Metabolic Stress in Dairy Cows International Symposium organised by BSAS/GIFT/BCVA Edinburgh, October 28 - 30, 1998

Genetics of Lactation Persistency

Hermann H. Swalve and Nicolas Gengler

Institut für Tierzucht und Haustiergenetik

University of Göttingen

D-37075 Göttingen Germany

E-Mail: hswalve@gwdg.de

Unité de Zootechnie

Gembloux Agricultural University (FUSAGx)

B-5030 Gembloux Belgium

E-Mail: gengler.n@fsagx.ac.be

Lactation Persistency - Definition

No unique definition!

Consensus could be:

Ability of the cow to maintain a more or less constant yield in the course of the lactation

Therefore:

The lactation of a cow is more persistent if, for the same total yield, the peak yield is lower and the lactation curve is flatter Impact of persistency

Improvements when persistency is increased:

- health
 - → less (metabolic) stress → better health
- feed costs
 - ratio of roughage : concentrates that is necessary is improved
- fertility
 - better fertility when (metabolic) stress is reduced

Requirement for defining criteria

Criterion should be independent from lactation yield

- economically: yield already considered in the aggregate genotype
- biologically: we wish to define ability of the cow to produce the same amount of milk with less metabolic stress
- only very few authors have taken this approach

- Derived from lactation curve functions
- Based on ratios of peak/partial/total yields
- Variation of partial yields or test day yields
- Derived from RR-TDM (Random Regression Test Day Models)

Criteria derived from lactation curve functions

 coefficient of linear regression of test day yield on days in milk (obviously not an ideal lactation curve model)

➔ descending phase dominant, slope is negative - Question is: How negative?

Wood's curve: y^t = a t^b e^{-ct}
 Persistency:
 S = c^{-(b+1)}

Criteria based on ratios of peak/partial/total yields

- involving maximum of test day yields (peak production)
 - mean (or total) / peak
 - ➔ higher values = higher Persistency
 - peak / mean
 - → lower values = higher Persistency
- involving partial lactation yields P3:1, P2:1, P3:2
 - → well known, often found

Criteria measuring the variation of partial yields or test day yields

- SD of test day yields:
 - not only a measurement of Persistency, but also measuring if "conditions are stable"
- yield variation:
 - ➔ index of variation of partial yields

Criteria derived from Random Regression Test Day Models

RR-TDM: model curve by appropriate regression coefficients, allow for covariance structure among them

RR-TDM (cont.)

Proposed RR-TDM (Guelph Group):

- fixed regressions (nested within age-region, etc.)
- random regressions
- animal, pe (+ residual)

RR-TDM produces 'genetic yields' per day or any combination of days

Proposed criterion of Persistency:

• slope of 'genetic yields' from d 60 to d 280

Environmental factors

- Herd
- Parity
- Age at calving
- Season of calving
- Gestation
- Other?

Persistency and reproductive performance

• **Before cow gets pregnant:**

better Persistency is assumed to positively affect reproductive performance

• After cow is pregnant:

pregnancy affects Persistency negatively (non-linear relationship)

Persistency and reproductive performance

Conclusion:

 the relationship between reproductive performance and Persistency should always be viewed as a two-way interaction

Lean et al., 1989: Cows with high Persistency had lower reproductive performance

Reasons behind this:

rapidly getting pregnant again lowers Persistency
 → P ↓ Repro ↑
 → Repro ↑ P ↓

Traditional criteria

- Wood's S, Ratios, SD
- h²: .05 to .30

r_g with 305-d yield: positive for S and Ratios (around .50) negative for SD

(positive and negative in a sense of correlated response to selection)

• Fat and Protein: slightly lower heritabilities

Criteria derived from RR-TDM (Jamrozik et al., 1998)

h²: .30 to .40

```
r<sub>g</sub> with 305-d yield: zero !
```

Genetic correlations among criteria for the same trait:

• very high (close to 1.0) even when including SD-criteria

Genetic correlations of Persistency among yield traits:

• .80 to .90

Genetic correlations of Persistency in subsequent lactations:

- very low (.00 to .30)
- ➔ is this an artefact?
- → or due to incorrect modelling?
- or is Persistency in different lactations really a different trait?

Discussion and conclusions

What are we really looking for?

A cow with

- high production performance
- good health
- sufficient reproductive performance (No. of days open according to yield level)
- not necessarily a cow with a completely flat lactation curve
- desired: less pronounced peak and good maintenance of high yields

How to achieve this goal?

- Management
 - use bio-economic models
 - optimise feeding, reproductive performance and production
- Selection

Conclusions for genetic improvement

- Reproductive complex has to be included in the models of analysis
- **RR-TDM** is a very flexible and powerful tool
 - use criteria derived from RR-TDM
 - examine critical part of the lactation
- Evaluate Persistency in the context of metabolic stress

(definitions of metabolic stress?)

Conclusions for genetic improvement

Will a genetic improvement of Persistency also improve longevity?

- little is known about this up to now:
 - Reents et al. (1996):
 slightly positive relationship exists
 - Druet (1998): genetic correlations .20 to .30
- exploit latest methodology to analyse this:
 - survival analysis (SURVIVAL KIT)
 - RR-TDM

Conclusions for genetic improvement

Problem of low repeatability of Persistency has to be solved!

- is it an artefact?
- is it due to selection bias?
- is it found only because of incorrect modelling? (reproductive complex mishandled?)

Important issue for correct lactation curve modelling:

➔ Multi-lactation RR-TDM

Conclusions

- Still more questions than answers in the genetics of lactation Persistency
- Needed:
 - more collaboration between geneticists and physiologists
 - better methods and models
 - better data
- Recommendation on the inclusion of Persistency into selection programs is premature