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Abstract

Background: The availability of tyrosine kinase inhibitors (TKIs) has considerably changed the management of Philadelphia
chromosome positive leukemia. The BCR-ABL inhibitor imatinib is also known to inhibit the tyrosine kinase of the stem cell
factor receptor, c-Kit. Nilotinib is 30 times more potent than imatinib towards BCR-ABL in vitro. Studies in healthy volunteers
and patients with chronic myelogenous leukemia or gastrointestinal stromal tumors have shown that therapeutic doses of
nilotinib deliver drug levels similar to those of imatinib. The aim of this study was to compare the inhibitory effects of
imatinib and nilotinib on proliferation, differentiation, adhesion, migration and engraftment capacities of human cord blood
CD34+ cells.

Design and Methods: After a 48-hour cell culture with or without TKIs, CFC, LTC-IC, migration, adhesion and cell cycle
analysis were performed. In a second time, the impact of these TKIs on engraftment was assessed in a xenotransplantation
model using NOD/SCID/IL-2Rc (null) mice.

Results: TKIs did not affect LTC-IC frequencies despite in vitro inhibition of CFC formation due to inhibition of CD34+ cell
cycle entry. Adhesion of CD34+ cells to retronectin was reduced in the presence of either imatinib or nilotinib but only at
high concentrations. Migration through a SDF-1a gradient was not changed by cell culture in the presence of TKIs. Finally,
bone marrow cellularity and human chimerism were not affected by daily doses of imatinib and nilotinib in a xenogenic
transplantation model. No significant difference was seen between TKIs given the equivalent affinity of imatinib and
nilotinib for KIT.

Conclusions: These data suggest that combining non-myeloablative conditioning regimen with TKIs starting the day of the
transplantation could be safe.

Citation: Belle L, Bruck F, Foguenne J, Gothot A, Beguin Y, et al. (2012) Imatinib and Nilotinib Inhibit Hematopoietic Progenitor Cell Growth, but Do Not Prevent
Adhesion, Migration and Engraftment of Human Cord Blood CD34+ Cells. PLoS ONE 7(12): e52564. doi:10.1371/journal.pone.0052564

Editor: Leonard Eisenberg, New York Medical College, United States of America

Received August 16, 2012; Accepted November 19, 2012; Published December 20, 2012

Copyright: � 2012 Belle et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: LB, F. Baron and YB have received travel grants from Novartis Pharmaceuticals. YB received unrestricted research grant from Novartis Pharmaceuticals.
This does not alter the authors’ adherence to all the PLoS ONE policies on sharing data and materials. This study was supported by the National Fund for Scientific
Research (FNRS; http://www1.frs-fnrs.be/). The travel grants and unrestricted research grants from Novartis Pharmaceuticals where not part of the funding for this
study. The FNRS had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Similarly Novartis Pharmaceuticals
had no role in study design, data collection and analysis or decision to publish. They did however receive the final draft of the publication prior to submission
since they kindly provided the authors with imatinib and nilotinib, and suggested a number of minor edits to the manuscript.

Competing Interests: LB, F. Baron and YB have received travel grants from Novartis Pharmaceuticals. YB received unrestricted research grant from Novartis
Pharmaceuticals, although these grants were not related to this study. Novartis provided imatinib and nilotinib for this study, and markets both products. Novartis
received the final draft of the publication prior to submission since they kindly provided the authors with imatinib and nilotinib, and suggested a number of
minor edits to the manuscript. There are no further patents, products in development or marketed products to declare. This does not alter the authors’ adherence
to all the PLOS ONE policies on sharing data and materials, as detailed online in the guide for authors.

* E-mail: lbelle@ulg.ac.be

Introduction

The Philadelphia (Ph) chromosome results from a reciprocal

translocation between chromosomes 9 and 22 resulting in a

chimeric Bcr-Abl gene. The Ph chromosome translocation is

present in 95% and 20–30% of patients with chronic myeloid

leukemia (CML) and acute lymphoblastic leukemia (ALL),

respectively [1]. BCR-ABL proteins possess a constitutive tyrosine

kinase activity and play a key role in signaling pathways resulting

in the malignant phenotype of hematopoietic stem cells (HSC).

Imatinib (STI571, imatinib, GlivecH; Novartis Pharmaceuticals)

is a competitive inhibitor of ATP for binding to BCR-ABL [2] that

induces apoptosis in BCR-ABL dependent cells. As a tyrosine

kinase inhibitor (TKI), imatinib is not specific towards BCR-ABL,

but also inhibits several other kinases including c-Kit, PDGFR,

DDR and Abl [3–5]. Recently, nilotinib (AMN 107, TasignaH;

Novartis Pharmaceuticals) has been developed with the aim of
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increasing both potency and selectivity towards BCR-ABL [6].

Nilotinib markedly differs from imatinib in its interactions with the

BCR-ABL protein [5,6] and is 30 times more potent than imatinib

against the BCR-ABL in vitro activity in several Ph+ cell lines [7]

and is active against most imatinib-resistant BCR-ABL mutations,

but not against the T315I mutant [8,9].

Allogeneic hematopoietic stem cell transplantation (allo-HSCT)

is a potentially curative treatment for patients with Ph+ ALL. The

majority of older adults with ALL are candidates for a reduced-

intensity or a non-myeloablative conditioning regimen [10,11].

Combining allo-HSCT with TKIs could maximize antileukemic

activity against Ph chromosome-positive leukemias [12]. In

addition to BCR-ABL, imatinib and nilotinib inhibit c-Kit, the

receptor for the stem cell factor (SCF). KIT plays an important

role in stem cell biology suppressing apoptosis, inducing cell cycle

entry [13], promoting colony growth [14], mediating stem cell self-

renewal in vivo [15], regulating cell adhesion to fibronectin [16]

and mediating chemokinetic and chemotactic signals [17].

However, the impacts of imatinib and nilotinib on HSCs during

the post-transplantation period are unknown. Reconstitution of a

fully functional hematopoietic system is critical for transplantation

outcomes. We have previously shown that imatinib inhibits

progenitor cell growth in vitro, but does not interfere with

engraftment of human hematopoietic stem cells in a xenogenic

transplantation model [18]. However, very little information on

the toxicity of nilotinib on normal hematopoiesis is available and

its effects on HSC engraftment are not known. In this study, we

have tested, both in vitro and in vivo, the inhibitory effects of

imatinib and nilotinib on proliferation, differentiation and

engraftment capacities of human cord blood CD34+ HSCs.

Materials and Methods

Isolation of Cord Blood CD34+ Cells
After written informed consent of the mother, cord blood was

collected according to the standard procedures of the Cord Blood

Bank of the University Hospital of Liège. Mononuclear cells were

isolated by centrifugation for 40 minutes at room temperature with

Ficoll PaqueTM plus density gradient (GE Healthcare, Uppsala,

Sweden) and washed twice in phosphate-buffered-saline (PBS)

(Lonza, Verviers, Belgium) supplemented with 1% Penicillin/

Streptomycin (P/S) (Lonza).

CD34+ hematopoietic stem cells were isolated by magnetic

separation according to the manufacturer’s instructions (Miltenyi

Biotech, Gladbach, Germany). First, cells were incubated during

30 minutes at 4uC with a primary anti-CD34 antibody. Cells

were washed with PBS+P/S 1% and incubated for 30 minutes

at 4uC with a secondary antibody coupled to magnetic beads.

Cells were washed in PBS+P/S 1% and passed twice through a

MS column (Miltenyi Biotech). CD34+ cells were collected after

elution of unlabeled cells through the column. Cells were

counted with Trypan Blue, washed in PBS and frozen in Fetal

Bovine Serum (FBS)+Dimethylsulfoxide (DMSO) 10% (Vel,

Leuven, Belgium).

The purity of the CD34+ cells was assayed by flow cytometry.

A total of 50,000 collected cells were labeled for 30 minutes at

4uC with an allophycoerythrin (APC) conjugated anti-CD34

antibody (BD Biosciences, Erembodegem, Belgium) or with the

isotype-matched control (BD Biosciences). Cells were washed

twice with PBS+P/S 1% and resuspended in PBS+Formalde-

hyde 1%. Data acquisition was carried out on a FACSCanto II

flow cytometer (BD Biosciences). In all experiments, the

percentage of CD34+ cells in the starting cell population was

higher than 95%.

Western Blot
Human CD34+ cells were thawed in Iscove’s MDM (IMDM)

(Lonza) supplemented with bovine serum albumin, insulin,

transferrin (BIT) 20% (Stem Cell Technologies, Grenoble,

France)+P/S 1% and washed with PBS+P/S 1%. Cells were

counted with Trypan Blue and resuspended in IMDM+BIT

20%+P/S 1% at a concentration of 10,000,000 cells/mL. A total

of 1,000,000 CD34+ cells (100 mL) were seeded in 2.4 mL of

IMDM+BIT 20%+P/S 1% supplemented with SCF (100 ng/mL),

TPO (50 ng/mL) and FLT-3 (100 ng/mL) (PeproTech, Neuilly-

Sur-Seine, France). TKIs were added from a stock solution of

10 mM in DMSO to the medium at a final concentration of 1 or

5 mM. Cells were incubated for 48 hours and then collected and

lysed. Total proteins were separated by sodium dodecyl sulfate-

polyacrylamide gel electrophoresis. Lysis buffer contained 25 mM

Hepes, 150 mM NaCl, 0.5% Triton X-100, 10% glycerol, 1 mM

dithiothreitol, phosphatase inhibitors (25 mM b-glycerophosphate,

1 mM Na3VO4, 1 mM NaF) and complete protease inhibitor

mixture (Roche Applied Science, Vilvoorde, Belgium). Polyviny-

lidene fluoride membrane was incubated with 1:1000 rabbit anti-

human phospho-c-Kit (Cell Signaling Technology, Leiden, The

Netherlands). The membrane was then incubated with anti-rabbit

horseradish peroxidase antibody at 1:2000 (GE Healthcare,

Diegem, Belgium). Goat anti-human actin conjugated to horse-

radish peroxidase (Santa Cruz Biotechnology, Heidelberg, Ger-

many) was used at 1:400. Actin signal was used as an internal

standard. Finally, the blot was developed using ECL Western Blot

detection system (GE Healthcare).

Colony-forming Cell Assay
CD34+ cells were thawed in Iscove’s MDM (IMDM) (Lonza)

supplemented with BIT 20%+P/S 1% and washed with PBS+P/S

1%. Cells were counted with Trypan Blue and resuspended in

IMDM+BIT 20%+P/S 1% at a concentration of 50,000 cells/

mL. A total of 5,000 CD34+ cells (100 mL) were seeded in 2.4 mL

of MethoCult H4100H (Stem Cell Technologies) supplemented

with FBS 30%, EPO 3 U/ml, 2-Mercaptoethanol 0.1 mM

(Invitrogen, Merelbeke, Belgium), L-Glutamine 2 mM (Lonza),

P/S 1%, SCF (Stem cell factor) 50 ng/mL (PeproTech, Neuilly-

Sur-Seine, France) and with conditioned medium of the 5637 cell-

line. TKIs were added from a stock solution of 10 mM in DMSO

to the medium at a final concentration of 1 or 5 mM and cells were

incubated for 14 days at 37uC under a 5% CO2 atmosphere.

Colony forming cells (CFCs) were then counted.

Long Term Culture-initiating Cell Assay
Absolute frequencies of LTC-ICs in cell suspensions recovered

after a 48-hour cell culture incubation with TKIs at a concentra-

tion of 1 or 5 mM, or in control medium, were determined by

limiting dilution analysis over MS-5 feeder cells. Briefly, the MS-5

feeder cell line was cultured in RPMI 1640 with 10% FBS. Cells

were irradiated at 50 Gy and then plated in 96-well plates at

20,000 cells per well in 100 mL long-term culture (LTC) medium

consisting of a-MEM supplemented with 8% horse serum, 8%

fetal bovine serum, 0.2 mM glutamine, 100 U/mL penicillin and

100 mg/mL streptomycin (all from Lonza), 0.2 mM inositol

(Sigma-Aldrich), 0.1 mM 2-mercaptoethanol. Within a week,

thawed CD34+ cells were plated in limiting dilution in another

100 mL of LTC medium and maintained at 33uC in a 100%

humidified atmosphere containing 5% CO2, with weekly half-

medium change. After 6 weeks, medium was carefully aspirated

from each well, followed by the addition of 200 mL of fully

supplemented MethoCult. After an additional 2 weeks, wells were

scored for the presence or absence of hematopoietic colonies, and
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the frequency of LTC-ICs was calculated using L-calc software

(Stem Cell Technologies).

Cell Cycle Analysis
Thawed CD34+ cells were counted with Trypan Blue and

resuspended at a concentration of 16106 cells/mL. A total of

16105 cells/well (100 mL) was seeded in a 6-well plate, containing

2.4 mL of IMDM supplemented with BIT 20%, P/S 1%, SCF

(100 ng/mL), TPO (50 ng/mL) and FLT-3 (100 ng/mL) (Pepro-

Tech). TKIs were added from a stock solution of 10 mM in

DMSO at final concentrations of 1 mM or 5 mM. Flow cytometric

cell cycle analyses of CD34+ cells cultivated during 48 hours with

or without TKIs were performed using the CycleTESTTM Plus

DNA Reagent Kit (BD Biosciences) as previously reported [18].

The percentage of cells in the different phases of the cell cycle was

determined with Modfit software (BD Biosciences) on at least

20,000 acquired events. The percentage of cells in cycle was

calculated as follows: percentage = ((S+G2/M cells)/Total

cells)6100.

VLA-4, VLA-5 and CXCR-4 Expression Analysis
Thawed CD34+ cells were counted with Trypan Blue and

resuspended at a concentration of 16106 cells/mL. A total of

16105 cells/well was seeded in a 6-well plate, containing 2.4 mL

of IMDM supplemented with BIT 20%, P/S 1%, SCF (100 ng/

mL), TPO (50 ng/mL) and with FLT-3 (100 ng/mL). TKIs were

added at final concentrations of 1 mM or 5 mM. After 48 hours of

culture, human CD34+ cells were washed twice with PBS+FBS

3%+P/S 1% and were then incubated with FITC-conjugated anti-

VLA-4 (BD Biosciences) or FITC-conjugated anti-VLA-5 (BD

Biosciences) in combination with PE-conjugated anti-CXCR-4

(BD Biosciences) antibodies for 30 minutes at 4uC in the dark.

Cells were then washed twice with PBS+FBS 3% and finally

resuspended in pure PBS. Data acquisitions (at least 10,000 events)

were performed on a FACSCanto II flow cytometer. Integrin

density was expressed as the mean channel fluorescence ratio

(MCFR) defined as the mean channel fluorescence (MCF) of

CXCR-4 or integrin expression divided by MCF of fluorescence of

the unstained control.

Migration Assay
Migration assays were performed in 6.5 mm diameter 5 mm

pore transwells. A total of 16105 CD34+ cells were plated in

100 mL of IMDM+BIT 20%+P/S 1%+SCF (100 ng/mL) in the

upper chamber of the transwell. The bottom compartment was

filled with IMDM supplemented with 20% BIT and 100 ng/mL

stromal-derived factor-1 alpha (SDF-1a) (PeproTech). After

incubation at 37uC during 4 hours, non-migrating and migrating

cells were harvested by two standardized washes using PBS+FBS

3%+P/S 1%. Non-migrating and migrating cells were counted by

flow cytometry using Trucount Tubes (BD Biosciences) after

staining with an APC-conjugated anti-CD34 antibody. The

percentage of non-migrating and migrating cells was calculated

relative to the total number of harvested cells.

Adhesion Assay
Thawed CD34+ cells were counted with Trypan Blue and

resuspended at a concentration of 16106 cells/mL. An aliquot of

1.56105 cells/well were seeded in a 12-well plate containing 1 mL

IMDM supplemented with BIT 20%, P/S 1%, SCF (100 ng/mL),

TPO (50 ng/mL) and FLT-3 (100 ng/mL). TKIs were added

from a stock solution of 10 mM in DMSO at final concentrations

of 1 mM or 5 mM. After 48 hours of culture, human CD34+ cells

were washed twice with PBS+P/S 1%.

Adhesion assays were performed in a 12-well plate. Wells were

first coated with retronectin (Takara Bio Inc., Shiga, Japan) at a

concentration of 9 mg/cm2 during two hours at 37uC. Supernatant

was aspirated and wells were then incubated with PBS+BSA

1%+P/S 1% for 30 minutes at room temperature. Wells were

finally washed twice with PBS+Hepes 2%+P/S 1%.

A total of 150,000 CD34+ cells resuspended in IMDM+BIT

20%+P/S 1% were added in each well and incubated for 90

minutes at 37uC. Supernatants were collected in polypropylene

tubes. Adherent cells were detached by using the non-enzymatic

cell dissociation buffer (Sigma) and collected in new polypropylene

tubes. Cells were finally stained with an APC-conjugated anti-

CD34 antibody and counted by flow cytometry using Trucount

Tubes. The percentage of adherent cells was calculated relative to

the total number of harvested cells.

Transplantation into NOD/SCID/IL2rc (Null) Mice
Six hours before CD34+ cell injection, NOD/SCID/IL-2Rc

(null) (NSG) mice (The Jackson laboratory, Bar Harbor, USA)

were irradiated with 2.5 Gy TBI using a 137Cs source. Human

CD34+ cells were thawed in IMDM+FBS 10%+P/S 1% and

washed in PBS+P/S 1%. Cells were counted with Trypan Blue

and resuspended in PBS at a concentration of 36106 cells/mL

(66105 cells/200 mL). Mice were inoculated intravenously with

66105 CD34+ cells. Gavage with TKIs or a placebo was started at

day 0. Imatinib was dissolved in sterile water and administrated at

a dose of 150 mg/kg/day (50 mg/kg every morning and 100 mg/

kg every evening) while nilotinib was prepared in 0.5%

hydroxypropylmethyl cellulose (HPMC, Sigma) aqueous solution

containing 0.05% Tween 80 and given at a concentration of

75 mg/kg/day (37.5 mg/kg every morning and evening). After 42

days, mice were sacrificed. Bone marrow cells from the two femurs

were collected in sterile RPMI+FBS 10%+P/S 1%. Cells were

counted with an HORIBA ABXH automatic cell counter (ABX

Hematology, Montpellier, France). Cells were stained with anti-

human CD45 (BD Biosciences) and anti-mouse CD45 (BD

Biosciences) antibodies in order to determine the percentage of

human chimerism by FACS analysis. Data acquisition was

performed on a FACSCanto II flow cytometer on at least

20,000 mononuclear cells.

Ethics Statement
All experiments using NSG mice were carried out in strict

accordance with the recommendations in the Guide for the Care

and Use of Laboratory Animals of the National Institutes of

Health. The protocol was approved by the Committee on the

Figure 1. Inhibitory effects of TKIs on c-Kit phosphorylation in
human CD34+ cord blood HSCs. The phosphorylated c-Kit receptor
was detected by western blot after a 48-hour culture in presence of
either imatinib or nilotinib. Representative picture from 4 independent
experiments (n = 4).
doi:10.1371/journal.pone.0052564.g001
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Ethics of Animal Experiments of the University of Liège (Permit

Number: 712). Mice were maintained in top-filtered cages in a

standard animal facility and provided sterilized food and water ad

libitum. Sterilized water supplemented with BaytrilH 1% (Bayer

HealthCare, Diegem, Belgium) was given from 3 days before to

the end of the experiment. Water was change every 2–3 days. All

euthanasia were performed under isoflurane anesthesia, and all

efforts were made to minimize suffering.

Statistical Analyses
Statistical analyses were performed with the GraphPadH Prism

5.00 Software. The paired Student’s T test was used to assess the

impact of TKI on human cord blood CD34+ cells in vitro.

Percentages and numbers of human cells in NSG mice were

compared with the unpaired Student’s T test.

Results

Imatinib and Nilotinib Inhibited c-Kit Receptor
Phosphorylation in a Dose-dependent Manner

We have first determined the inhibitory effect of TKIs on the c-

Kit receptor cell signaling by western blot (n = 4). Human CD34+

cord blood HSCs were cultured in cytokine-supplemented

medium for 48 hours with or without TKIs, washed and then

lysed. Proteins were extracted on ice and dosed for western

blotting analysis. The c-Kit phosphorylation levels in human

CD34+ cells were decreased in a dose-dependent manner. Indeed

at the highest concentration, both imatinib and nilotinib decreased

dramatically the band intensity of phospho-c-Kit. No differences

were seen between imatinib and nilotinib at a concentration of

1 mM and 5 mM (Figure 1).

Both Imatinib and Nilotinib Inhibited Formation of
Precursor Colony-forming Cells

To determine whether imatinib and nilotinib could inhibit the

generation of hematopoietic precursors, colony-forming cell (CFC)

assays were carried out. In a first set of experiments (n = 4), CD34+

cells were cultured for 48 hours with or without TKIs, washed and

then plated in cytokine-supplemented MethoCult for 14 days.

Both imatinib and nilotinib significantly inhibited CFC formation.

Indeed, imatinib, at a concentration of 1 or 5 mM, decreased CFC

formation by a mean 6 SD of 24.91614.05% (p = 0.0415) and

49.66630.19% (p = 0.0461) respectively, while nilotinib, at the

same concentrations, reduced CFC numbers by 25.15612.36%

(p = 0.0268 and p = 0.8173 in comparison to imatinib) and

54.81634.39% (p = 0.0498 and p = 0.1314 in comparison to

imatinib), respectively (Figure 2A).

Next, cord blood CD34+ cells were seeded in MethoCult

supplemented with or without imatinib or nilotinib at a final

concentration of 1 or 5 mM for 14 days. As observed in the first

series of experiments, TKIs significantly diminished CFC gener-

ation. Imatinib reduced colony formation by 41.67614%

(p = 0.0356) at a concentration of 1 mM and 79.4269.309%

(p = 0.0045) at 5 mM. Nilotinib decreased CFC formation by

19.6461.90% (p = 0.0031 and p = 0.0898 in comparison to

imatinib) and 78.2865.27% (p = 0.0015 and p = 0.6733 in

comparison to imatinib), respectively (n = 3, Figure 2B).

Imatinib and Nilotinib did not Decrease Absolute
Frequencies of LTC-ICs

The capacity of TKIs to inhibit the differentiation of primitive

hematopoietic progenitors was first assessed in long-term cultures.

In a first set of experiments (n = 3), human cord blood CD34+ cells

were incubated for 48 hours in the presence/absence of imatinib

or nilotinib at a final concentration of 1 and 5 mM and then seeded

in 96-well plates for LTC-IC assays without any TKIs. No

significant differences were seen in the absolute frequencies of

LTC-IC in each condition (Figure 3A).

In a second set of experiments (n = 3), CD34+ cells were directly

plated for LTC-IC assays and incubated in the presence/absence

of TKIs at a final concentration of 1 or 5 mM. Inhibitors were also

added at all weekly half-medium change. As observed above,

neither imatinib nor nilotinib decreased absolute frequencies of

LTC-ICs (Figure 3B).

Figure 2. TKIs dramatically decrease CFC formation. (A): Influence of a 48-hour pre-culture in the presence of either imatinib or nilotinib on
CFC formation. (B): CFC generation in CFC assays supplemented with TKIs. Results are expressed as mean percentages relative to control experiments
without TKIs 6 SD. n = 4, *p,0.05, **p,0.005 versus CTL, Student’s paired t tests. CTL: control condition without TKIs.
doi:10.1371/journal.pone.0052564.g002
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Entry into Cell Cycle of Human Cord Blood CD34+ Cells
was Impaired in the Presence of Imatinib and Nilotinib

We assessed the impact of a 48-hour culture in the presence of

imatinib or nilotinib on cord blood CD34+ cell proliferation. HSC

proliferation was markedly reduced in the presence of imatinib

1 mM (73.264.5%; n = 3; p = 0.003) or nilotinib 1 mM

(68.4611.4%; n = 3; p = 0.026 and p = 0.5620 in comparison to

imatinib), and even more with the presence of 5 mM of imatinib

(p = 0.005) or nilotinib (p = 0.008 and p = 0.6746 in comparison to

imatinib): HSC proliferation was decreased by 78.2569.624%

and 63.49612.40% respectively (n = 3) (Figure 4).

Expression of VLA-4 and VLA-5, but not the CXCR-4, Cell
Surface Receptors were Decreased after a 48 h Cell-
culture with Imatinib and Nilotinib

Homing of hematopoietic stem cells is a critical step for the

success of allo-HSCT. In this process, three key-players have been

identified: VLA-4, VLA-5 and CXCR-4 [19,20]. Mean channel

fluorescence ratio (MCFR) of the expression of these receptors on

the cell surface of human cord blood CD34+ cells was determined

by flow cytometry after a cell culture containing TKIs (or not).

Imatinib significantly decreased expression of VLA-4 by a mean 6

SD of 10.45763.058 (p = 0.0032) and 12.52061.872 (p,0.0001)

at a concentration of 1 and 5 mM, respectively. Nilotinib at the

same concentration induced the same effect by decreasing MCFR

values by a mean 6 SD of 8.92063.472 (p = 0.0088) and

11.24762.336 (p = 0.0008), respectively (n = 3) (Figure 5A).

VLA-5 expression was also decreased in the presence of both

imatinib and nilotinib. Indeed, MCFR values were decreased by a

mean 6 SD of 1.30760.5103 (p = 0.0318) and 1.72460.4219

(p = 0.0121) for imatinib at 1 and 5 mM, respectively. Nilotinib

decreased VLA-5 MCFR values by a mean 6 SD of

1.72460.6833 (p = 0.0733) and 1.42460.3931 (p = 0.0135) at the

same concentration respectively (n = 3) (Figure 5B).

While both VLA-4 and VLA-5 expression were significantly

decreased by TKIs, CXCR-4 cell surface expression was not

affected upon 48-hour cell culture in the presence of imatinib or

nilotinib (n = 6) (Figure 5C).

Adhesion to Retronectin of Cord Blood CD34+ Cells was
not Modified by 1 mM Imatinib and Nilotinib

As we observed a decreased in the expression of VLA-4 and

VLA-5 in the presence of TKIs, we asked the question whether

this lower expression affected the function of these receptors. We

thus performed adhesion assays to retronectin with CD34+ cells

cultured for 48 hours with TKIs. Imatinib 1 mM did not alter

adhesion to retronectin (p = 0.6186) while imatinib 5 mM de-

creased it by 5.6964.134% (p = 0.0135) (n = 10). Similarly,

Figure 3. Neither imatinib nor nilotinib induce a decrease of LTC-IC frequency. (A): Influence of a 48-hour pre-culture with imatinib or
nilotinib at a final concentration of 1 or 5 mM on LTC-IC frequencies. (B): LTC-IC generation with TKIs in a 6-week LTC-IC assay. Results are expressed
as mean 6 SD. n = 3, Student’s paired t tests. CTL: control condition without TKIs.
doi:10.1371/journal.pone.0052564.g003

Figure 4. Colony formation in presence of tyrosine kinase
inhibitors were decreased due to the inhibition of cell cycle
entry. Human cord blood CD34+ were cultured for 48 hours in
presence/absence of either imatinib or nilotinib and then stained with
propidium iodide using the CycleTESTTM Plus DNA Reagent Kit. Results
are expressed as mean percentages relative to control experiments
without TKIs 6 SD. n = 3, *p,0.05, **p,0.01 versus CTL, Student’s
paired t tests. CTL: control condition without TKIs.
doi:10.1371/journal.pone.0052564.g004

Impact of TKIs on Hematopoiesis
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nilotinib had no significant effect on adhesion at 1 mM, while at

5 mM it significantly reduced adhesion by 3.5165.933% was

observed (p = 0.0432) (n = 10) (Figure 6A).

A 48-hour Incubation with TKIs did not Affect the
Capacity of Human CD34+ Cells to Migrate through a
SDF-1a Gradient

No significant changes were observed in CXCR-4 expression in

the presence of TKIs. To investigate the functional impact of these

observations, migration assays of CD34+ HSCs were performed.

CD34+ cells cultivated for 48 hours in the presence of TKIs were

seeded in the upper chamber of a transwell containing SCF-

supplemented medium. The lower chamber was filled with

medium containing SDF-1a. Migration through the filter was

allowed during 4 hours at 37uC. No significant difference were

observed between cells cultivated with TKIs in comparison to the

control (n = 4) (Figure 6B).

Daily Dosing of Either Imatinib or Nilotinib did not Affect
Repopulating Activity in NSG Mice

Twenty-five sublethally irradiated NSG mice (in 3 independent

experiments) were injected intravenously with 66105 human

CD34+ cells and treated orally with placebo, imatinib 150 mg/kg/

day or nilotinib 75 mg/kg/day for 42 days starting on day 0. No

death occurred before the end of the experiments. Bone marrow

cellularity was similar in the three groups. Numbers of cells/femur

were (expressed as mean 6 SD) 5.6664.146106 in control mice,

3.5561.676106 in mice treated with imatinib (p = 0.1982) and

4.1762.746106 in nilotinib-treated mice (p = 0.3731) (Figure 7A).

Bone marrow chimerism was analyzed by flow cytometry. No

significant differences were seen between mice treated placebo

(52.562.7%; n = 9) or with imatinib (47.765.3%; n = 8;

p = 0.4130), while engraftment of human CD34+ cells was slightly

decreased (40.664.4%; n = 8; p = 0.0314) in mice treated with

nilotinib (Figure 7B).

Figure 5. Cell surface expression of VLA-4 and VLA-5 were decreased after a 48 h cell-culture with TKIs while CXCR-4 expression
was not affected. Influence of 48-hour pre-culture in presence of either imatinib or nilotinib on (A): VLA-4 (B): VLA-5 and (C): CXCR-4. Results are
expressed as the mean channel fluorescence ratio (MCFR) 6 SD. n $3, *p,0.05, **p,0.01, ***p,0.001 versus CTL, Student’s paired t tests. CTL:
control condition without TKIs.
doi:10.1371/journal.pone.0052564.g005
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Discussion

The aim of this project was to assess the impact of TKIs on

hematopoietic stem cell function engraftment. Retrospective

studies have suggested that treatment with TKIs before allo-

HSCT did not preclude the outcome of engraftment and did not

increase transplant-related toxicity [21–23]. Prospective studies

showed that early administration of TKIs after allo-HSCT at a

dose intensity comparable to that used in primary therapy seem to

be safe [24] and can result in favorable long-term survival [12].

But the vast majority of these patients did not take TKIs during

the engraftment period to prevent graft delay or failure. However,

in the setting of non-myeloablative allo-HSCT for blast-crisis

CML or Ph+ ALL, a 2–4 week TKI discontinuation may expose

patients to early relapses. These data prompted us to evaluate the

inhibitory effects of imatinib and nilotinib on the proliferation,

Figure 6. Influence of TKIs on adhesion and migration of human cord blood CD34+ cells. (A): Adhesion of CD34+ cells to retronectin was
significantly reduced in presence of the highest doses of TKIs. Results are expressed as the percentage of adherent cells 6 SD. n = 10, *p,0.05 versus
CTL, Student’s paired t tests. (B): Migration of human HSCs toward a SDF-1a gradient was not modified by a 48 hour pre-culture period in the
presence of TKIs. Results are expressed as the percentage of migrating cells 6 SD. n = 4, Student’s paired t tests. CTL: control condition without TKIs.
doi:10.1371/journal.pone.0052564.g006

Figure 7. Effects of TKIs in a mouse model of transplantation. (A): Daily doses of TKIs for 42 days did not affect bone marrow cellularity.
Results are expressed as the mean number of cells per femur 6 SD. n $8, Student’s unpaired t tests. (B): Effect of continuous administration of TKIs
on bone marrow chimerism. Imatinib did not affect the percentage of human cells in the bone marrow while nilotinib slightly decreased it compared
to the control group. Results are expressed as the mean percentage 6 SD. n $8, *p = 0.0314 versus CTL, Student’s unpaired t tests. CTL: control
condition without TKIs.
doi:10.1371/journal.pone.0052564.g007
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differentiation and engraftment capacities of human cord blood

CD34+ HSC.

The effects of TKIs were first assayed on LTC-ICs by limiting

dilutions. Our data show that neither imatinib nor nilotinib had a

significant impact on primitive progenitors. Indeed, as described

before, LTC-IC frequencies were not affected by a 48 hour pre-

culture or a 6-week incubation with TKIs [25], confirming

previous findings that primitive HSC are less sensitive to TKIs

than committed progenitors, possibly related to an enhanced

presence of efflux drugs transporters in primitive HSCs [26].

We also evaluated the effects of TKIs on CFCs. Unlike LTC-

IC frequencies, CFC growth was significantly decreased in

culture containing either imatinib or nilotinib. Moreover, their

inhibitory effects were permanent since a 48-hour pre-culture

with TKIs is sufficient to decrease significantly the CFC

generation definitively. Two hypotheses could explain these

observations: (a) increased apoptosis or (b) inhibition of cell

cycle entry. Since we and others have previously showed that

imatinib do not increase the apoptosis of committed progenitors

[18,27], we investigated the proliferation of human CD34+ cells

in the presence of TKIs. Our data demonstrate a significant

decrease in HSC proliferation. These observations could be

explain by the inhibition of others tyrosine kinases by imatinib

and nilotinib. Indeed, Bartolovic et al. have shown that imatinib

exerts growth inhibitory effect on normal CD34+ cells by the

inhibition of SCF/c-kit pathway [27]. Moreover, studies on the

effects of nilotinib on bone cells in Ph+ patients receiving

nilotinib for treatment of CML have demonstrated that nilotinib

potently inhibited osteoblast proliferation through inhibition of

the platelet-derived growth factor (PDGFR). Furthermore,

inhibition of c-Abl could contribute to the growth inhibition

of CFCs by TKIs since antisense strategies have demonstrated

that inhibition of c-Abl leads to the accumulation of CD34+

cells in G0/G1 and to inhibition of CFU-GM formation [28,29].

Our results confirm also the results of Jorgensen and colleagues

which showed that the predominant effect of imatinib and

nilotinib on CD34+ CML cells is anti-proliferative rather than

pro apoptotic. Indeed, the anti-proliferative effect of TKIs on

Ph+ CD34+ cells is mainly caused by the inhibition of BCR-

ABL [30].

Because VLA-4, VLA-5, and CXCR-4 play a major role in the

homing of HSCs, we investigated the effect of TKIs on the

expression of these surface receptors by flow cytometry. Despite

our previous findings that the expression of VLA-4, VLA-5, and

CXCR-4 of CD133+ cells was not modified by imatinib [18], a

significant decrease in the expression of VLA-4 and VLA-5 was

observed with either imatinib or nilotinib. However, no significant

differences in CXCR-4 expression on CD34+ cells were seen.

These apparent discrepancies could be explained by the cell source

since in our previous publication [18], CD133+ cells isolated from

peripheral blood of mobilized healthy volunteers were investigated

while, in this study, CD34+ cells from cord blood were used in all

experiments. Indeed, despite a higher VLA-4 and VLA-5

expression, cord blood CD34+ cells exhibit a lower CXCR-4 cell

surface expression and a higher capacity to regenerate LTC-IC

per competitive repopulating unit (CRU) [31] than on peripheral

blood HSC cell surface [32,33]. These differences in homing-

related molecule expression could explain our discrepancies in the

adhesion and migration behavior of cord blood CD34+. We then

tested whether the decreased expression of VLA-4 and VLA-5

affected the capacity of CD34+ cells to adhere to retronectin

in vitro. Adhesion was not affected by imatinib or nilotinib at

physiological concentrations (1 mM) but decreased at higher doses

(5 mM). CD34+ cell migration towards a SDF-1a gradient was not

affected by TKIs. Inverse relationships between migration and

adhesion capacities have often been observed. In HSCs, higher

cell cycle activity is related with stronger adherence and decreased

motility [34,35]. However, because TKIs inhibit CD34+ cell

proliferation, their effect on hematopoietic cell adhesion and

migration appears to be independent of cell cycle activity.

Additional studies will be necessary to investigate the impact of

imatinib or nilotinib on tyrosine kinases implicated in adhesion

and migration, such as the focal adhesion kinase or the related

kinase PYK2 that is expressed in CD34+ cells [36].

Finally, we assessed the impact of TKIs on engraftment in a

xenotransplantation model. Numbers of cells in the bone marrow

of the femurs were similar in mice treated with placebo, imatinib

or nilotinib. Moreover, no significant differences were seen in the

percentages of bone marrow human CD45+ cells between mice

treated with imatinib or placebo. However, the engraftment of

human HSCs was slightly decreased in mice treated with nilotinib.

This might be explained by the high daily dose of nilotinib

(75 mg/kg/day) used in these experiments. Our results are

comparable to those of our previous study [18] and with those

of Hoepfl and colleagues, who demonstrated that imatinib

(25 mg/kg twice daily) has no significant influence on hemato-

poietic engraftment in a syngeneic mouse bone marrow trans-

plantation model [37].

On the basis of our data, combining non-myeloablative

conditioning with TKIs for Ph+ ALL patients in order to

maximize the graft-versus-leukemia effect could be possible with

both nilotinib and imatinib.

Acknowledgments

The authors are very grateful to Novartis Pharmaceuticals (Basel,

Switzerland) that provided imatinib and nilotinib for the study. The

authors would like to thanks Sophie Dubois, Coline Daulne and Amélie
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