Numerical modelling of ground temperature evolution and soil subsidence as a result of underground coal fire
X.F Liu1, F.Collin2, O. Buzzi1 and S. Sloan1
1Centre for Geotechnical and Materials Modelling, Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW 2308, Australia; PH (612) 4921-2074; FAX (612) 4921-6991; email: Xianfeng.liu@newcastle.edu.au,  Olivier.buzzi@newcastle.edu.au, Scott.Sloan@newcastle.edu.au 
2 Institut de Mécanique et de Génie Civil, Department of ArGenCo, University of Liège, Chemin des Chevreuils, 1, 4000 Liège, Belgium; PH (324) 366-9142; FAX (324) 366-9326; email: f.collin@ulg.ac.be
Abstract

Coal occurs in underground seams of variable thickness and depth and in numerous cases they are known to be on fire. These fires can result from human activity or occur naturally. Underground coal fires are problematic for many reasons, including mine safety, damage to infrastructure due to combustion-induced subsidence (e.g. Centralia, Pennsylvania, USA) and damage to the natural environment. 
Understanding and predicting the temperature evolution in the ground is a key aspect when trying to extinguish underground coal fire. A site in New South Wales, Australia, where an underground coal fire has been active for the past 60 years (at a depth of around 30 m) has been the subject of an experimental and numerical study. In this paper, by taking Burning Mountain as an example, the general formation and development of underground coal fires and their associated physical-chemical coupled processes have been analysed and described. Then, a reactive model for coal spontaneous combustion has been implemented in a non-linear finite element code capable of simulating thermal-hydraulic-mechanical behaviours of geomaterials. By incorporating the reactive model with heat transport, a thermal-chemical (TC) simulation has been conducted on an artificial simple set-up. The preliminary results show that the TC model is capable of reproducing the propagation of coal fire front accompanying with reasonable temperature evolution. The next step of model development is to couple the TC model with gas mass transport in the fractured overlying rocks. Furthermore, mechanical deformation will be taken into account for predicting the subsidence experienced by the overburden soil after passage of the burning front and the resulting collapse.
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1 INTRODUCTION
Underground coal fires have been reported in almost all coal producing nations such as Australia, China, Germany, India, Indonesia, South Africa, and the U.S.A.(Stracher and Taylor 2004; Sinha and Singh 2005; Kuenzer et al. 2007;). These fires can result from human activity (in most cases through mining activities) or occur naturally. Indeed, the self-ignition of coal can occur at temperatures exceeding little more than 80 degrees Celsius due to heat accumulation in oxidation processes (Beamish et al. 2001; Bell et al. 2001; Erdogan and Vedat 2002).

Underground coal fires (UCF) have been recognized to cause environmental and economic problems of global dimensions (Wessling et al. 2008). They are problematic for many reasons, including loss of valuable non-renewable resources, mine safety, damage to infrastructure due to combustion-induced subsidence (e.g. Centralia, Pennsylvania, USA) and damage to the natural environment (Stracher and Taylor 2004; Sinha and Singh 2005). However, the issue of most concern is that burning coal seams have a serious environmental effect through their contribution to greenhouse gas emissions (CO2 and CO) (Stracher and Taylor 2004, Kuenzer et al. 2007). 

So far, underground coal fires have been of great concern to scientists and engineers. Lots of efforts have contributed to scientific investigation of underground coal fires and technical developments in the fires mitigation and extinguish (Voigt and Rüter 2005). It has been found that underground coal fires are characterized by very slow burning kinetics due to the limited availability of oxygen underground. Thus, oxygen supply is a key parameter controlling the speed of the fire front propagation, with higher burn rates being associated with higher oxygen availability. Oxygen concentrations are low in the underground but the combustion of the coal seam leads to a progressive collapse of the overburden soil/rock mass and to the formation of large cracks (Ide et al. 2010). These, in turn, provide new air circulation paths allowing the fire to propagate (Ide et al. 2010). Accordingly, a key strategy for successfully extinguishing the UCF is to suppress the oxygen supply. In order to improve the efficiency of fire extinguishment, a critical issue is to accurately locate the coal seam fire front zone. This used to be done by analysing the mapping data (e.g. temperature, cracks and subsidence) collected from in situ. However, for the sake of less cost, the mapping investigations have been frequently limited to some measurements at the surface. Therefore, the numerical modelling approach has been a good tool to investigate the physical-chemical processes of the complex coupled system of UCF (Rosema et al. 2001; Wolf and Bruining 2007; Wessling 2007). These studies provide a preliminary understanding of multi-physics processes in underground coal fires. However, a more sophisticated coupled modelling (Thermo-hydro-mechanical-chemical) has to be done to deepen the understanding of UCF. 

Compared to China, the USA, Germany, India, underground coal fires have been paid much less attention in Australia. In the literature, there is lack of studies investigating multi-physics processes of these underground coal fires (Fleming 1972). Therefore, this study aims to experimentally and numerically investigate the coupled system of a coal seam fire occurring in an abandoned shallow underground Working in New South Wales. Some boreholes have been undertaken to recover some soil specimens which will be tested in the laboratory for thermo-mechanical characterization. Meanwhile, a fully coupled numerical model is under development for tackling the complex coupling problems encountered in the coal seam fire. The first part of this paper describes the formation of a natural UCF (Burning Mountain) and its associated physical-chemical mechanisms while the second part presents some preliminary results of thermal-chemical modelling of an artificial UCF.
2 Formation of UCF and associatded Pysical-chemical mechanisms
2.1 Formation of Burning Mountain
Burning Mountain (BM) is a good example of natural underground coal fires in Australia. The burning coal seam extends over a length of 6 km at 30 m underground in the main coalfields of the Hunter Valley. It is moving in a generally southerly direction at a slow rate of about 1 m per year. It has been estimated that the fire has burned for approximately 5,500 years (Fleming 1972). Its geological description and collapse patterns of overburden rocks are schematically presented in Figure 1. 
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Figure 1. Geological cross-section of Burning Mountain (Snelling 1993)

The coal seam of BM may have been ignited naturally through the most probably spontaneous combustion. Once sufficient draught has been created by the spreading fire, areas of exclusive in- and out-breathing develop. A continuous air circulation loop forms that enables the fire to progress (Sinha and Singh 2005). Once the burnt-out coal seam extends long enough, the overburden rocks chemically-damaged at high temperature would tend to fracture and collapse. The orientation of the fractures appears to be controlled by pre-existing planes of weakness (rock joints) (Fleming 1972). The oxygen is mainly supplied through the fractures and parallel faulting while the exhausted gases are released through small, collapsed, chaotically broken areas, called “chimney” (Figure 1). Consequently, the mature and steady fires are built (Ide et al. 2010). 
2.2 Physical-chemical mechanisms of UCF 
As described above, underground coal fires constitute a complex system with chemical, thermal, hydraulic and mechanical processes involved, which take place in the seam and in the surrounding rocks. These processes are schematically summarized in Figure 2.
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Figure 2.  Coupled chemical-thermal-hydro-mechanical (CTHM) processes in unground coal fires

(1) Coal spontaneous combustion (Chemical reaction). The coal seam burning can be regarded as spontaneous combustion which is an exothermic reaction of coal and oxygen at low concentration (equation 1) (Wessling 2007). The reaction rate is predominated by the concentration of oxygen in the fire front area, which is mainly supplied by air convective transport through the fractures of overlying rocks. Meanwhile, the exhausted gases (e.g. CO2 ,CO, H2O, SO2 etc.) produced are released to atmosphere. 
Coal+O2 → Solid products + exhausted gases + Heat release (∆H)↑                                             (1)
(2) Heat transport (Thermal process). Thermal energy released by coal spontaneous combustion is transported through three mechanisms: conduction through surrounding rocks, convection through gas transport in the fractured overlying rocks and heat radiation due to high combustion temperatures (Clauser 2006). Meanwhile, the heat transport also affects the gas transport through thermal buoyancy and results in thermal-chemical damage to roof rocks. 
(3) Gas mass transport (Hydraulic process). Gases are transported through roof rocks and pre-formed fractures. The latter one is convective and can be considered to be dominant. Therefore, the gas mass transport can be significantly influenced by the changes in fracture aperture due to mechanical deformation of overburden rocks.

(4) Mechanical deformation. During the propagation of burning coal seam front, lots of fractures, fissures and cracks of overburden rocks can be induced by three predominant reasons: burn-out coal volume reduction, strength degradation of these geomaterials under thermal-hydro-mechanical coupled loading and pre-existing fractures or cracks of rock/soil mass overlying coal seam. 
3 Thermal-CHEMICAL (TC) modelling 
Based on the aforementioned physical-chemical mechanisms of UCF, the mathematical formulation of these governing processes is on the basis of a single-continuum approach to consider transport phenomena in porous media (see e.g. Lewis and Schrefler 1998). At the first stage of coupled model development, only thermal-chemical coupling has been taken into account. The hydraulic and mechanical processes will be added progressively into the model. These works are ongoing. 
3.1 Mathematical formulations
3.1.1 Coal spontaneous combustion
The Coal spontaneous combustion can be mathematically described by coal mass conversation equation (equation 2) with considering second-order Arrhenius-type reaction rate (Sc) for coal (equation 3) (Rosema et al. 2001; Wessling 2007).
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where 
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are the coal and oxygen concentrations in kg/m3, k0 in m3 kg-1s-1 is a pre-exponential factor, E/R in °K is the activation energy divided by the unified gas constant. Indeed, k0 and E can be experimentally determined for coal sample. 
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can be regarded as a constant for a large time step. In example simulation presented in next section, E/R and k0 are set to 1.27 x104 and 4.7x106, respectively, for Wuda coal (Wessling 2007).
The concentrations of exhausted gases and solid products can be also deduced through their stoichiometries and molar masses as follows:
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where the index j refer to the exhausted gases and solid products while c to coal,  to the stoichiometric coefficients and M to the molecular weight.
3.1.2 Heat transport

Without taking into account gas transport and mechanical deformation, the energy transport equation can be formulated as follows:
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where cs in J/m3K is the bulk heat capacity of solids (5.57x105,1.92x106 for Wuda coal and sandstone, respectively, used in the example simulation). The heat flux consists of two parts: heat conduction and radiation, which can be formulated according to Fourier’s law and a linearized expression of the Stefan-Boltzmann’s law respectively (Wessling 2007). 
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where in W m−1 K−1is thermal conductivity (0.1 for Wuda coal and 2.0 for sandstone) at room temperature T0 (293 °K), β in Wm−1K−4 is a constant (7x10−9). 

The source term QT (J/m3s) is directly proportional to coal consumption rate (Sc) through calorific value ΔH in J/kg (2.19x107 for Wuda coal, Wessling 2007), which describes the heat release capacity of coal. 
3.2 Finite element resolution
In this study, a non-linear finite element code LAGAMINE, developed at Liege University for 30 years (Charlier 1987), has been employed. In the code, a bi-dimensional coupled element has been implemented for thermal-hydraulic-mechanical modelling of geomaterials under saturated and unsaturated conditions (Collin et al. 2002). This coupled element possesses five degrees of freedom at each node: two displacements of the soil skeleton, a liquid water pressure, a gas (dry air + vapour) pressure and a temperature. For thermal-chemical modelling, the first four degrees of freedom at each node have been blocked. The new formula of heat radiation has been added to the element and enables to control the reasonable maximum temperatures in the combustion center. The coal spontaneous combustion model has also been implemented in the code through a surface element which enables to impose thermal flux produced from coal combustion for heat transport. During the implementation, a sub-iteration technique has been adopted for correctly capturing the high oxygen consumption rate of the reaction, resulting in small time step of iteration. In addition, the modified surface element is also capable of predicting the concentration evolutions for exhausted gases and solid products.  
3.3 Simple example of simulation

3.3.1 Set-up of example simulation
The set-up of numerical simulation for an example of unground coal fires is depicted in Figure 3. It consists of two layers of sandstone on the top and at the bottom (2.0 m) and one layer of coal seam (0.2 m). The initial conditions were set to T0= 293 °K for temperature except at the left boundary of coal seam, where T= 500 °K holds for 1e5 s in order to ignite the fire. The oxygen concentration was set to a constant during the whole simulation, 0.297 kg/m3 and the initial coal volumetric density, 850 kg/m3. No particular boundary condition for temperature was given. In addition, the maximum time step was limited to 1e6 s.
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Figure 3.  Simulation set-up for an artificial example of unground coal fires
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Figure 4.  Temperature and coal concentration evolutions after different simulation time (a)1e6s (11.6 days), (b)2e6s (23.2 days), (c)4e6s (46.4 days)  

3.3.2 Results and discussions

The evolutions of temperature and coal concentration are presented in Figure 4. It has been noticed that the coal seam fire propagates steadily with reasonable maximum temperature around 1290 °C of combustion center. In accordance, the coal is consumed progressively by spontaneous combustion. Indeed, the exhausted gases and solid products concentrations increase correspondingly, which are not presented here.
4 conclusion

Based on the literature, by taking Burning Mountain as an example, the general formation and development of underground coal seam fires and their associated physical-chemical processes have been analysed and detailed. At the first stage of study, a coal spontaneous combustion model has been implemented in the finite element code LAGAMINE. Then, a thermal-chemical simulation has been conducted on an artificial set-up built by a thin layer coal seam sandwiched between two layers of sandstone. The preliminary results of the TC simulation highlight the capability of the TC model to reproduce the fire front propagation and temperature evolution. Currently, this thermal-chemical model is being coupled with multi-gases mass transport in the fractured overlying rocks. Furthermore, mechanical deformation of overburden rocks will be taken into account for simulating the propagation of fractures and the resulting collapse. These coupled modellings will be carried out by using the experimental data of thermal-hydraulic-mechanical characterization of coal and rocks collected from studied site. Finally, the developed model will also be validated by mapping data (surface temperature, cracks and subsidence etc.) collected from in situ.
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