Analysis of Longitudinal Data for Selection and Management

N.Gengler^{1,2} and P.Mayeres²

¹ National Fund for Scientific Research, Brussels, Belgium
 ² Gembloux Agricultural University, Belgium

EAAP MEETING - Cairo 2002 (1)

Objectives of this Talk

Analysis of longitudinal data

- special respect to dairy test day model
- development of models

More than only "genetic" results

- use of test day model results for herd management purposes
- development of management tools

Evolution of genetic evaluation systems

 towards integrated systems for management and selection of animals

EAAP MEETING - Cairo 2002 (2)

Analysis of Longitudinal Data

Dynamic biological processes

- provide longitudinal data (e.g. depending on time)
- until recently "static" models
- eliminating influence continuos variable

Examples

- test day yields \Rightarrow lactation yields
- individual weights => standardized weights, ADG

Selection vs management

two clearly different objectives !

Current Use for Management

Simple management "traits" dynamic aspect nuisance Often eliminated using trivial methods computation of a weighted average or sum standardization by using adjustments Strictly on a phenotypic level no consideration of genetic differences **Raw values reported to farmers**

Example: Lactation Yields

- Aggregating daily yields over 305 days
- Computed by mostly simple methods
 - test interval (TIM)
 - centering date methods (CDM)
- Recently more advance methods
 - Bayesian (MTP) or Regression (BP)
- **Extension of lactation problem**
 - strictly on a phenotypic level
 - RIP dip and "Sunny Boy" effect

Use for Selection (until recently)

Genetic evaluations

- use of mixed linear models
- based on aggregated "traits"
- clearly distinguished from management
- different organizations ?

- generally not used or even reported to farmers
- lost of potentially interesting information !
- Only EBVs reported to farmers

Example: milk yield (until recently)

Genetic evaluations based on 305 day yield Effects typically included: (reported) contemporary groups age effects permanent environment genetic (yes)

Few exceptions

N. Gengler

Analyses of Longitudinal Data

- Recent advances
- Two central issues
 - describing E(y) and Var(y)
- Description of the mean
 - evolution E(y) over time
- Description of the (co)variances
 - evolution of Var(y) over time

Modeling E(y) over Time

- Often considered secondary
- Objective:
 - allowing correct comparisons among animals
- **Central issue for selection**
 - unbiasedness of genetic solutions
- Central issues for management
 - not the same

Modeling Var(y) over Time

- Central issue for genetic evaluations
- Repeatability models
 ⇒ Random coefficient (regression) models
- Multiple trait models
 ⇒ (Co)variance functions
 Equivalent

Example: Test Day Models (TDM)

- Direct use of daily milk results
- Most recent TDM directly model
 - variation E(y) over time
 - variation Var(y) over time
 - Numerous advantages
- Feasible due to ① computing power
 - **Results reported (currently)**
 - report of performed yield and EBV

Test Day Models (TDM)

Interesting for management use

strongest argument for TDM?

Fixed effects

- herd level, herd lactation curves
- standard lactation curves

Random effects

- individual lactation curves
- producing abilities persistency, maturity rate
- Prediction

Test Day Models (TDM)

Current TDM implementations

focus on genetic effects

Some issues partly addressed

- standard lactation curves (reported?)
- persistency (definitions? use ?)
- maturity (definitions? use?)

Several unsolved issues

- herd/cow specific lactation curves
- producing abilities
- "prediction" (herd and individual level)

Cow Specific Lactation Curves

- PE and genetic random regressions
- PE + genetic solutions
 - mostly only EBV considered
- Producing abilities
 - management potential
- Prediction
 - herd specific lactation curves
 - however always only deviations

Herd Specific Lactation Curves

- Herd environmental random regressions
- Large herds
 - herd specific curves
- Small herds
 - regressed towards over population curves
- Now considered in several TDM
- Prediction
 - herd specific lactation curves
 - also deviations

Prediction

Very important issue for management

- not only deviations, but also overall level
- Next test and overall production
 - herd level
 - individual level

Compared with real value measured

out of the prediction interval

→ Management decisions !

Prediction with TDM

Opposition to classical methods

- TIM, CDM
- MTP, BP
- They model directly the mean
- Prediction from TDM
 - could be directly obtained from solutions
 - by summing the effects of the model
- Problem: herd test day effect

Herd Test Day (HTD) Fixed Effect

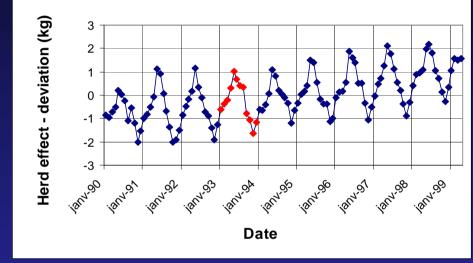
Results from Mayeres et al. (2002)

- http://www-interbull.slu.se/bulletins/bulletin29/Mayeres.pdf
- acknowledge Luxembourgish Herdbook, VIT

HTD not predictable

effect does not model any trend

Objective:

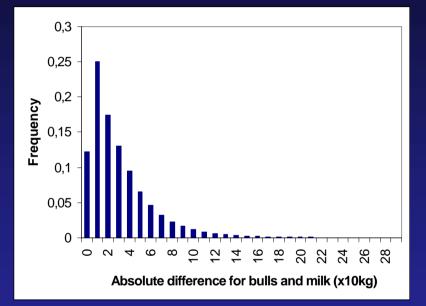

- new modeling proposition
- Example how slight changes
 improve usability of TDM

Study of HTD Fixed Effect

- HTD month's mean for each year across herds for the 3 traits
- For milk

- General upward trend through years
- Yearly trend with maximum near the pastern release

New Model


- Replacement of HTD fixed effect
- Herd test month fixed effect
 - period of 4 years (5 for newer years)
- Herd test year fixed effect
 - 2 years for current test years
- Herd test day random effect

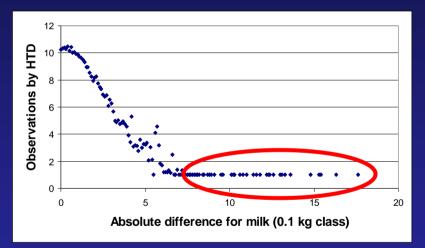
Comparison of EBV

Few changes in ranking

- rank correlation of cows and sires > 0.99 for each trait
- absolute difference between EBV of cows and sires are low for each trait

Only few rankings change significantly

Comparison of Herd Effects

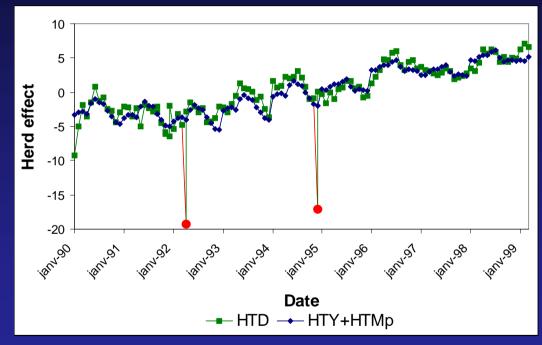

• Model 2:

 Herd Effect = HTY+HTMp

Similar trend

- correlation is > 0.91 for each trait
- absolute difference is very low for each trait

		Absolute difference		
Trait	Correlation	Mean	Std	Max
Milk	0.918	1.00	0.91	17.6
Fat	0.919	0.046	0.042	0.87
Protein	0.919	0.037	0.032	0.49



Biggest differences for HTD with few tests

Comparison of Herd Effect

Particular herd

Two special tests (•)

• 01/12/1994 and 06/04/1992 : one animal tested

EAAP MEETING - Cairo 2002 (23)

N. Gengler

Some Questions

• Why no provide more results?

- we compute them anyway!
- Why no adapt our models ?
 - we could gain too!

• What is the real interest in EBVs?

- genetic evaluations very much separated from performance recording
- current interest by farmers is decreasing

 What is need for successful management?

EAAP MEETING - Cairo 2002 (24)

Implications for the Future

Personal opinions

- analysis of longitudinal data
- opportunity to develop advanced management tools
- large influence evolution of genetic evaluation systems
- interest in "genetics" only decreasing
- opportunity to use "optimal" modeling
- higher integration of selection and management leading eventually to

 \Rightarrow Integrated systems!

Integrated Systems for Management and Selection

Provide optimal useful results for

- management
- selection
- Optimal use of computing power
- "Re-conciliate" farmers with EBVs
 - showing link phenotype to genetic values
 - avoiding "black box" syndrome

Could avoid that genetic evaluations are sidelined

