold affects the previously presented re-
sults, the conclusions drawn from these results still hold when varying the threshold
from 0.05 to 0.1. Moreover, while local minima and maxima can be spotted on both
graphs, our choice of p < 0.05 does not correspond to any extreme local variation
of the computed measures and thus seems appropriate.

5.5.2 Analysis of network interaction

5.5.2.1 Manual selection of ROIs

The manually selected regions correspond to the main peaks of the statistical para-
metric map built from the GLM analysis of the exploration session. These regions
were defined as spheres centred around the coordinates provided in Table 5.10,
with two contingency layers (i.e. 25 voxels in total, Figure 5.12).

The selected ROIs define two subsets of interest: a “hippocampal” NOI and a
“maze” NOI (i.e. FFA+PPA+AA).
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Table 5.10: Coordinates of the center of the manually selected regions in the
MNI space as well as their attributed names. The first three regions form the
hippocampal NOI, while the six others correspond to regions activated during the
display of the images (“maze” NOI). “sym” refers to the symmetry in the definition
of the ROIs.

Region Name x y z

Left Hippocampal 1 L-Hipp1 -31.68 -6.82 -19.84

Left Hippocampal 2 L-Hipp2 -17.82 -14.32 -14.42

Right Hippocampal R-Hipp 29.70 -12.89 -24.59

Left FFA L-FFA -37.62 -52.27 -15.89

Right FFA (sym) R-FFA 39.60 -49.36 -16.03

Left PPA L-PPA -21.78 -43.21 -9.61

Right PPA (sym) R-PPA 19.80 -43.21 -9.61

Left Animals L-AA -43.56 -49.11 -11.00

Right Animals R-AA 49.50 -65.79 5.13

Figure 5.12: Manually selected ROIs. Regions of interest manually selected
from the statistical peaks computed by a GLM on the exploration session. 3 regions
were selected in the hippocampus and 6 in the neocortex.

5.5.2.2 Automatic ROI selection

When manually identifying the components according to [Smith et al., 2009], six
main networks of interest were detected (Figure 5.13):

1. Visual network (VIS): a first medial and lateral component was detected and
added to the occipital component.

2. Ventral attentional network (vATT): this network was found in its lateralized
components (left and right), which were then merged.

3. Dorsal attentional network (dATT)

4. Auditory network (AUD)

5. Sensori-motor network (MOT)

6. Default mode network (DM)
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Figure 5.13: Networks of interest manually selected. The t-maps display
the 6 detected networks computed with p < 0.05 with correction for multiple
comparisons, at different locations on the z-axis.

The ROIs were then automatically selected from the thresholded t-maps. They
counted a maximum of 20 voxels in extent and were at least 4 cm apart. In total,
48 ROIs were considered for further analysis (57 with the manually selected ROIs).

5.5.2.3 Integration

Total integration. Both conditions (i.e. R1m − R2m and R1o − R2o) show
a significant increase in total integration. This increase is larger for the control
condition (increase=1.25) than for the memory condition (increase=0.44), at p <
0.05 (p = 0.035).

Within-NOI integration. For the memory condition, significant increases in
within-network integration were observed for the VIS and AUD NOIs. For the
control condition, significant increases were found for the DM, dATT and MOT
NOIs. Please note that the only significant differences between conditions were
found for the DM and MOT NOIs (marked by grey ⋆ in Figure 5.14).

A first interesting result is that no increase in within-NOI integration could be
found for the Hipp and Maze NOIs.

Between-NOI integration. All pairwise between-NOI integrations are reported
in Figure 5.15 (significant differences between pre-task to post-task rest sessions



76 Results

Figure 5.14: Within-NOI integration. Increases in within-NOI integration
from the pre-task to the post-task rest session for the memory (blue) and control
(green) conditions. Significant increases are marked by black stars ⋆, while yellow
stars represent a significant difference between both conditions.

being marked by ⋆).

Figure 5.15: Between-NOI integration. Increases in between-NOI integration
from the pre-task to the post-task rest session for the memory (blue) and control
(green) conditions. Significant increases are marked by black stars ⋆. It should be
noted that the results are symmetric.

The results show that the vATT and dATT NOIs were the most affected by the
tasks. Although this could have been expected [Smith et al., 2009], increases in
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integration between the Hipp and Maze NOIs were also expected, or between the
Hipp and VIS NOIs in the memory condition, which are not present. Furthermore,
some results are surprising, such as the significant increases in integration between
the DM and vATT NOIs, and between the DM and Hipp NOIs for the memory
condition. According to [Smith et al., 2009], the DM network shouldn’t be affected
by any of the considered tasks.

More than the differences between the pre-task and post-task rest sessions, we were
interested in the differences between conditions, i.e. are the increases in between-
NOIs integration larger for the memory or the control conditions? The p-values of
such comparisons are represented in Table 5.11, a p-value > 0.9 meaning that the
increase is larger for the memory condition while p < 0.1 reveals a higher increase
for the control condition.

Table 5.11: P-value assigned to the differences between conditions for each of the
pairwise between-NOI integration. Significant results are highlighted in bold. It
should be noted that results are symmetric.

NOI DM vATT AUD dATT MOT Hipp Maze

VIS 0.65 0.43 0.97 0.63 0.14 0.46 0.13

DM 0.27 0.41 0.07 0.08 0.15 0.80

vATT 0.36 0.51 0.49 0.51 0.20

AUD 0.12 0.10 0.91 0.19

dATT 0.02 0.22 0.14

MOT 0.31 0.61

Hipp 0.40

5.5.2.4 Partial correlation

The partial correlation measure was used to assess any change in the “connectivity”
between the Hipp NOI and all other NOIs (i.e. modification in partial correlation
between the 3 hippocampal ROIs and any other ROI). As shown in Figure 5.16,
the effect of the task on the hippocampal connectivity is small. Furthermore, this
effect is the same for both the memory and the control conditions, leading to equal
values of the IDPC (section 4.7.2): IDPC(m)=0.0084 and IDPC(o)=0.0090.
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Figure 5.16: Connectivity of the hippocampal ROIs. Connectivity of the 3
hippocampal ROIs for the memory (A) and control (B) conditions. The pre-task
connectivity is plotted in light blue or green while the post-task connectivity is
displayed in dark blue or green, for the memory and control conditions respectively.
A small difference can be observed for both conditions, leading to small and almost
equal values of the IDPC (grey area between the two curves).
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6.1 (Semi-) constrained brain activity

We tested the performance of different classification procedures on two separate
fMRI time series. Whereas the experimental design of the exploration session im-
posed a paced and regular succession of stimulus categories, the mental imagery
session was characterized by imbalanced numbers of trials between categories, a
self-paced succession of individual trials and subject-related task performance. The
uneven number of events across categories was related to the disparity in individual
memory performance, pictures of buildings being significantly less well remembered
than the two other classes of stimuli. In addition, the succession of events of vari-
able durations, sometimes beyond the temporal resolution of fMRI, put a further
strain on classification procedures. The best combinations of techniques (namely
procedures 1 and 4) were able to classify accurately, i.e. significantly above chance
level, the mental images from 11 out of the 14 subjects.

When classifying the controlled session, results indicated that SVM performed
significantly worse than GP. No effect of the feature selection (either specific GLM,
global GLM and RFA or specific GLM and RFA) could be detected, which does not
correspond to what was reported in the literature [Mitchell et al., 2004; Mourão-
Miranda et al., 2006; Formisano et al., 2008; De Martino et al., 2008]. This result
indicates that for this well-controlled experiment, using a GLM filter or a RFA
embedded wrapper leads to the same performance.

However, when considering the mental imagery session, performance of the con-
sidered procedures indicates that GP might be more sensitive to the addition of
irrelevant features than SVM. This hypothesis is supported by the fact that a uni-
variate feature extraction by a specific GLM substantially improved classification
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accuracy. Indeed, procedure 4 (specific GLM-RFA-GP) achieved better accuracies
than procedure 3 (global GLM-RFA-GP), which needed more computational time
for significantly poorer results. While the authors of [Mourão-Miranda et al., 2006]
suggested that such a univariate feature selection step “may improve” the accuracy
of intrasubject classification, we showed that this improvement is significant for the
considered GLM contrasts, GP classifier and data sets. In addition, combining a
specific GLM with a second multivariate step further improved feature selection,
as indicated by the higher accuracy achieved by procedure 4 relative to 2 (spe-
cific GLM-GP). This result is in agreement with [Mitchell et al., 2004; Formisano
et al., 2008] and [De Martino et al., 2008], which stated that the combination of a
univariate selection of “active” voxels combined to a multivariate selection of “dis-
criminant” voxels led to the best performance of classifiers. However, procedures 1
and 5 (specific GLM-RFA-SVM) showed similar performance, suggesting that the
RFA step did not bring further relevant information to the SVM classifier.

Once the optimal subset of features was defined, the performance of GP and SVM
classifiers showed only slight differences (trend that procedure 4 performs better
but not significantly). However, GP seemed more robust than SVM for classifying
imbalanced data sets, as the former achieved a significantly better accuracy for
the least represented class (i.e., buildings in the current study). This result might
be explained by the sparseness of SVM since significantly different proportions of
support vectors between the binary classifiers were revealed. Furthermore, the
proportions of support vectors correlated with the obtained class accuracies.

Regarding the effect of behavioural measures on the results of the classification, it
seems that the number of events in each category has an impact on the accuracy
measures, especially for procedures 1 and 5 (SVM classifier). These significant
correlations are likely to be directly due the poor ability of SVM to deal with im-
balanced datasets. On the other hand, no relationship could be drawn between the
subjects’ performance d′ and the performance of the procedures. However, trends
indicated an effect of the percentage of correct answers on the obtained accuracy,
especially for the least represented class. This might be explained by the fact that
d′ is a logarithmic measure, while the percentage of correct answers or of correct
predictions is linear. Therefore, although the small number of observations pre-
cludes any definitive conclusion, these findings suggest that the ability to reinstate
category-specific activity patterns within specific occipito-temporal areas supports
memory retrieval.

Conclusion: The results show that for fMRI time series which include complex,
unbalanced self-generated mental states, best accuracies are obtained by a feature
selection combining a specific GLM and a recursive feature addition. Whilst the
advantage of GP over SVM to classifying this type of data is small (in terms of
balanced accuracy), the former seems more appropriate for markedly unbalanced
data sets, and thus preferable for more realistic experimental setups.
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6.2 Spontaneous brain activity

The procedure leading to the best performance was then applied to the different
rest sessions which resulted in the computation of the proportion of scans of sponta-
neous brain activity significantly linked to the memory task (P r). This proportion
P r was non-null for all subjects and all rest sessions, implying that the method
detected false positives. Furthermore, P r showed a high variability across subjects,
suggesting that the differences from pre-task to post-task rest sessions should be
investigated, instead of considering the absolute values of P r.

The results showed an increase in P r from the pre-task to the post-task rest session,
in the memory condition. When discarding the statistical outliers in terms of
behaviour (i.e. S4, S6 and S8), the increase in P r tended to be larger for the
memory condition than for the control condition. This result supports the first
hypothesis of the theory of memory consolidation, which assumes that patterns
of brain activity generated during encoding are unconsciously rehearsed during
post-task rest [Hoffman and McNaughton, 2002; Tambini et al., 2010].

Furthermore, for the same selection of subjects, the behavioural performance of
the subjects, d′, correlated with the increase in proportion P r. This correlation
could not be achieved when considering permutations of the behavioural measure
and was significantly higher than the correlation value obtained from a control task
(Co). This result suggests that the larger the increase in proportion P r from pre-
task to post-task rest, the better the memorization of task features by the subject.
This is in agreement with [Peigneux et al., 2006] and [Tambini et al., 2010] who
linked the subject’s performance to the amount of hippocampal activity [Peigneux
et al., 2006] or correlation with the neocortex [Tambini et al., 2010].

Another hypothesis regarded the temporal structure of the replays [Louie and Wil-
son, 2001; Lee and Wilson, 2002; Foster and Wilson, 2006]. To investigate whether
the increase in P r followed the phase information contained in the design (i.e. the
succession of images of faces, buildings and then animals), we computed the propor-
tions of transitions according to the forward cycle, as well as to the inverted cycle
(used as a control cycle). The results showed that the increase in the proportion of
transitions according to the forward cycle from pre-task to post-task rest session
was significantly higher for the memory condition than for the control condition.
Furthermore, this difference was not present for the inverted cycle. However, no
significant difference could be found when comparing the increases in the transi-
tions according to the forward or inverted cycle from pre-task to post-task rest
session in the memory condition. The results therefore suggest that the increase
in P r from pre-task to post-task rest session is the largest effect, affecting both
the transitions according to the forward and inverted cycles, with a preference for
the forward cycle (as shown by the median across subjects). It is the first time
that evidence regarding the temporal structure of the replays at the region level is
found.

According to [Wilson and McNaughton, 1994], the strength of the correlations
decreased along time, with a time constant around 12 minutes. [Tambini et al.,
2010] tried to reproduce this result but could not show an effect of time on the
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seed correlations. They explain this by a too short time range (10 minutes), and
therefore too close to the time constant described by [Wilson and McNaughton,
1994]. Our results show that R2m is the only session during which Pr decreases, but
this decrease is not significant compared to the large increases observed during the
other rest sessions, and particularly R1o. We therefore conclude that the considered
time-scale is also too small to show that this effect is significant, as proposed in
[Tambini et al., 2010]. The comprehensive characterization of activity-induced
neural reactivations will require the assessment of these processes over a longer
time period including during sleep.

When investigating a possible scaling factor (SF), the average duration of a detected
episode was computed as around 2 scans, i.e. 4 seconds. This average duration
increased to around 3 scans when considering episodes lasting more than one scan.
Furthermore, the duration of these episodes was significantly longer in the post-
task rest session for the memory condition than in the pre-task and post-task
rest session of the control condition. This suggests that the mnemonic traces (i.e.
the scans significantly linked to the task) detected in R2m might comprise less
false positives than in the other rest sessions. Regarding the scaling factor, the
average duration of 6 seconds leads to either a reactivation of only a few patterns
at a time (i.e. in average only 2 images), or to a temporal compression of these
reactivations. However, the absence of independent measure of neural activity
prevents any definitive conclusion, since it is not possible to infer the true number
of rehearsed patterns during an episode.

Finally we studied the effect of the arbitrary choice made when defining the thresh-
old to which a scan would be assessed as significantly linked to the task (p<0.05).
In regard of the results (see section 5.5.1.6), we can reasonably conclude that al-
though our choice affected the results, these were not obtained merely by chance.

Although all the results taken together provide evidence supporting the theory
of memory consolidation, it is useful to stress the inter-subject variability in the
sensitivity of our decoding scheme. Behaviour was variable in the first place : two
subjects were discarded due to their anxiety or depression score whilst another
used a strategy based on the alphabet to remember the memory task. As shown in
Table 5.5, these indeed showed large decreases in P r from pre-task to post-task rest
sessions in the memory condition. This was associated with a lower sensitivity in
detecting mnemonic traces, such as the correlation with the subjects’ behavioural
performance or the temporal structure of the replays. This however does not mean
that subjects considered as statistical outliers did not learn the task (as shown
by their performance) but rather that they might have used different learning
strategy, decreasing our ability to model the corresponding rest sessions. Different
factors might lead to these poor predictions, such as the anxiety or depression
scores (S4 and S8) or the strategy used to memorize the images (S6). Another
important parameter is the fact that these subjects particularly rehearsed the bi-
dimensional maze during the post-task rest session in the memory condition. We
can only assume that this conscious repetition led to a higher level of noise in the
data (compared to our effect of interest), maybe due to the selection of irrelevant
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features. However, the effects of the subject’s behaviour on memory consolidation
remain poorly understood and would need deeper investigation.

When comparing the obtained results to state-of-the art methods to analyse ROI
interactions, it appears that some hypotheses cannot be tested using such an ap-
proach due to the reduction of the time-series into a single measure (i.e. the ROI
entropy used to compute integration and partial correlation values). Studying the
temporal evolution of the ROI/NOI interactions is therefore impossible using the
considered technique, as well as investigating the temporal structure of the re-
plays or a prospective scaling factor. Regarding increases in integration within- or
between-NOIs, only an effect of the task on the attentional streams was found, for
both conditions. Although this result is in agreement with [Smith et al., 2009],
other modifications in ROI interactions are quite surprising, such as the significant
increases in within- and between-DM integration. Finally, no significant change in
hippocampal connectivity could be observed from pre-task to post-task rest ses-
sions, in neither condition. The absence of results supporting the theory of memory
consolidation leads to the conclusion that analysing ROI interactions might not be
suited to detect and characterize mnemonic traces.

Conclusions: The classification of rest sessions could be performed by applying
previously built models on a mental imagery session. While the results should be
more deeply investigated, some evidence was found supporting the theory of mem-
ory consolidation. The proposed methodology also allowed to directly investigate
the reactivations during post-experience rest. Although there is room for improve-
ment, machine learning modelling therefore seems a promising technique to study
memory consolidation and tackle the complex issue of decoding spontaneous brain
activity.

6.3 Future work

Although this work presents promising results, improvements would be welcome
in terms of methodology and acquisitions. First, the proposed models do not
allow the study of causality, and thereby cannot verify the theory of a transfer of
information from the hippocampus to the neocortex [Ji and Wilson, 2007]. Causal
machine learning models are appearing [Peters et al., 2011] and could be used in
this application in a near future. Regarding the causality in ROI interactions, one
could consider “Dynamic Causal Modelling” [Friston et al., 2003]. This technique
computes effective connectivity between ROIs, thereby inferring causality in the
interactions1.

Second, the successive scans of the rest sessions were considered as independent
from one another. However, they contain auto-correlation structures, as explained
in [Friston et al., 2007]. These might contain information that was not extracted
here: if a scan is defined as significantly linked to the task, would it be more likely
that the following scan is also linked to task or less likely? This question cannot be
answered in part because the scaling factor is unknown. Turning to EEG (Electro-

1Dynamic Causal Modelling will be applied to the considered dataset in a further work.
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EncephaloGraphy) would therefore bring further insight on the temporal evolution
of mnemonic traces. More specifically, epochs of signal could be more reasonably
treated as independent due to the high temporal resolution of this acquisition
technique. Furthermore, the outcome of an increased temporal resolution would
lead to an easier computation of the scaling factor for example, by identifying the
N170, a marker of visual stimulation. While modelling spontaneous activity using
EEG brings considerable assets, these are balanced by a lower spatial resolution
and a decreased signal-to-noise ratio, which makes decoding EEG signals still a
challenge.
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7.1 Clinical challenges

In the application presented in part I, we focused on investigating the brain func-
tioning in healthy subjects. However, studying the brain dysfunctions and trying
to isolate the affected structures or the possible causes of a degenerative disease is
another very interesting challenge. Degenerative syndromes have indeed become a
large burden in today’s society: dementia affects 1 in 20 people over the age of 65
and 1 in 5 over the age of 80 [Ferri et al., 2006]. Worldwide, there are an estimated
35.6 million people with dementia and this number is not likely to decrease due to
the ageing of the populations, especially in developing countries (Figure 7.1).

Beyond the number of people affected, the most common dementias are often mis-
diagnosed using classical clinical exams. As an example, a definitive diagnosis of
Alzheimer’s disease (AD) can only be obtained using post-mortem histopatholog-
ical analysis. Currently, AD is diagnosed using clinical exams, neuropsychological
testing and manual measurements on brain images (MRI or PET), leading to time-
consuming criteria and accuracies of the diagnosis around 80% at best [Knopman
et al., 2001]. AD is therefore often misdiagnosed, although an early treatment
would be more effective. This example illustrates the need for automated and
objective diagnostic procedures.

During the past decades, advances in neuroimaging techniques enabled the identi-
fication of biomarkers in dementias, such as in Alzheimer’s disease [Zakzanis et al.,
2003] or in different states of consciousness [Monti et al., 2010]. Statistical paramet-
ric mapping (for functional images) and voxel-based morphometry, ([Ashburner and
Friston, 2000] for structural images) helped to infer group differences, e.g. between
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Figure 7.1: Number of people with dementia. Identified and projected number
of people with dementia in developed and developing countries. [Ferri et al., 2006]
estimates 4.6 million new cases of dementia each year, with most diseased people
living in developing countries.

healthy subjects and patients. However, conclusions at the subject’s level would
also be desirable for diagnosis, prognosis, treatment planning or the monitoring of
disease progression [Orrù et al., 2012].

7.2 Machine learning models

In order to build automated and objective diagnostic aids, multivariate analysis
could become particularly useful. Multivariate decoding of neuroimaging data can
be used to achieve two different objectives: firstly and obviously predict the per-
ceptual, cognitive or medical state of one or many subjects, referred to as pattern
discrimination [Pereira et al., 2009]. Therefore, once the machine learning based
model has been trained, it can then be used as a “black box” that predicts the
category of any new data fed in. This can be viewed as a diagnostic tool in the
case of a disease-versus-healthy classification (or any variation). Beyond the final
diagnosis/prognosis, clinicians are also interested in where the information about
the variable of interest is coded in the brain. In this case, machine learning based
modelling can be used to reveal the pattern of voxels leading to the discrimination
of different states, referred to as pattern localization. With linear kernel machines
(such as the ones used in this work), these two goals can be reached simultane-
ously: the estimated weight associated to each voxel reveals the patterns of voxels
considered as important by the model to perform the classification. However, as
already mentioned in chapter 2.5.5, the pattern has to be considered as a whole,
which leads to a difficult interpretation.

In the following subsections, the latest methods and results are reviewed for pattern
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discrimination and localization. To illustrate the considered issues, we focused on
the case of Parkinson’s Disease (PD), which presents challenges for both applica-
tions.

7.2.1 Diagnostic tool

The use of machine learning models as diagnostic tools has already demonstrated
its promises. For example, [Vemuri et al., 2008; Klöppel et al., 2008] performed the
distinction between healthy subjects and AD patients with an accuracy higher than
86%. These methods also allowed to assess the level of consciousness of vegetative
states patients [Phillips et al., 2011], which can lead to a dramatic increase in their
quality of life.

When considering Parkinson’s disease, two types of problems have been envisaged:
discriminating Idiopathic Parkinson’s Disease (IPD) from healthy controls, and
distinguishing between IPD and Parkinson Plus Syndromes (PPS), which repre-
sent atypical forms of Parkinson’s disease. The latter issue can either be treated
as a binary problem (IPD vs PPS), as in [Duchesne et al., 2009] or divided into
its sub-classes, when considering the atypical syndromes separately. [Focke et al.,
2011] therefore successfully discriminated between IPD and Progressive Supranu-
clear Palsy (PSP) and between IPD and Multiple Systems Atrophy (MSA), using
the grey matter extracted from structural MRI. In a more recent work, [Garraux
et al., submitted] derived a multiclass classifier to directly discriminate between the
18FDG PET images of IPD, PSP, MSA and Cortico-Basal Syndrome (CBS) pa-
tients. In contrast with previous works, they were able to associate a “confidence”
measure to each prediction, which is particularly useful in a clinical context. There-
fore, although there is room for improvement, especially in the multiclass case,
machine learning methods already proved to be useful when discriminating IPD
from PSP [Duchesne et al., 2009; Focke et al., 2011; Garraux et al., submitted].

Regarding the discrimination between IPD patients and healthy controls, various
parameters such as movement parameters [Aubin et al., 2012], voice measurements
[Geetha Ramani and Sivagami, 2011] or eye movements [Tseng et al., 2012] provided
significant results. In contrast, when considering neuroimaging data, it seems that
only PET images allowed the significant classification of IPD patients and healthy
controls: [Jokinen et al., 2009] and [Acton and Newberg, 2006] achieved accuracies
higher than 90%, while structural MRI [Focke et al., 2011], gave no significant
results [Orrù et al., 2012]. However, both works extracted specific features in the
images (voxels in the striatum for Acton and Newberg, 2006 and dopamine uptake
striatal to occipital cortices ratio in Jokinen et al., 2009) and [Acton and Newberg,
2006] used non-linear classifiers, thereby precluding the building and localization of
the pattern. Furthermore, in view of the advantages of (f)MRI compared to PET
(see Table A.1), finding MRI biomarkers of idiopathic Pakinson’s disease would be
desirable.

In order to identify MRI biomarkers of Parkinson’s disease when compared to
healthy subjects, we referred to previous works investigating gait disturbances due
to IPD in fMRI [Snijders et al., 2011; Maillet et al., 2012; Cremers et al., 2012b].



90 Introduction

More specifically, the univariate results of [Cremers et al., 2012b] showed different
activation patterns in controls and patients during the mental imagery of gait in
fMRI (see Table 7.1). In the present work, mental imagery of gait in fMRI was
therefore investigated as a possible informative feature set to discriminate between
IPD patients and healthy controls.

Table 7.1: Mental gait activation patterns in controls (Ctrl) and patients. SMA
stands for supplementary motor area, DLPFC for dorsolateral prefrontal cortex,
PPN for pedunculopontine nucleus and MLR for mesencephaliclocomotor region.
Laterality is indicated by L (left), R (right) or bi (bilateral). For coordinates, please
see [Cremers et al., 2012b]

.
Area Ctrl Patients Ctrl>IPD

Lateral premotor cortex bi - -

Pre-SMA bi R -

Anterior cingulate cortex bi R -

Middle frontal gyrus (DLPFC) R - -

Inferior frontal gyrus bi - -

Anterior insula bi - -

Intraparietalsulcus bi - bi

Precuneus bi - R

Parieto-occipital sulcus bi - bi

Posterior hippocampus bi - L

Parahippocampalgyrus bi - -

Lingual gyrus bi - R

Caudate nucleus (head) R - -

Anterior putamen bi - -

Anterior pallidum L - -

PPN/MLR area L - L

Lateral pons L - -

Cerebellar vermis Midline - Midline

Cerebellar hemisphere bi - bi

7.2.2 Pattern localization

There are different approaches to investigate pattern localization. Most studies
report the “peaks”, i.e. the voxels corresponding to the highest weights for each
category. However, without the ability to threshold the weight maps, such interpre-
tation can be complex and not easily illustrated. Another approach is to compute
one machine learning model for each voxel, or for each voxel and its neighbour-
hood (referred to as the searchlight scheme, [Kriegeskorte et al., 2006]), thereby
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constructing a map containing the accuracies for each voxel. The obtained accura-
cies can then be tested for significance, as in second-level univariate analyses, and
hence thresholded [Pereira et al., 2009]. This technique, whilst giving thresholded
maps of accuracies, is only locally multivariate and therefore does not take full
advantage of the multivariate nature of the data. Furthermore, it does not provide
a diagnostic tool.

In this study, techniques were developed to ease the interpretation of the weights
associated with a diagnostic tool. To illustrate the proposed methodology, the
results were compared with the univariate results from [Snijders et al., 2011; Maillet
et al., 2012] and more particularly to [Cremers et al., 2012b] (Table 7.1).

7.3 Aim of this work

In the present work, both the issue of fMRI pattern classification and localization
were tackled by considering the discrimination between aged healthy subjects and
idiopathic Parkinson’s disease patients. Based on previous works [Cremers et al.,
2012a,b], we investigated whether the mental imagery of gait could predict the
presence or absence of IPD. Furthermore, a methodology to help interpreting the
model weights was developed and allowed comparing models in terms of pattern
localization.

Aim: Apply machine learning based models in a clinical context to classify and
localize the fMRI patterns of idiopathic Parkinson’s disease.



92 Introduction



Chapter 8

Material and Methods

Contents
8.1 Data and design . . . . . . . . . . . . . . . . . . . . . . . . . 93

8.1.1 Population . . . . . . . . . . . . . . . . . . . . . . . . 93

8.1.2 Experimental design . . . . . . . . . . . . . . . . . . . 94

8.1.3 Data acquisition . . . . . . . . . . . . . . . . . . . . . 94

8.1.4 Preprocessing . . . . . . . . . . . . . . . . . . . . . . 95

8.2 Multivariate analysis . . . . . . . . . . . . . . . . . . . . . . 95

8.2.1 Pattern discrimination . . . . . . . . . . . . . . . . . 95

8.2.2 Pattern localization . . . . . . . . . . . . . . . . . . . 97

In this chapter, we present the material and methods used to investigate the pat-
terns of IPD. After the description of the data and design, the use of pattern
classification techniques as a diagnostic tool is exposed in section 8.2. Finally, the
methods developed to localize the patterns of IPD are presented in section 8.2.2.1.

8.1 Data and design

The material considered in this work being the same as in [Cremers et al., 2012b],
only a brief description of the population and experimental design will be provided.
For more details, please refer to [Cremers et al., 2012a,b].

8.1.1 Population

In total, 29 subjects participated in the study: 14 patients (7 males; mean age:
65.1 ± 9.5 years) diagnosed with IPD with different degrees of severity of gait
disturbances and 15 controls matched for age (63.8 ± 8.1 years) and gender (7
males). The volunteers did not have any history of intracranial lesion, neuroleptic
agents exposure or excessive alcohol consumption. Written informed consents for
this research protocol approved by the local ethics committee were obtained from
all participants.
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8.1.2 Experimental design

Before fMRI, the subjects were asked to walk comfortably and then briskly on a
25m path. After gait evaluation, they were trained to mentally rehearse themselves
walking on the path without making any voluntary movement.

All subjects then underwent a block-design fMRI session comprising three tasks:
mental imagery of standing on the path (STAND), walking at a comfortable pace
along the path (COMF) and walking briskly along the path (BRISK). The COMF
and BRISK conditions were self-paced, subjects indicating when they had com-
pleted each trial by a key press, while each trial of the STAND condition was
constrained by the duration of the previous COMF trial. Eight trials of each
condition (12 for BRISK to account for a shorter duration of the trials) were ran-
domly presented to each subject (Figure 8.1). Mental imagery was performed in a
visuokinesthetic first-person perspective.

Figure 8.1: Design of the mental imagery of gait experiment. A Before
scanning, subjects are trained to walk at a comfortable and then brisk pace on
a 25m path. B In the scanner, subjects mentally rehearse standing (8 blocks) or
walking comfortably (8 self-paced blocks) or briskly (12 self-paced blocks) on the
25m path.

8.1.3 Data acquisition

BOLD fMRI data were obtained on a 3T Magnetom Allegra MR Head scan-
ner (Siemens AG Medical Solutions, Erlangen Germany) using a single-shot 2D
gradient-echo echo-planar imaging (GRE-EPI) sequence (32 axial slices, slice thick-
ness = 3 mm, slice gap = 30%, TR = 2,130 ms, TE = 40 ms, flip angle = 90◦;
bandwidth = 3,552 Hz; matrix size = 64 × 64, yielding an in-plane resolution
of 3.44 mm × 3.44 mm). The first three images of the BOLD time series were
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discarded to allow for T1 saturation effects. Head movement was minimized by
restraining the subject’s head using a vacuum cushion.

In addition to BOLD fMRI, all participants underwent a high-resolution volumetric
anatomical MRI of thebrain using a T1-weighted MDEFT sequence (TR = 7.92
ms TE = 2.4 ms, TI = 910 ms, flip angle = 15◦; matrix size 240 × 256, yielding
176 contiguous sagittal slices with a isotropic voxel size of 1 mm3).

8.1.4 Preprocessing

fMRI data preprocessing and univariate analysis were performed using SPM81.
Functional images were realigned and co-registered to the structural image before
normalisation using DARTEL [Ashburner, 2007]. Finally, smoothing was applied
using a 8mm FWHM Gaussian kernel.

A general linear model then summarized the time series from each subject by mod-
elling each condition by a boxcar function convoluted with a canonical haemody-
namic response function. In the end, three images per subject were considered for
further analysis: the parametric maps of STAND, COMF and BRISK representing
the BOLD signal activity associated with each condition.

8.2 Multivariate analysis

The multivariate analysis was performed using PRoNTo2. This Matlab-based soft-
ware (MathWorks, Natick, MA) provides a flexible framework to perform pattern
recognition based on machine learning models [Schrouff et al., 2013].

8.2.1 Pattern discrimination

Pattern discrimination was performed using binary SVM, as in [Focke et al., 2011]
and [Orrù et al., 2012], with a linear kernel and the soft-margin hyperparameter
C set to 1 [Mourão-Miranda et al., 2006]. In part I, feature selection led to an
improvement in model performance when dealing with within-subject classification.
This effect of feature selection on between-subject classification has however been
questioned (e.g. by [Mourão-Miranda et al., 2006]). In the present work, both
whole brain and space selection analyses were therefore conducted.

In its current version, PRoNTo does not provide wrapper or embedded feature
selection. Three masks (Figure 8.2) were therefore used as filters before building
the linear kernel, based on [Cremers et al., 2012b]:

• A “whole brain” mask, selecting all voxels within the brain.

• A “motor mask”, built with a digital neuro-anatomical atlas (using the WFU-
PickAtlas, Maldjian et al., 2003) and comprising the areas involved in gait

1www.fil.ion.ucl.ac.uk/spm
2www.mlnl.cs.ucl.ac.uk/pronto

www.fil.ion.ucl.ac.uk/spm
www.mlnl.cs.ucl.ac.uk/pronto
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(both in healthy subjects and patients), as described in Table 1 of [Maillet
et al., 2012].

• A mask comprising the Mesencephalic Locomotor Region (MLR) and pe-
dunculopontine nucleus, further referred to as “MLR mask”. These areas
were previously and consistently reported in univariate analyses comparing
healthy subjects and IPD patients [Cremers et al., 2012b; Karachi et al.,
2010; Snijders et al., 2011; Alam et al., 2011]. The mask consists in a box of
1.7cm3 and was built using anatomical markers (coordinates in MNI space:
x=[8.5,-8.5], y=[-26,-36], z=[-12,-22] mm).

Figure 8.2: Masks considered for the discrimination between healthy con-
trols and IPD patients. A Whole brain (517845 voxels), B, motor (217814
voxels) and C MLR masks (225 voxels, note that the cross-hair position has been
centred on the MLR for this panel). D displays the SPM single subject canonical
structural image for better representation.

To distinguish between IPD and healthy controls (i.e. between groups classifi-
cation), the three tasks will be combined in every possible way (e.g. BRISK,
BRISK+COMF, . . . , see Table 8.1) and tested for each mask, leading to 7 combi-
nations times 3 masks, resulting in 21 models. Using more than one condition sim-
ply means that the corresponding images were added as samples (e.g. the STAND



8.2. Multivariate analysis 97

and COMF images of control 1 were labelled as “control” and tested independently
when left out as test set).

Table 8.1: Combinations of the three conditions (STAND, COMF and BRISK)
used to discriminate between IPD and CTRL. The combination of all conditions is
further referred to as “All”(last column).

Combination

Condition 1 2 3 4 5 6 All

STAND x x x x

COMF x x x x

BRISK x x x x

To benefit from the different models built from each mask, their predictions were
taken together in a majority vote (MV). This voting operation is based on the idea
that combining weak models (i.e. models leading to significant but low accuracies)
could lead to a strong model (i.e. a model leading to significant and high accura-
cies). MV has been increasingly used in the field of machine learning and pattern
recognition, as well as for clinical applications [Garraux et al., submitted]. In the
present case, a majority vote was computed from the STAND, BRISK and COMF
models (first three columns in Table 8.1) for each test data (which are the same
across models, i.e. one subject per fold). Since three binary models are involved in
the voting operation, no ties are possible.

In addition to the IPD vs. CTRL comparison, the discrimination between the
three tasks was also assessed by pooling together the data of both groups. This
classification required the use of a multiclass model, implemented in PRoNTo in
the form of multiclass Gaussian Processes.

For both classification problems, leave-one-subject-out cross-validation was per-
formed to compute the balanced and class accuracies, as well as positive predictive
values. The significance of accuracy measures was assessed by non-parametric test-
ing using 1000 random permutations of the training labels (100 permutations for
Gaussian Processes due to its higher computational expenses). Particular care was
taken during the permutation testing of the MV model: the labels have to be the
same for the three models considered for voting, such that the permutation testing
has to be performed simultaneously for the different models.

8.2.2 Pattern localization

To localize the pattern discriminating between IPD and healthy controls, the first
requirement is to find an intuitive way to display the weights (section 8.2.2.1).
Beyond the representation of the weights, it is asked how similar two patterns are,
i.e. compare models in terms of pattern localization. This leads to the question
of quantifying the similarity between two patterns, which is addressed in section
8.2.2.2.
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8.2.2.1 Representing the weights

In univariate analyses, significant voxels are grouped into clusters that can then
be compared to known anatomically or functionally labelled regions. Neuroscien-
tists are therefore used to refer to these regions, which define atlases, such as the
Automated Anatomical Labelling atlas (AAL, Tzourio-Mazoyer et al., 2002) or the
Talairach atlas based on Brodmann areas [Talairach and Tournoux, 1988].

In order to facilitate the interpretation of the weights associated to each voxel, the
weight maps were “smoothed” according to the regions labelled by these atlases.
One measure of weight per labelled region was defined, further referred to as the
Normalized Weights, NWROI . This measure is computed from the absolute weight
in one region WROI :

WROI =
∑

v∈ROI

|Wv| (8.1)

with v representing the index of a voxel in the weight image and Wv its weight.

Since WROI consists in a sum of absolute values, it (partly) reflects the size of the
regions. To account for the region size, the normalized weight of one region NWROI

was defined as its weight WROI divided by the volume of the region (number of
voxels). From this measure, it is then possible to rank the regions according to
the percentage of the normalized weight that they explain. This is then similar
to a Principal Component Analysis, in which the components are ranked on the
proportion of the signal variance they explain.

To illustrate this approach, the univariate results of [Cremers et al., 2012b] were re-
produced. They investigated the patterns of activity generated by the COMF>STAND
contrast in each group separately and then in their comparison. SVM models were
therefore built on the discrimination between the COMF and STAND conditions
in the control (CTRL) and in the patients (IPD) groups separately. The whole
brain pattern discriminating best between the two groups (built in section 8.2.1)
was then localized and compared to the univariate results (to a certain extent, see
further).

The labelled regions used to localize the patterns were defined by the AAL atlas
from the WFU-PickAtlas [Maldjian et al., 2003] toolbox in SPM. To the classic,
lateralized 117 AAL regions, the pons, the midbrain and the medulla regions were
added, since they were reported in the univariate results of [Cremers et al., 2012b;
Maillet et al., 2012] and comprise the mesencephalic locomotor region and the
pedunculopontine nucleus. The 120 regions from this manually generated atlas are
illustrated in Figure 8.3.

The top ranked regions in terms of normalized weights, NW , were then compared
to the univariate results of [Cremers et al., 2012b]. It should be noted that uni-
variate results are directed (COMF>STAND), while multivariate results are not
(COMF 6=STAND), which further precludes from any direct comparisons between
univariate and multivariate results. For display purposes, an image of the normal-
ized weights of the models leading to the best discrimination between IPD and
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Figure 8.3: AAL atlas with pons, medulla and midbrain regions. Views
of the 117 labelled regions defined in the AAL atlas (in green and blue), with the
addition of medulla, pons and midbrain areas (in yellow). In total, the brain has
been parcelled into 120 labelled regions of interest.

healthy controls was built.

This methodology, although simple, gives a ranking of the regions contributing to
the pattern classification, without the need to threshold the weights. However, two
aspects have to be accounted for when computing those measures:

1. The overlap between the mask used to perform the classification and the atlas
defining the regions.

2. The variability of the ranking across folds.

The first issue regards the overlap between the mask and the atlas: when per-
forming whole-brain pattern classification, the mask can comprise white matter or
cerebrospinal fluid in addition to the grey matter. On the other hand, the atlases
usually comprise grey matter only, such as those generated from AAL labels or
Brodmann areas using the WFU-PickAtlas [Maldjian et al., 2003]. As a result,
some voxels v are not associated to any region and their weight is not taken into
account. To overcome this problem, a new region was created, called others, that
pools all those voxels into a single region for which the (normalized) weight can
be computed (Figure 8.4). The overlap between the mask and the atlas is hence
reflected by their common volume and by the weight of the others region. These
values were therefore reported for each pattern.

The second issue relates to the variability of the weights across folds: if the data
contains outliers, then the results will be driven by only a few folds and the average
of the folds will not correctly represent the pattern classification model . To identify
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Figure 8.4: Account for mask-atlas overlap. The mask is represented as a
white, transparent overlay on a structural brain image while the atlas is defined
by the blue/green labelled regions. Any voxel v displayed in gray-scale, i.e. not
covered by any blue/green region was pooled into the others region.

such situations, the rankings of the regions are presented in terms of expected values
across folds:

E(RankROI) = 1 × f(1) + 2 × f(2) + 3 × f(3) + . . . + NROI × f(NROI) (8.2)

With f(x) being the frequency that the region ROI was ranked xth, and NROI,
the total number of labelled regions (i.e. 120 in the present case).

8.2.2.2 Compare patterns

Computing the expected value of the ranks across folds provides a qualitative idea
on the stability of the ranking across folds. However, defining a quantitative mea-
sure to compute the differences in pattern localization across folds would bring more
insight on the variability of the weights. From a more general point of view, being
able to compare two models in terms of pattern localization is a parameter that is
highly desirable: models are usually compared in terms of performance (accuracy,
sensitivity, specificity, . . . ) or in terms of goodness of fit (e.g. marginal likeli-
hood when using Gaussian Processes). However, neuroscientists are particularly
interested in the localization of the obtained patterns and therefore, a quantitative
assessment of the differences in the ranking of the labelled regions would provide
them with an additional way to compare various models.

In order to assess the difference between patterns in terms of their localization, a
measure of distance between rankings was defined, dr. This measure compares the
(expected values of) the ranking of the labelled regions and is inspired from those
used in the field of web search [Lempel and Moran, 2005]. It is computed as:
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dr(f1, f2) =
2

N ∗ (N − 1)

N
∑

i=1

N
∑

j=1

If1,f2
(i, j) (8.3)

where

If1,f2
(i, j) =







1 if f1(i) < f1(j) and f2(i) > f2(j)

0 otherwise

with dr(f1, f2), the ranking distance between the folds/models f1 and f2 and N ,
the number of elements in the ranking, which corresponds to the number of regions
in the atlas in the present case (i.e. 120 labelled regions). The values of dr range
from 0 (exactly the same rankings) to 1 (exactly opposite rankings). This distance
measure is illustrated in Table 8.2 for different rankings.

Table 8.2: Illustration of the ranking distance measure, for 4 rankings of 5 labelled
regions. The distance between rankings dr was computed between the first and the
other rankings.

Region R1 R2 R3 R4

Region A 1 1 5 5

Region B 2 3 1 4

Region C 3 2 4 3

Region D 4 4 2 2

Region E 5 5 3 1

dr(R1, −) 0 0.1 0.6 1

In this clinical application, the ranking distance was computed between each fold
and their average on the basis of the normalized weights for the COMF vs. STAND
comparison in the control (CTRL) and patients (IPD) groups, separately. A
Kruskal-Wallis non-parametric statistical test then enabled the identification of
outliers and assessed the stability of the ranking between each fold and the average
across folds.

Beyond the identification of potential outliers in terms of pattern localization, it
is possible to compute the ranking distance between different models using the
expected values of the ranks across folds. In the present work, we identified the
(combinations of) conditions leading to the largest distance between the patterns
of the IPD and control groups. The idea behind this test is the following: if the
comparison of two (combinations of) conditions generate dissimilar patterns in the
two groups, then these conditions are probably suited to discriminate between those
two groups. On the contrary, if the obtained ranking distance between groups is
small, the binary comparison generated similar patterns, such that those conditions
contain few information about the groups.

To compare groups in terms of patterns, the SVM models of all binary combina-
tions of conditions were built within each group independently. The distance (dr)
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between each pair of CTRL - IPD models was then computed. To illustrate this
process, consider the COMF vs STAND comparison previously investigated for
pattern localization. The COMF vs STAND model was computed for the control
group, and thereby an expected ranking (across folds) was obtained for each re-
gion. The same comparison was performed when considering the IPD group, which
also gave expected rankings per region. These two expected rankings were then
compared using the ranking distance. The operation was then repeated for each
binary modelling of the conditions (i.e. COMF vs BRISK, BRISK vs STAND,
COMF+BRISK vs STAND, . . . ), allowing to compare the different binary combi-
nations of conditions in terms of distance between groups. Please note that this
operation was led on the whole brain and motor masks only, since the MLR mask
already defined a specific ROI (more specifically, rankings would only involve three
regions at most).

Finally, the SVM and GP techniques were compared in terms of pattern localization
by computing the ranking distance between SVM and GP models on all binary
combinations of the conditions in the control (CTRL) group. This comparison
was performed in the same way as when comparing the two groups. According to
[Pereira et al., 2009], binary SVM and GP models should generate similar patterns.
The ranking distance was therefore expected to have values closer to those observed
between folds than to those between groups.

Computing the ranking distance dr between groups or modelling techniques pro-
vides a first quantitative idea on how similar two patterns are. However, although
dr varies from 0 to 1, no probability value is associated to the ranking distance.
Drawing conclusions from these values can hence be complicated3. To obtain p-
values associated with the ranking distance, we resorted to the permutation testing
performed to assess the significance of the balanced/class accuracies (see section
2.5.4). For a given model (e.g. the COMF vs STAND comparison performed
within the CTRL group, using the whole brain mask), a weight image was built
for each random permutation of the labels. The normalized weights per region
NWROI were then computed for each fold of the permutation (using the same atlas
as previously). Thereby, the expected values of the ranking across folds could be
calculated for each permutation. The ranking distance dr between two models (e.g.
COMF vs STAND comparison in the CTRL and IPD groups) was then computed
between each pair of permutations, providing a “null” distribution of dr between
these two models. This distribution can then be compared to the “true” value of
dr: if dr is significantly (p < 0.05) smaller than the dr values computed from the
random permutations of the labels, the patterns can be considered as significantly
similar.

In this work, 100 permutations were computed for each model comparing the CTRL
and IPD groups (24 models in total, for the whole brain and motor masks), giving
100 vectors of expected ranking. The binary comparison of these vectors led to
100×(100−1)

2
values for dr. The same approach was applied to the comparison between

SVM and GP models on the control group (whole brain mask).

3dr can actually be compared to a correlation coefficient without a p-value.
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9.1 Pattern discrimination

9.1.1 Between groups comparison

Results are presented for each (combination of) condition(s) in Table 9.1 in terms
of balanced accuracy while weights of the BRISK+COMF model are represented
in Figure 9.1 for each mask. The results of the majority vote computed from the
STAND, BRISK and COMF models are presented in the last line of Table 9.1.

Overall, the whole brain mask led to a poor discrimination of IPD vs. CTRL, with
the accuracy reaching a maximum at 62.3% when considering both the COMF and
BRISK conditions together. This is the only significant result with the whole brain
mask.

Slightly better results were obtained from the features in the motor mask, as shown
by a higher balanced accuracy for the BRISK-COMF combination, as well as for
the BRISK condition (both significant at p < 0.05).

The signal comprised in the MLR mask led to the best results, the highest perfor-
mance being reached when considering the COMF condition. For this model, the
balanced accuracy had a value of 76% (p=0.01), with the class accuracies reaching
78.6% for IPD and 73.3% for CTRL (both significant at p < 0.05). PPV are in the
same range, with a PPV of 78.6% for CTRL and 73.3% for IPD.

Regarding the majority vote, the results showed no improvement for the whole
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Table 9.1: Balanced accuracy (in %) for the IPD vs. CTRL classification for
each combination of the three tasks (rows) and for each mask (columns). “All”
represents the combination of the three tasks, while “MV” refers to the majority
vote computed from the first three models. Significant results are displayed in bold.

Conditions used Masks used

Condition Whole brain Motor MLR

STAND 14.3 34.5 72.6

COMF 58.3 62.1 76.0

BRISK 59.0 66.2 62.1

STAND+COMF 36.3 36.2 72.4

STAND+BRISK 36.7 39.7 65.4

COMF+BRISK 62.3 65.8 62.1

All 42.9 48.3 56.4

MV 44.83 44.83 86.19

brain and motor masks, with balanced accuracies below the chance level of 50%.
On the opposite, a clear increase in balanced accuracy was found for the MLR
mask. For this mask, the balanced accuracy reached 86.19%, with 86.67% of correct
classification and PPV for the CTRL group and 85.71% for the IPD group. This
result suggests that the errors made individually by the three models are different
and can be compensated by the voting operation.

9.1.2 Between tasks comparison

In terms of balanced accuracy, significant results could be obtained from the dis-
crimination between the three tasks across the two groups of subjects when con-
sidering the whole brain and motor masks (Table 9.2). This result is confirmed by
the PPV for each class, which are quite high. However, the signal in the MLR does
not lead to a significant classification of the three tasks, which is further confirmed
by the PPV (almost all samples are classified as STAND).

Table 9.2: Balanced accb and class accuracies (in %, PPV in brackets) of the
multiclass GP model discriminating between the three tasks (STAND, COMF and
BRISK) when considering both groups jointly. Significant results are displayed in
bold.

Mask accb STAND COMF BRISK

Whole brain 65.5 58.6 (65.4) 41.4 (75.0) 96.6 (62.2)

Motor areas 66.7 62.1 (64.3) 41.4 (70.6) 96.6 (66.7)

MLR area 32.2 89.7 (32.1) 0.0 (0.0) 6.9 (33.3)
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Figure 9.1: Weights of the SVM model discriminating between CTRL (label +1)
and IPD (label -1) based on the combination of the BRISK and COMF conditions,
for A the whole brain, B, motor and C MLR masks (Note that the cross-hair
position has been centred on the MLR for this panel). D displays the SPM single
subject canonical structural image for better representation.

9.2 Pattern localization

9.2.1 Representing the weights

The results of the COMF vs. STAND comparison are presented below for each
group separately in terms of balanced and class accuracies. The overlap between
the mask and the atlas in terms of absolute weights is also reported, as well as
the ranking of the others region. Please note that the others region represent
16.39% of the total volume of the whole brain mask, and 7.47% of the motor mask.
Furthermore, the top ten (arbitrarily fixed number) regions according to normalized
weights, NW , are represented for each group in Table 9.3 and compared to the
univariate results from Table 7.1.

In terms of comparison between the two groups (i.e. CTRL vs. IPD discrimina-
tion), section 9.1 has shown that using the combination of both the BRISK and
COMF conditions led to the most stable results across feature sets, giving signifi-
cant accuracies for each mask. Therefore, to illustrate the smoothed representation
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of the weights, the pattern of this model was localized and displayed in Figure 9.2
for the whole brain mask. As for the comparisons within each group, the top ten re-
gions according to NW were reported in Table 9.3 and compared to the univariate
results of [Cremers et al., 2012b].

Control group. The mental imagery of the COMF and STAND conditions could
be discriminated with an accuracy of 86.7% (STAND: 100%, COMF: 73.3%). The
weight of the region others represented 13.03% of the total weights, meaning that
the atlas and the mask overlap at 86.87% when considering the sum of the absolute
values of the weights. This region was ranked first in terms of absolute weights
WROI , but 117/120 in terms of normalized weights NW , suggesting that if some
voxels were important for the classification, this information was lost when building
the others region. Regarding the comparison of the results with Table 7.1, the
medulla, cerebellar vermis and hemisphere regions, the SMA, the caudate nuclei
and middle and inferior frontal regions were ranked in the top 15.

IPD group. The accuracy of the classification between the COMF and STAND
conditions reached 85.7%, with class accuracies of 100% for STAND and 71.4%
for COMF. The other region represented 18% of the weights (rank 1), and 0.61%
of the normalized weights (rank 87). Although some regions were not reported in
previous univariate studies [Maillet et al., 2012; Cremers et al., 2012b], the SMA
and the anterior cingulate cortex were ranked in the top 10.

IPD versus control. The others region was ranked first in terms of weights
(21.0906%) and 120/120 in terms of normalized weights NW . The medulla, cere-
bellar vermis and hemisphere regions were ranked in the top 10, which is in agree-
ment with the univariate results of [Cremers et al., 2012b]. However, the parametric
maps of each group were compared in a directed way (controls > IPD) considering
the COMF>STAND contrast, which precludes from any conclusion.

9.2.2 Comparing patterns

To quantify the difference between patterns in terms of localization, the ranking
distance was computed in different situations:

Distance across folds. When considering the COMF-STAND comparison, the
ranking distance between each fold and their average varied from 0.0108 to 0.1571
for the control group and from 0.0157 to 0.2076 for the IPD group. A Kruskal-
Wallis statistical test revealed no significant difference in the distance distribution
across groups (p = 0.7766). However, it identified patient 3 as an outlier in the IPD
group. This suggests that the average pattern across folds might be importantly
influenced by the data of this patient.

To investigate whether this subject was also an outlier in terms of ranking distance
when it comes to the group comparison, a Kruskal-Wallis test was performed on
the ranking distances across folds obtained from the CTRL-IPD comparison based
on the COMF and BRISK conditions (whole brain). As shown in Figure 9.4, no
statistically significant difference was observed between the two groups in terms
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Table 9.3: Regions ranked according to their normalized weights in the control
and IPD groups when classifying COMF and STAND, and for their comparison
when considering the BRISK and COMF conditions jointly. The whole brain mask
was used for all the cases. ’SMA’ stands for ’Supplementary Motor’ Area, ’Inf’ for
’inferior’, ’Mid’ for ’middle’, ’Med’ for ’medial’, ’Sup’ for ’superior’ and ’Ant’ for
’anterior’. Lateralization is displayed using L (left) and R (right), when sound.

Rank COMF vs. STAND
(CTRL)

COMF vs. STAND
(IPD)

CTRL vs. IPD
(COMF+BRISK)

1 Medulla Olfactory (L) Caudate (L)
2 Vermis 3 SupraMarginal (L) Vermis 10
3 Cerebellum 3 (L) Cerebellum 10 (l) Medulla
4 Vermis 4-5 Vermis 3 Mid Frontal (L)
5 SMA (R) Rectus (L) Inf Frontal (R)
6 Sup Temporal (L) SMA (R) Rectus (L)
7 Caudate (L) Rectus (R) Inf Frontal (L)
8 SMA (L) Med Frontal (R) Cerebellum 7 (R)
9 Inf Frontal (L) Olfactory (R) Cerebellum 10 (L)
10 Angular (L) Ant Cingulate (R) Sup Frontal (R)

Figure 9.2: Smoothed weights of the SVM model discriminating between
CTRL and IPD based on the combination of the BRISK and COMF conditions,
for the whole brain mask. The proportions of NW are represented for each labelled
region, the regions with the highest proportions of NW in red, the lowest (close to
zero), in blue.

of ranking distance across folds. This result suggests that patient 3 displays a
different pattern only for the COMF versus STAND comparison. This could be
due to increased noise or movements during the acquisition of one of these two
conditions or both. Since COMF is common to both the within and between
groups model, the noise probably comes from the STAND condition.

Distance between groups. The ranking distance across groups using all possible
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Figure 9.3: Ranking distance across folds for the COMF-STAND comparison,
for each group separately. A Kruskal-Wallis statistical test revealed no significant
difference between the two groups but displayed patient 3 as an outlier for the
COMF vs. STAND comparison.

Figure 9.4: Ranking distance across folds for the CTRL-IPD comparison, when
considering the whole brain mask and the COMF and BRISK conditions jointly.
A Kruskal-Wallis statistical test revealed no significant difference between the two
groups in terms of ranking distance.

binary combinations of conditions and for both the whole brain and motor masks
are presented in Table 9.4, along with the balanced accuracy of the binary model
in each group. The largest ranking distances between groups are observed for
the STAND vs COMF (Figure 9.5) and BRISK+COMF vs STAND models, with
a slight increase in distance from the whole brain to motor mask. This is in
agreement with the combinations of conditions leading to the best discrimination
between groups, although no direct comparison can be performed.

Although the COMF vs BRISK comparison also showed a large ranking distance
between the two groups, the models within each group showed low balanced ac-
curacy values, such that these models did not really learn from the labels. This
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Table 9.4: The balanced accuracy of the model of each possible binary combination
of the conditions was displayed for each group and mask, as well as the ranking
distance between the control and IPD groups. CTRL represents the balanced
accuracy for the control group, IPD, the balanced accuracy for the IPD group and
dr, the ranking distance between the two groups. Significant balanced accuracies
are marked in bold. Ranking distances marked in bold are significantly smaller
than for permuted labels (p < 0.05), while ranking distances marked with a star⋆

show a trend (0.05 < p < 0.1).

Whole brain Motor regions

Model CTRL IPD dr CTRL IPD dr

BRISK vs COMF 66.7 50.0 0.3688 63.3 57.1 0.3757

BRISK vs STAND 83.3 75.0 0.3317⋆ 83.3 75.0 0.3320⋆

COMF vs STAND 86.7 85.7 0.3990 86.7 85.7 0.4040

BRISK+STAND vs COMF 61.7 62.5 0.3387⋆ 63.3 58.9 0.3340⋆

BRISK+COMF vs STAND 85.0 85.7 0.3721 85.0 87.5 0.3725

COMF+STAND vs BRISK 75.0 57.1 0.3052 75.0 57.1 0.3108

Figure 9.5: Permuted ranking distance between CTRL and IPD for the
COMF-STAND comparison. The values of dr obtained from the random permu-
tations of the labels are displayed in the blue histogram. The “true” value of dr is
displayed as a green star. One can see that the “true” value of dr is not smaller
than the dr obtained from the permuted labels.

suggests that the generated patterns could have been generated from any random
permutation of the labels, as shown by the ranking distance (which is not signifi-
cant).

It should be noted that the COMF+STAND vs BRISK model led to ranking
distances significantly smaller for the true labels than for random permutations.
Trends were also noted for the BRISK vs STAND and BRISK+STAND vs COMF
models, suggesting that these three models generate (significantly) similar patterns
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for both groups.

Distance between techniques. Table 9.5 displays the ranking distance between
the SVM and GP models built on the same comparisons between (combinations
of) conditions. The ranking distances between techniques are much closer to the
ranking distances between each fold and their average than to the ranking dis-
tances between the two groups (CTRL vs IPD). This is further confirmed by their
associated p-value, which reveals that the ranking distances for the true labels are
all significantly smaller than for permuted labels (see Figure 9.6 for the COMF-
STAND comparison).

Table 9.5: The balanced accuracy of the model of each possible binary combination
of the conditions was displayed for each technique on the control group (whole brain
mask), as well as the ranking distance between the obtained patterns. SVM rep-
resents the balanced accuracy for the SVM models, GP, the balanced accuracy for
the Gaussian processes models and dr, the ranking distance between the two tech-
niques. Significant balanced accuracy are represented in bold. Ranking distances
marked in bold are significantly smaller than for permuted labels (p < 0.05).

Model SVM GP dr

BRISK vs COMF 66.7 63.3 0.0847

BRISK vs STAND 83.3 80.0 0.1349

COMF vs STAND 86.7 86.7 0.1193

BRISK+STAND vs COMF 61.7 68.3 0.1056

BRISK+COMF vs STAND 85.0 85.0 0.1422

COMF+STAND vs BRISK 75.0 68.3 0.0996
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Figure 9.6: Permuted ranking distance between SVM and GP for the
COMF-STAND comparison. The values of dr obtained from the random per-
mutations of the labels are displayed in the blue histogram. The “true” value of
dr is displayed as a green star. One can see that the “true” value of dr is smaller
than any of the dr obtained from the permuted labels.
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In this clinical application, two issues were tackled, namely the pattern discrimi-
nation and localization of idiopathic Parkinson’s disease using the mental imagery
of gait in fMRI.

10.1 Pattern discrimination

To identify idiopathic Parkinson’s disease patients from healthy controls, the para-
metric maps of three mental imagery tasks were classified (STAND, COMF and
BRISK). The best model discriminated significantly between IPD and controls
with a balanced accuracy of 76%, when using the signal comprised in the mes-
encephalic locomotor region. The considered voting operation (i.e. majority vote
from the STAND, COMF and BRISK classifiers) led to an increase in performance
of 10.19%, yielding a balanced accuracy of 86.19%. This result suggests that the
errors made by the three models are different and that combining their outputs
through a simple majority vote can provide a stronger classifier.

As revealed by table 9.1, the ability of a model to discriminate between IPD and
controls depends heavily on the selected voxels. However, combining the mental
imagery of gait at comfortable and brisk paces led to significant results across
feature sets, suggesting that the combination of these conditions could lead to a
consistent model across feature sets.

Although these results are not overwhelming, it is (to the best of our knowledge)
one of the first significant classification between IPD and controls [Focke et al.,
2011; Orrù et al., 2012] using (f)MRI. Furthermore, the performance of the boosted
model competes with the correct diagnostic rates obtained by clinicians (which is
of 89% in average when considering dopamine uptake, Acton et al., 2006). In
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view of the simplicity of the model (SVM with a filter feature selection), this
result is promising and suggests that mental imagery of gait could be a biomarker
of Parkinson’s disease although improvements need to be performed before being
able to deal with more complex issues, such as diagnosing Parkinson’s disease in
its early stage.

However, distinguishing between the three tasks using both groups led to signifi-
cant results when considering the whole brain and motor masks, suggesting that
the between-subject variability within one group is large compared to the between-
groups variability for those features. This result highlights the importance of fea-
ture selection in the present case and favours the use of wrapper or embedded
feature selection techniques to increase the performance of the machine learning
based models. Regarding the Parkinsonian group, the between-subjects variability
might further be explained by the heterogeneity of the gait disorders in patients.
Distinguishing between patients with light or severe gait disorders, for example
by considering the Freezing of Gait (FoG, Karachi et al., 2010), might increase
the ratio of between versus within group variability and thereby improve the clas-
sification. Another issue to consider for diagnostic purposes is disease duration;
there was a large inter-individual variability in disease duration (and severity, see
Cremers et al., 2012b for a table presenting different disease parameters for each
patient). A possible improvement would hence be the inclusion of de novo patients
(i.e. early stage patients). Finally, medication was another confounding factor
since all patients were scanned on medication, with a variability in the equivalent
doses of medicine across subjects. In conclusion to this comment, the inclusion of
early stage de novo patients who are not yet treated should decrease the within-
group variability and thereby might improve the performance of the classification.

Finally, although a large overlap has been observed between mental imagery of
gait and actual gait in healthy subjects [Dobkin et al., 2004], our results ques-
tion the overlap between mental imagery of disturbed gait and actual disturbed
gait, especially in the STAND and BRISK conditions. Solving this issue is not
straightforward but developments in ambulatory Electro-EncephaloGraphy (EEG)
acquisition systems and in the decoding of this type of signal might bring a solution
by directly acquiring the brain activity under actual gait.

10.2 Pattern localization

The patterns generated by machine learning based discriminative models can be
difficult to interpret since no thresholding can be performed. Secondly, models are
rarely compared in terms of weight patterns. To allow cognitive interpretations
of the weights, a region specific scalar was defined: the normalized weights per
region (NW ). This value can be displayed over all the regions and/or ranked in
descending order according to its proportion. We also aimed at quantifying the
differences between patterns in terms of localization, which corresponded to the
ranked list of regions in this work.
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10.2.1 Interpreting the weight

To facilitate the interpretation of the weights, the normalized weights were com-
puted within labelled regions as defined by an atlas. The atlas can be generated
from classic atlases (Brodmann or AAL) or manually [Maldjian et al., 2003], on the
brain structure or functioning. The normalized weights can then be ranked, hence
offering a more intuitive way to visualize the weights and allowing for cognitive
conclusions.

When comparing the ranked list of regions to univariate results [Cremers et al.,
2012b], a nice overlap could be observed. Although the univariate and multivariate
analyses do not represent exactly the same comparisons, they seem to provide sim-
ilar lists of regions. It should be noted that this has been verified in the case of a
sound model, with accuracy higher than 85%. Since weights can be generated from
any model, they do not represent where in the brain is the information about the
considered categories, but rather the ability of each region to discriminate between
the categories, which could be linked to noise or confounds. Therefore, when uni-
variate results are available for comparison, the list of regions ranked according to
their normalized weights could provide information about the quality of the model.
In case there is no functional/anatomical a priori on pattern localization, one could
build accuracy maps, using the searchlight approach [Kriegeskorte et al., 2006] for
example. Another way to localize the pattern would be to build one model per re-
gion, using multiple kernel learning algorithms [Gönen and Alpaydin, 2011]. This
approach would further solve the issue of the overlap between the mask and the
atlas.

However, when considering regions, the choice of the atlas is important, since the
size and shape of the regions can be quite different from one atlas to another.
Therefore, the atlas should be picked carefully, taking a priori information into
account when available (e.g. lateralization or further dividing specific regions).
Testing different atlases could also provide further information but remains an
open question.

10.2.2 Comparing patterns

In this work, we provided the ranking distance [Lempel and Moran, 2005], which
quantifies the difference between two ranking vectors. This distance was computed
within and between models and proved useful for different aspects of multivariate
analysis. First, it enabled assessing the homogeneity of the data in terms of pattern
within one category. In the present case, the control group was more homogeneous
than the IPD group for the COMF vs STAND comparison, which showed an outlier
in terms of the distance between each fold and their average. The heterogeneity in
the group of patients might be due to the state of disease, medication or movements
in the scanner. However, this heterogeneity did not seem to affect the compari-
son between groups, since no significant difference was found between the ranking
distances across folds for the CTRL and IPD group, when considering the BRISK
and COMF conditions jointly.

When comparing similar models computed on different groups, the results sug-
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gested that the larger the distance between groups, the higher the performance
when discriminating between groups (if the considered models are sound). In ex-
ploratory cases, the ranking distance could thereby help finding which features or
conditions could become biomarkers of the variable of interest.

Finally, the ranking distance allowed the comparison of different modelling tech-
niques (namely binary SVM and GP) in terms of pattern localization. This infor-
mation could be added to comparisons in terms of accuracy (balanced accuracy,
area under the curve) or model fitting (e.g. maximum a posteriori likelihood in
Gaussian processes), and could become particularly helpful for the interpretation
of the pattern when feature selection steps or sparse models are involved.

Conclusions: In this clinical setting, we tackled the issues of pattern discrimina-
tion and localization of Parkinson’s disease, when compared to healthy subjects.
Although there is room for improvement, the mental imagery of gait at both com-
fortable and brisk paces proved to be a promising fMRI biomarker of IPD. Tech-
niques to display and compare patterns in terms of their localization were further
developed and might help the cognitive interpretation of the multivariate results.



Chapter 11

Conclusions and final remarks

In this work, we investigated the assets and disadvantages of machine learning
based modelling of neuroimaging data via two applications. The first application
was designed to study mnemonic traces during conscious resting-state directly fol-
lowing a learning task, while the second aimed at discriminating and localising the
patterns of idiopathic Parkinson’s disease. These two applications involved com-
plex datasets and presented challenges that could not be successfully solved using
other techniques, such as univariate models or network analyses.

In both cases, machine learning based models enabled to overcome issues that other
methods encountered: they allowed the modelling of spontaneous brain activity
without the suppression of the temporal evolution and permitted the significant
discrimination between healthy controls and Parkinson’s diseased patients.

The main disadvantage with machine learning based models is that the voxels’
weights are not easily interpretable since weight maps cannot be thresholded due
to their multivariate nature. Neuroscientists thus prefer univariate (SPM, Friston
et al., 2007) or locally multivariate (Searchlight, Kriegeskorte et al., 2006) tech-
niques to infer cognitive conclusions on the location of the information discrimi-
nating between groups/conditions. In the present work, we proposed an approach
to localize multivariate patterns, by parcelling the weight image into functionally or
anatomically labelled regions that can then be ranked according to their normalized
weight (NWROI). Although this procedure is recent and needs more testing, the re-
sults displayed in chapter 9 are promising, showing a good overlap with previously
published univariate results [Cremers et al., 2012b].

It is interesting to note that feature selection approaches improved the model per-
formance in both applications: the best procedure to model semi-constrained brain
activity involved univariate (F -test filtering) and multivariate feature selections
(RFA, section 4.5). In part II, the MLR mask (i.e. ROIs selected on prior knowl-
edge) performed better at discriminating between Parkinson’s diseased patients and
controls than the whole brain mask. These results questions the conclusions from
recent works stating that data-driven feature selection approaches (i.e. GLM or
RFA) did not bring any increase in model accuracy [Chu et al., 2012] or that space
compression (i.e. ROI selection) had no effect on the performance of multisubject
classifiers [Mourão-Miranda et al., 2006]. While the debate on the usefulness of fea-
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ture selection approaches when modelling high-dimensionality data is legitimate,
the contradictions in the conclusions across studies suggests that the usefulness of
feature selection steps is data-dependent. This might be due to the level of noise,
or of brain activity unrelated to the variable of interest in the data, which would
influence the relationship between the number of features and model performance
(illustrated in figure 4.3).

For both applications, some of the limitations of the obtained results were caused
by the limitations of the datasets: the scaling factor of mnemonic traces could
not have been further investigated due to the temporal resolutions of the haemo-
dynamic response and the fMRI. Similarly, having access to the pattern of brain
activity generated during real gait (and not during mental imagery of gait) would
be desirable, which is not possible in the context of fMRI or PET imaging. As
proposed in chapters 6 and 10, EEG could provide answers to the aforementioned
limitations of fMRI or PET. However, while EEG might provide a higher temporal
resolution and freedom of movement (to a certain extent), the classification of such
datasets remains an open issue, due to their low signal-to-noise ratio.

In view of the results, this work leads to the conclusion that machine learning mod-
els can indeed bring insights on complex problems that could hardly be addressed
with other techniques. However, many challenges remain. A first example is that
for the built models to be used by other neuroscientists, they have to be subject
and centre independent. As shown by the three behavioural outliers in part I,
obtaining models that can successfully be applied to any subject can be complex.
This issue was further illustrated by the large variability in proportions P r across
subjects, especially when considering the pre-task rest session in the memory con-
dition for which P r was associated to the detection of false positives. In part II,
the data was acquired from a unique centre. The built models hence depend on
the acquisition machine, timing and environment and would therefore certainly not
perform as well on datasets from other centres. Centre-independent models require
the training set to comport data from many centres and thereby represents one of
the biggest challenges for machine learning based models to be distributed. There-
fore, although the models built on both applications gave satisfactory results, they
would not perform similarly on datasets from other subjects and/or centres.

Among the other challenges still to overcome: the early diagnosis of a disease, pre-
dicting the evolution of a disease for a specific patient or the response to treatment.

Although much work remains, it seems likely that machine learning models will
constitute a new way of analysing data, that can complement other techniques and
bring new insights on the two fundamental questions in neuroscience.

Conclusion: In this work, the assets and the limits of machine learning based
models applied to neuroimaging data were investigated via a neuroscience and a
clinical application, each involving complex datasets. Although much work remains
for the obtained models to be useful as neuroscience or clinical tools, our results
showed that multivariate modelling could overcome some of the issues encountered
with other techniques.
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Appendix A

Positron Emission Tomography

As mentioned in section 2.1.2, PET data images the metabolic activity of the
tissues. In practice, the radiologist would search for hyper-metabolic regions if he
suspects cancer, while he would look for hypo-metabolic regions when diagnosing
dementias. In the present work, we would expect to find hypo-metabolic regions
since we are dealing with Parkinson’s Disease (PD).

A.1 Comparison with fMRI

While PET and fMRI both acquire metabolic changes induced by neuronal at
the whole brain scale, they show differences in acquisition parameters, leading to
differences in functional activation studies [Kinahan and Noll, 1999]. In Table A.1,
we briefly compare the two modalities in terms of spatial and temporal resolution,
duration, ease of use, invasivity, dimension and content of output images.

Table A.1: Brief comparison of the PET and fMRI acquisition technologies

PET fMRI

Spatial resolution 5-10 mm 2-4 mm

Temporal resolution One image per injection One image per TR (∼2s)

Duration of acquisition
session

45 minutes or more
(decay time)

usually 30 to 45 minutes

Constraints need of cyclotron +
production line for the
radiotracer close by, or
buying the radiotracer

from a company
(expensive!)

no metal in or around
the subject

Invasivity injection of tracer -

Dimension 3D file per injection 3D file per TR

Content regional glucose uptake BOLD signal
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