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1 Introduction

Rhythmic phenomena are essential to the dynamic behav-
ior of biological systems. They find their roots in the many
regulatory mechanisms that control life at the cellular level.
Understanding those molecular and cellular mechanisms is
crucial to advances in systems biology.

Dynamic models of regulatory mechanisms are made of
complex interconnections of feedback loops often described
by bloc diagrams. In this research, our goal is to understand
how entrainment and synchronization, two important system
properties of biological oscillators, depend on the circuitry
of these bloc diagrams. The general idea is illustrated on a
particular model of cell mitosis [1].

2 Circuitry of oscillators

A single two-component negative feedback system can ex-
hibit damped oscillations but will inevitably approach a sta-
ble steady state. Some aspect of the circuit must be altered
to convert it into a sustained oscillator. Two basic types of
bloc diagrams have been proposed for biological oscillators.

One type contains only negative feedback loop. With suf-
ficient phase delay in the feedback loop, the system repeat-
edly overshoots and undershoots its steady state, leading to
sustained oscillations [2, 3].

A second type of bloc diagrams contains both positive and
negative feedback loops. The positive-feedback loop cre-
ates a bistable system (a toggle switch) and the negative-
feedback loop drives the system back and forth between the
two stable steady states [4, 5].

3 Infinitesimal phase response curve

The infinitesimal phase response curve (iPRC) has proven a
very useful tool to study the input-output properties of oscil-
lators. The start point is a dynamical system of the form

ẋ = f (x)+ ε u(t), x ∈ Rm, (1)

having for ε = 0 a limit cycle attractor γ ⊂ Rm with period T
and frequency Ω= 2π/T , and forced by a weak input ε u(t).

Using an asymptotic method of reduction [6], the system (1)
is transformed into the phase model

θ̇ = Ω+ ε Q(θ) ·u(t) (2)

with Q(θ) being the iPRC. The iPRC tabulates the transient
change in the cycle period of an oscillator induced by an
infinitesimal perturbation as a function of the phase at which
it is received.

The characterization of this phase model, especially its equi-
libria and their stability, is used to study the entrainment and
the synchronization of the system. The shape of the iPRC
plays thus a leading role in those properties.

4 Shaping the iPRC from the circuitry

We wish to relate the circuitry of the bloc diagram describ-
ing the biological oscillator and its iPRC. We illustrate this
general question on a model of mitotic oscillations abun-
dantly discussed in the literature [1].
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