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During the initial training of a motor sequence, performance becomes progressively faster but also increasingly
reproducible and consistent. However, performance temporarily becomesmore variable atmid-training, reflect-
ing a change in themotor representation and the eventual selection of the optimal performancemode (Adi-Japha
et al., 2008). At the cerebral level, whereas performance speed is known to be related to the activity in cerebello-
cortical and striato-cortical networks, the neural correlates of performance variability remain unknown. We
characterized the latter using functional magnetic resonance imaging (fMRI) during the initial training to the
Finger Tapping Task (FTT), during which participants produced a 5-element finger sequence on a keyboard
with their left non-dominant hand. Our results show that responses in the precuneus decrease whereas re-
sponses in the caudate nucleus increase as performance becomes more consistent. In addition, a variable perfor-
mance is associatedwith enhanced interaction between the hippocampus and fronto-parietal areas and between
the striatum and frontal areas. Our results suggest that these dynamic large-scale interactions represent a corner-
stone in the implementation of consistent motor behavior in humans.

© 2012 Elsevier Inc. All rights reserved.
Introduction

Motor skills are acquired through repeated practice allowing the de-
velopment of an automatized and crystallized motor program (Grafton,
2008). However, motor skills are constantly adjusted, even when they
are automatized, in a “balancing-act”between exploitative and explorato-
ry behaviors (Grafton, 2008).While thefirst behavior is efficient by allow-
ing reproducibility of motor performance, the latter reflects continued
experimentation enabling the development of new strategies, which
will introduce some variability in the movement but might favor the op-
timization ofmotor behavior (Tumer andBrainard, 2007). Such variability
may be adaptative, allowing plasticity in apparently crystallized skills
(Grafton, 2008; Tumer andBrainard, 2007). Accordingly, during the initial
practice of a new finger motor sequence, performance typically becomes
progressively faster (Karni et al., 1995) andmore reproducible (Adi-Japha
et al., 2008). However, after several blocks of training, a transient phase of
increased variability in performance is observed without any concurrent
change in performance speed (Adi-Japha et al., 2008). This transient per-
formance instability is thought to reflect a competition between different
routines before the most effective one is set and mastered, presumably
establishing a sequence-specific neural representation (Adi-Japha et al.,
2008).
rights reserved.
Cerebral correlates of motor sequence learning have been extensively
studied and mainly involve cerebello-cortical and striato-cortical net-
works (Albouy et al., 2008; Doyon and Benali, 2005; Orban et al., 2010).
The hippocampus is also recruited in the course of motor sequence learn-
ing (Albouy et al., 2008; Fernandez-Seara et al., 2009; Gheysen et al.,
2009; Schendan et al., 2003) during which it can competitively interact
with the striatum (Albouy et al., 2008). More specifically, recent studies
were interested in distinguishing cerebral areas the activity of which is
modulated by different components of motor performance, for ex-
ample, by exploring learning-dependent plasticity mechanisms vs
learning-independent implementation processes (Orban et al.,
2010), accuracy vs synchrony of sequential movements (Steele
and Penhune, 2010) or more generally, automaticity of visuomotor
skills (Floyer-Lea and Matthews, 2004, 2005). However, the cerebral
correlates of performance variability have never been specifically
explored, despite its importance as a potential marker of the pro-
gress of learning strategies during training. To address this issue,
we used functional magnetic resonance imaging (fMRI) to charac-
terize the brain responses that change according to performance
variability during a short (about 10 min) initial training to the Finger
Tapping Task (FTT), a common motor sequence learning task during
which participants have to produce an explicitly known 5-element
finger sequence on a keyboard, with their non-dominant hand (Fig. 1,
left panel).

Our results show that during initial motor sequence learning, re-
sponses in the caudate nucleus increase as performance becomes more
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consistent. In contrast, high variability in performance is associated with
increased activity in the precuneus, an enhanced functional connectivity
between the precuneus, the hippocampus, and frontal regions, on the
one hand and between the caudate nucleus and frontal areas on the
other hand. This finding suggests that the implementation of perfor-
mance modes which eventually ensure the consistency of sequential
motor output is related to functional interactions within striato-frontal
and hippocampo-neocortical networks.

Material and methods

Population

Thirty-four young (mean age: 23±3 years, 17males and17 females)
right-handed (Oldfield, 1971) healthy volunteers were recruited by
advertisement. They had no history of medical, neurological or psychiat-
ric disease. None of them was on medication. None had ever played a
musical instrument nor was trained as a typist. The quality of their
sleepwas normal as assessed by the Pittsburgh SleepQuality Index ques-
tionnaire (Buysse et al., 1989). They followed a 3-day constant sleep
schedule (according to their own rhythm±1 h) before the experiment.
Compliance to the schedule was assessed using both sleep diaries and
wrist actigraphy (Cambridge Neuroscience, Cambridge, UK).

Task and general experimental design

Subjects were scanned during 2 separate sessions referred to as the
training and retest sessions while they performed a finger tapping task
(FTT) coded in Cogent2000 (http://www.vislab.ucl.ac.uk/cogent.php)
implemented in MATLAB (Mathworks Inc., Sherbom, MA). The results
reported here only concern the training session. The FTT required the
subjects to tap on a keyboard, with their (left) non-dominant hand, a
five-element finger sequence as rapidly and as accurately as possible
(Fig. 1, left panel). The sequence to perform was explicitly known by
the participants and constantly displayed on the screen (4 1 3 2 4).
The task was performed in 14 successive practice blocks of the trained
sequence separated by 15-second rest periods. The task has been
coded to keep track of the number of key presses within a block (max-
imum 60 key presses). After 60 key presses, the “practice block” auto-
matically turned into a “rest block” (fixation cross). Consequently, the
Fig. 1. Experimental task and behavioral results. Left panel — Finger Tapping Task, FTT.
Right panel — Dynamics of mean time to perform a correct sequence (Mean, upper
panel) and the standard deviation of difference between the data points (time to
perform each correct sequence) and their power-law fit (Std, lower panel) computed
over all subjects during training. Note that variability of performance follows a specific
dynamics during training which does not parallel mean performance. The standard
error of the mean (SEM) is not represented on the plot to conserve a scale allowing
the illustration of the variability dynamics. SEM ranged across blocks from 51.10 to
109.88 ms for performance speed (Mean) and from 19.21 to 38.07 ms for performance
variability (Std).
duration of the practice blocks progressively decreased with learning,
subjects becoming faster on performing the 60 key presses (12 possible
sequences). This was done in order to control for the number of move-
ments realized per block to make sure that differences in cerebral
responses observed were not contaminated by any change in motor
output during practice and implied that block duration progressively
decreased through training with the speeding in performance.

Motor skill performance was measured in term of speed (actually
its inverse, i.e. the mean time to perform a correct sequence per
block computed over the 12 possible correct sequences), error rates
(mean number of errors per block) and variability. Variability of per-
formance was computed as variability of the residuals with respect to
a single power-law fit that was calculated over the whole training
session (i.e., over 168 points representing the time to perform each
correct sequence (12 possible correct sequences) over the 14 blocks
of training). The variability of the residuals with respect to the single
power-law fit consisted in the standard deviation of the difference
between the data points (time to perform each correct sequence)
and their power-law fit, computed over the 12 possible correct
sequences for each block of practice. This method of variability anal-
ysis, adapted from Adi-Japha et al. (2008), implies that estimates of
performance variability are orthogonal from performance speed
estimates.

Finally, fine-grained analyses on error type were done by exploring
within and between-sequence errors as an index of changes in strategy
during training. To do so, a sliding-window of 3 elements was applied
on the data, trial by trial, to extract all the possible triplets of 3-element
from the data, i.e. for a correct sequence 4 1 3 2 4, the 5 possible correct
3-element triplets were 413, 132, 324 (within-sequence triplets) and
244, 441 (between-sequence triplets). All the remaining triplets that
were extracted were considered as “incorrect 3-element triplets” and
were categorized as within- or between-sequence incorrect triplets (ex-
ample: 131 was categorized as an incorrect within-sequence triplet and
442 as an incorrect between-sequence triplet). The number of elements
in the sliding window was chosen to maximize the number of possible
correct between-sequence triplets (with a 2 elements sliding window,
there is just one possible correct between-session transition (44)whereas
with a 3 element sliding window, there are 2 possible correct between-
sequence triplets (244 and 441)). Number of incorrect triplets were
then computed for each block in each subject and classified according to
their type, as mentioned above: within-sequence incorrect triplet (over
3 possible correct within-sequence triplets) and between-sequence in-
correct triplet (over the 2 possible correct between-sequence triplets).

Behavioral data analyses

Repeated-measure analyses of variance (ANOVA) on performance
(speed, error rate, variability) with block repetition as within-subjects
factor assessed the practice-related changes in performance during the
training session. Planned comparisons were performed in order to com-
pare performance between blocks within the training session. Further-
more, a repeated-measure analysis of variance (ANOVA) on number of
incorrect triplets was computed with block repetition and error type
(within-sequence or between-sequence errors) as within-subjects fac-
tor. This analysis assessed the practice-related changes in committed
errors during the training session. Planned comparisonswere performed
in order to compare performance between blocks and error type within
the training session.

Functional MRI data acquisition and analysis

Functional MRI-series were acquired using a head-only 3 T scanner
(Siemens,Allegra, Erlangen, Germany).Multislice T2*-weighted fMRI im-
ages were obtained with a gradient echo-planar sequence using axial
slice orientation (TR=2130 ms, TE=40ms, FA=90°, 32 transverse
slices, 3 mm slice thickness, 30% inter-slice gap, FoV=220×220 mm²,
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Fig. 2. Linear modulation of brain responses by performance speed. Bilateral ventral
putamen responses increased during training with performance speed improvement.
Functional results are displayed at puncorrectedb0.001 over the mean structural image
of all subjects. In the insets, whiskers represent SEM. The plot represents the averaged
fitted BOLD response by block (a.u., arbitrary units) modulated by performance speed
across subjects.
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matrix size=64×64×32, voxel size=3.4×3.4×3.0 mm³). Training
session consisted in 271±37 scans. A structural T1-weigthed 3D MP-
RAGE sequence (TR=1960 ms, TE=4.43 ms, TI=1100 ms, FA=8°,
176 slices, FoV=230×173 mm², matrix size=256×192×176, voxel
size=0.9×0.9×0.9 mm³) was also acquired in all subjects. Headmove-
ments were minimized using a vacuum cushion.

The 3 initial scans were discarded to allow for magnetic saturation ef-
fects. Functional volumes were pre-processed and analysed using SPM2
(http://www.fil.ion.ucl.ac.uk/spm/software/spm2/; Wellcome Depart-
ment of Imaging Neuroscience, London, UK). Pre-processing included
the realignment of functional time series, the co-registration of functional
and anatomical data, a spatial normalization to an EPI template conform-
ing to the Montreal Neurological Institute space, and a spatial smoothing
(Gaussian kernel, 8 mm full-width at half-maximum, FWHM).

The analysis of fMRI data, based on a mixed effects model, was con-
ducted in 2 serial steps, accounting respectively for fixed and random
effects. For each subject, changes in brain regional responses were esti-
mated by a model including the responses to the trained sequence and
their linear modulations by performance speed (mean time to perform
a correct sequence by block) and variability (standard deviation of the
residuals with respect to a single power-law fit, per block). Variability
was orthogonalized with respect to speed, to account for potential co-
linearity. Practice blocks were modeled as box cars and convolved
with the canonical hemodynamic response function.Movement param-
eters derived from realignment of the functional volumes were also
included as covariates of no interest. High-pass filteringwas implemen-
ted in the design matrix using a cut-off period of 128 s to remove slow
drifts from the time series. Serial correlations in fMRI signal were esti-
mated using an autoregressive (order 1) plus white noise model and a
restricted maximum likelihood (ReML) algorithm.

Contrasts tested the main effect of practice of the trained sequence
and its linearmodulation by performance speed and variability. Modula-
tion by speed identified regionswhere response amplitude increased (or
decreased) as time to complete a sequence decreased across training.
Modulation by variability identified regions where response amplitude
increased (or decreased) as motor behavior became more consistent
(i.e., less variable) across training. Repeated-measure analyses of vari-
ance (ANOVA) on the fitted BOLD response of areas which activity is
modulated by performance variability were performed with block repe-
tition as within-subjects factor to assess the practice-related changes in
BOLD response during the training session. Planned comparisons were
performed in order to compare the BOLD response between blockswith-
in the training session.

Thefitted BOLD responsesmodulated byperformancewere estimated
to illustrate the temporal dynamics block by block of cerebral responses in
areas showing modulation of activity by performance (Fig. 2, ventral pu-
tamen, Fig. 3, caudate nucleus and precuneus). The fitted BOLD response
represents the interactionbetween theparameter estimates of the regres-
sor of interest (regressor modulated by performance) by the box-car
design convolved by the canonical hemodynamic response function.
The plots presented in Figs. 2 and 3 show the averaged fitted BOLD
response modulated by performance for each block and across subjects.

Finally, psychophysiological interaction (PPI) analyses were com-
puted on all the cerebral areas that showed significant modulation
of activity by performance variability changes (right caudate nucleus,
right motor cortex, bilateral precunei, Tables 2–3 and 2–5). These an-
alyses were done in order to test the functional connectivity of these
areas with the rest of the brain, in proportion to performance variability
changes during training. Significant results were only observed for PPI
analyses on the right caudate nucleus and on the right precuneus, as
reported in Tables 2–4 and 2–6. For PPI analyses, new linear models
were generated at the individual level, using three regressors. One re-
gressor represented the practice of the learned sequence modulated
by performance variability. The second regressor was the activity in
the reference area. The third regressor represented the interaction of in-
terest between the first (psychological) and the second (physiological)
regressors. To build this regressor, the underlying neuronal activity was
first estimated by a parametric empirical Bayes formulation, combined
with the psychological factor and subsequently convolved with the
hemodynamic response function (Gitelman et al., 2003). The design
matrix also included movement parameters. A significant PPI indicated
a change in the regression coefficients (i.e. a change in the strength of
the functional interaction) between any reported brain area and the ref-
erence region (caudate nucleus or precuneus), related to performance
variability changes during training.

These linear contrasts generated statistical parametricmaps [SPM(T)].
These summary statistics images were entered in a second-level analysis,
corresponding to a random effects model, accounting for inter-subject
variance. One-sample t tests characterized (1) the main effect of practice
of the trained sequence and (2) the temporal modulation of brain re-
sponses by performance speed and variability.

The resulting set of voxel values for each contrast constituted a
map of the t statistic [SPM(T)], thresholded at pb0.001 (uncorrected
for multiple comparisons). Statistical inferences were performed at a
threshold of pb0.05 after correction for multiple comparisons over ei-
ther the entire brain volume or over small spherical volumes (10 mm
radius), located in structures of interest.
Coordinates of areas of interest used for spherical small volume corrections

Striatal locations: right caudate nucleus 18 8 20 mm (Albouy et al.,
2008); left ventral putamen −14 10–10 mm (Albouy et al., 2008);
Cerebellar locations: left cerebellar hemisphere−22 −64 −26mm
(Penhune and Doyon, 2005), −26 −44 −42 mm (Penhune and
Doyon, 2002); right cerebellar hemisphere 32 −56 −32 mm, 22 −38
−36 mm, 14 −70 −28 mm (Albouy et al., 2008), 18 −72 −36 mm,
38−66−38 mm (Penhune and Doyon, 2005); Hippocampal locations:
right posterior hippocampus 42 −34 −12 mm (Albouy et al., 2008);
left anterior hippocampus−34 −10 −28 mm (Degonda et al., 2005);
left posterior hippocampus −28 −26 −22 mm, −26 −34 −6 mm;
right anterior hippocampus 16 −14 −28 mm, 26 −24 −10 mm
(Albouy et al., 2008); Motor cortex locations: right sensorimotor cortex
36.2±3.0 −22.3 ±4.6 57.0±6.1 mm (Lehericy et al., 2006); Parietal
cortex locations: right precuneus 16 −66 48 mm (Penhune and
Doyon, 2005); left precuneus −10 −68 24 mm, −14 −72 48 mm
(Penhune and Doyon, 2002); Frontal cortex locations: right superior
frontal cortex 32 54 22 mm (Oishi et al., 2005), 18 40 46 mm, 14 26
54mm, 10 56 26 mm (Penhune and Doyon, 2005); left superior frontal
cortex −14 26 54 mm, −32 14 50 mm (Penhune and Doyon, 2005);
medial prefrontal cortex−6 62 2 mm(Sterpenich et al., 2007); Temporal
cortex locations: ±42 −8 −38 mm (Penhune and Doyon, 2002);
Occipital cortex locations: left occipital cortex −36 −90 −2 mm
(Albouy et al., 2008).

http://www.fil.ion.ucl.ac.uk/spm/software/spm2/
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Fig. 3. Linear modulation of brain responses by performance variability. Functional results are displayed at puncorrectedb0.001 over the mean structural image of all subjects. In the insets,
whiskers represent SEM. CN: Caudate Nucleus, Prec: Precuneus. The plot represents the averaged fitted BOLD response by block (a.u., arbitrary units) modulated by performance variability
across subjects. A — Responses in the caudate nucleus decrease in proportion to performance variability. Note that the dynamics of caudate nucleus activity follows a similar non-linear
dynamics as performance consistency during training, with an increasing recruitment in the first half part of training, a decrease in activity in themiddle of the training session and a second
increasing contribution at the end of training. The functional connectivity between the caudate nucleus and frontal areas decreases in proportion to performance consistency improvement.
B — Responses in bilateral precunei increase in proportion to performance variability. Note that the dynamics of precuneus activity follows a similar non-linear dynamics as performance
variability. The functional connectivity between right precuneus and hippocampo-frontal areas decreases in proportion to performance consistency improvement.
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Results

Population

Four subjects were discarded from the analyses because of large
movements during the acquisition (2 subjects) or because they practiced
a wrong sequence in the scanner (2 subjects). Eventually, 30 subjects
were included for the analyses (mean age=23.3±2.5 years, 15 males
and 15 females).

Behavioral results

Error rates
A repeated-measure ANOVA conducted on the number of errors by

blocks with blocks of training (14 blocks of trained sequence)
as within-subjects factor, did not show significant main effect of blocks
(F(13,364)=1.04, p=0.40), themean number of error remaining stable
and low (1.05±1.32 errors per blocks) throughout training.

Performance speed
A repeated-measure ANOVA conducted on performance speed with

blocks of training as within-subjects factor showed a main effect of
block (F(13,377)=61.57, pb0.0001), the average time to complete a
correct sequence decreasing with practice (Fig. 1, right panel, Mean).

Performance variability
A repeated-measure ANOVA conducted on power law fit residual

variability with block as within-subjects factor showed a main effect
of block (F(13,377)=5.69, pb0.0001), indicating that performance
variability significantly changed across training blocks. As shown in
Fig. 1 (right panel, Std), performance became progressivelymore consis-
tent across blocks (i.e., standard deviation decreased), except during
blocks 5 to 7 duringwhich behavior becomes temporarilymore variable.
This time course is strikingly similar to the change in performance con-
sistency reported for the finger opposition task by Adi-Japha et al.
(2008). Planned comparisons showed that performance variability
during block 2 did not differ significantly from blocks 5 to 7 (Block 2 vs
5, F(1,29)=0.85, p=0.36, Block 2 vs 6, F(1,29)=0.47, p=0.49, Block
2 vs 7, F(1,29)=1.55, p=0.22), indicating that performancewas as var-
iable during these 3 blocks as during early training. The comparison
between block 3 and blocks 5 to 7 did not show any significant difference
(Block 3 vs Blocks 5, 6, 7, F(1,29)=0.29, p=0.58)whereas, by contrast, a
trendwas observed between block 4 and blocks 5 to 7 (Block 4 vs Blocks
5, 6, 7, F(1,29)=3.26, p=0.08) confirming a tendency for a transient
increase in variability at mid-training. In addition, performance variabil-
ity during blocks 5–7 was significantly larger than during blocks 8–10
(Blocks 5, 6, 7 vs 8, 9, 10, F(1,29)=4.78, p=0.03), indicating a significant
lower variability level after the transient increase of variability observed
on blocks 5–7. These changes in performance consistency occurred with-
out concurrent changes in performance speed. Planned comparison did
not indicate any decrease in speed on blocks 5–7 (Fig. 1, right panel,
Mean). Indeed, in contrast to performance variability, performance
speed on block 2 significantly differed from all other blocks including
blocks 5 to 7 (Block 2 vs 5, F(1,29)=45.60, pb0.001, Block 2 vs 6,
F(1,29)=29.57, pb0.001, Block 2 vs 7, F(1,29)=66.90, pb0.001),
indicating that the dynamics of performance variability did not
parallel the monotonic decrease in speed during training.

Type of errors
A repeated-measure ANOVA conducted on number of incorrect trip-

lets produced during trainingwith block and error type (within-sequence
or between-sequence incorrect triplets) aswithin-subjects factor showed
a main effect of error type (F(1,29)=21.37, pb0.001) indicating that
subjectsmademorebetween-sequence thanwithin-sequence errors dur-
ing training. No significant block (F(13,377)=1.22, p=0.26) or error
type by block effect (F(13,377)=0.97, p=0.47)was observed, indicating
that number of errors globally remained stable during training whatever
their type (see error rates paragraph). However, planned comparisons
indicated a significant increase in within-sequence errors from
early- to mid-training (within-sequence errors, blocks 1 to 4 vs 5
to 8, F(1,29)=5.21, p=0.02) that was not observed in between-
sequence errors (between-sequence errors, blocks 1 to 4 vs 5 to 8,
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Table 2
Functional results for the practice of the trained sequence modulated by performance.
Significant brain responses after correction over the entire volume (*) or over small
volume of interest (svc) are reported here.

Area x mm ymm z mm Z psvc

1- Cerebral areas where responses decrease in proportion to speed
No significant responses

2- Cerebral areas where responses increase in proportion to speed
Left occipital cortex −22 −104 14 5.13 0.007*
Right occipital cortex 16 −102 6 6.23 0.017*
Right ventral putamen 16 14 −10 4.79 0.03*
Left ventral putamen −18 12 −12 4.45 0.000
Left cerebellar lobule V/VI −18 −58 −18 4.25 0.000
Right cerebellar lobule VI 28 −56 −24 3.52 0.012
Right sensorimotor cortex 36 −24 64 3.30 0.022

3- Cerebral areas where responses increase in proportion to performance variability
decrease

Right caudate nucleus 22 12 18 3.64 0.004
Right motor cortex 10 −24 56 3.98 0.003

4- Psychophysiological interaction with the right caudate nucleus modulated by
performance variability increase

Right superior frontal gyrus 22 38 54 4.05 0.003
18 34 58 3.25 0.03

Left superior frontal gyrus −20 26 62 3.18 0.036
−34 18 58 3.39 0.021

5- Cerebral areas where responses are proportional to performance variability
Right precuneus 14 −68 40 3.31 0.022
Left precuneus −14 −70 34 3.15 0.042

−8 −78 50 3.20 0.030

6- Psychophysiological interaction with the right precuneus modulated by performance
variability increase

Left anterior hippocampus −36 −18 −30 4.14 0.002
Right anterior hippocampus 22 −20 −18 3.48 0.016
Left posterior hippocampus −22 −34 −4 3.43 0.019
Right cerebellar crus i 46 −68 −36 4.27 0.001
Right cerebellar lobule VI 30 −38 −44 3.54 0.014

20 −72 −30 3.69 0.009
Left cerebellar lobule vi −22 −56 −20 3.23 0.033
Left cerebellar lobule VIIIb −26 −38 −50 3.98 0.003
Left occipital cortex −30 −88 4 3.96 0.004
Right superior frontal gyrus 8 26 62 3.42 0.019

4 58 32 3.74 0.007
Right medial prefrontal cortex 12 62 −2 3.74 0.008

0 62 0 3.79 0.006
Left middle temporal gyrus −48 −8 −30 4.00 0.003
Right middle temporal gyrus 50 −4 −42 3.51 0.015
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F(1,29)=0.03, p=0.86). In contrast, between-sequence errors
tended to increase between mid- and late-training (between-
sequence errors, blocks 7 to 10 vs 11 to 14, F(1,29)=3.01,
p=0.09) whereas within-sequence errors remained stable (with-
in-sequence errors, blocks 7 to 10 vs 11 to 14, F(1,29)=0.08,
p=0.76).

These results suggest that the increase in variability of performance
at mid-training is accompanied by an increase in within-sequence
errors. At the end of training, when variability is lower, an increase in
between-sequence errors is observed.

Brain imaging data

Practice of the finger motor sequence recruited a distributed net-
work including cerebellum, basal ganglia and cortical areas, as reported
in Table 1.

During training, two behavioral parameters were considered as po-
tentially important modulators of brain responses in brain imaging an-
alyses: performance speed (Fig. 1, Mean) and variability (Fig. 1, Std).
Whereas performance speed measures the progressive acceleration in
movement execution and co-articulation, performance variability pro-
gressively decreases as performance becomes more consistent within
a block.

Modulation of cerebral activity by performance speed
During training, responses increased in proportion to performance

speed in the cerebellar hemispheres, bilaterally in the ventral putamen,
the occipital cortex and in the right sensorimotor cortex (Fig. 2). In con-
trast, no significant responses decreased in proportion to performance
speed (Tables 2–1 and 2–2).

Modulation of cerebral activity by performance variability
During training, amplitude of the cerebral responses increased in

the right caudate nucleus, as performance became more consistent
(i.e., as variability of the residuals with respect to the power law fit
decreased, Table 2–3). The time course of responses in this area fol-
lowed a non-linear dynamics which globally mirrored the evolution
of performance variability, with a significant increase in activity
through the session (F(13,377)=2.47, p=0.003) and a decrease in
activity at mid-training that tended to differ from the level of activa-
tion at the end of training (Blocks 5, 6, 7 vs 12, 13, 14, F(1,29)=3.07,
p=0.09; Fig. 3A, left panel). Furthermore, functional connectivity an-
alyses revealed that the activity in the right caudate nucleus was
coupled with a set of frontal areas, in proportion to performance var-
iability. In other words, the strength of the functional connectivity be-
tween caudate and this set of frontal areas was modulated by
performance variability. This result implies that the striato-frontal
interaction was strong when performance was variable, diminished
in proportion to the decrease in performance variability and was
transiently strengthened at mid-training when performance was
Table 1
Functional results for the practice of the trained sequence. Only significant brain
responses after correction over the entire volume are reported.

Area x mm ymm z mm Z p

Right motor cortex 36 −18 62 Inf 0.000
Left motor cortex −50 −24 48 6.75 0.000

−32 −6 68 6.55 0.000
−60 6 28 9.53 0.000

Left cerebellar lobule V/VI −18 −50 −26 Inf 0.000
−4 −58 −12 7.69 0.000

Right cerebellar lobule V/VI 24 −60 −24 7.43 0.000
Right globus pallidus 16 −6 −8 5.20 0.005
Left globus pallidus −16 −8 −4 4.87 0.021
Left intraparietal sulcus −26 −52 68 5.44 0.002
Right intraparietal sulcus 32 −50 72 5.82 0.000
Cingulate motor area 2 2 56 6.20 0.000
more variable (Table 2–4). It is to note that the caudate nucleus and
its associated circuit differ in their response to movement variability
in the sense that the caudate nucleus activity increases as perfor-
mance becomes consistent whereas the interaction with its associat-
ed circuit decreases as performance becomes more consistent.

In contrast, amplitude of the cerebral responses decreased as per-
formance became more consistent (i.e., as variability of residuals
with respect to the power law fit decreased) in bilateral precunei
(Fig. 3B, left panel, Tables 2–5). These responses generally paralleled
performance variability, with a decrease across practice blocks except
at mid-training during which they transiently rose (BOLD response
during blocks 5 and 7 was significantly larger than during blocks
8 and 9, F(1,29)=4.40, p=0.04; Fig. 3B, left panel). Note that the in-
crease in BOLD response observed on block 12 did not significantly
differ from block 11 (F(1,29)=1.03, p=0.31) and was paralleled by
a non significant change in performance variability (Fig. 1, Right
panel, Std), suggesting that these late changes could be due to non
significant fluctuations. In parallel, functional connectivity analyses
revealed that the activity in the right precuneus was related to re-
sponses in a network involving bilateral hippocampus and frontal,
temporal, occipital and cerebellar areas, in proportion to performance
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variability. In other words, the strength of the correlation between ac-
tivity in the precuneus and these areas was modulated by performance
variability. The functional cooperation between these areas was strong
when performance was variable, decreased in parallel to the decrease
in variability and was particularly enhanced at mid-training when per-
formance was temporarily variable (Table 2–6). It is to note that, unlike
the caudate nucleus, the precuneus and its associated circuit have sim-
ilar responses to movement variability in the sense that the precuneus
activity and the interaction with its associated circuit decrease as per-
formance becomes more consistent.

Discussion

In this study, we aimed at characterizing the neural correlates of per-
formance speed and consistency during a short (about 10 min) motor
sequence training. Behavioral data confirm that performance, although
increasingly consistent across training, becomes transiently more vari-
able at mid-training. Neuroimaging data show that performance speed
relates to the activity in cerebello-cortical and striato-cortical networks.
Our main finding is that task-related responses increase in the caudate
nucleus and decrease in precuneus as performance becomes more
consistent. Moreover, high variability in performance is associated with
a tight cooperation between precuneus, hippocampus and frontal areas
on the one hand and between caudate nucleus and frontal areas on the
other hand. We proposed that these dynamic large-scale interactions
allow the implementation of preferential performancemodes, which en-
sure the reproducibility of sequential motor output during training.

Brain responses modulated by speed

During the initial practice of finger sequence learning, responses in
striatum, cerebellum and sensorimotor cortex increased in proportion
to the speeding of performance. Activity in these brain areas have al-
ready been described in the literature to be involved either in motor se-
quence learning proper or in non specific motor execution (Desmurget
and Turner, 2010; Orban et al., 2010; Seidler et al., 2002, 2005). Indeed,
numerous neuroimaging studies exploring cerebral correlates of motor
sequence learning during initial or extended training, using speed,
accuracy or even asynchrony as motor performance, reported increases
in activity in themotor cortex duringmotor sequence learning (Karni et
al., 1995, 1998; Pascual-Leone et al., 1994; Penhune and Doyon, 2002,
2005). These studies showed experience-specific reorganization in the
motor cortex during sequence learning but it should be noted that a
recent study proposes that the motor cortex would participate in the
implementation of movement execution rather than in the sequence
learning proper (Orban et al., 2010).

The progressive recruitment of the striatum has already been ob-
served during both finger (Doyon et al., 1996; Jueptner et al., 1997;
Lehericy et al., 2005; Steele and Penhune, 2010) and ocular motor
sequence learnings (Albouy et al., 2008). Responses related to the
progressive speeding of performance were localized in the ventral
putamen, which potentially corresponds to the caudo-ventral senso-
rimotor part of the striatum. Indeed, the latter was previously associ-
ated with fast execution of over learned sequences (Lehericy et al.,
2005). Importantly, striatal activity has been specifically related to
sequence learning rather than to an unspecific speeding of movement
execution (Orban et al., 2010; Seidler et al., 2005) but these findings
have recently been challenged by a pharmacological inactivation
study in monkeys (Desmurget and Turner, 2010).

A decrease in cerebellar responses is usually reported during motor
learning as accuracy increases and as corrections required to achieve
optimal behavior are less demanding (Doyon et al., 2002; Lehericy et
al., 2005; Penhune and Doyon, 2002, 2005). However, a recent study
showed that cerebellar responses could globally decrease with days of
practice but locally increase in proportion to performance enhancement
on a motor sequence task (Steele and Penhune, 2010). Similarly, our
results show a progressive increase in activity in different cerebellar re-
gions as performance improves, as described in Orban et al. (2010).
These specific cerebellar structures have been implicated in bothmove-
ment implementation and acquisition of sequential knowledge (Orban
et al., 2010; Seidler et al., 2002).

Importantly, unlike the studies reported above (Desmurget and
Turner, 2010; Orban et al., 2010; Seidler et al., 2002, 2005), our design
did not allow to tease apart improvement of simple movement execu-
tion from sequence learning proper. However, the impact of a change
in motor output on the observed modifications in brain responses
was limited by the fixed number of key presses per block.

Brain responses modulated by performance variability

The data confirm that the variability in performance does not pro-
gress monotonically during the initial training to a motor sequence.
After a fast and substantial decrease during thefirst part of training, per-
formance variability transiently increases before it further declines at
the end of training (Adi-Japha et al., 2008).

Functional MRI data suggest that performance consistency is associ-
atedwith a decrease in precuneus activity and an increase in caudate re-
sponse. The activity in the precuneuswould support novice performance
by deploying controlled processes such as attention, working memory
and response monitoring thereby implementing flexible and adaptive
performance strategies at the expense of a slow and effortful behavioral
output (Chein and Schneider, 2005). The large variability in performance
at the beginning of training presumably relates to such identification of
available performance modes and their adaptation to the actual experi-
mental conditions under controlled cortical processes (Chein and
Schneider, 2005; Thelen and Smith, 1993). Large responses in precuneus
have already been observed during the early stages of learning (Penhune
and Doyon, 2002, 2005) when performance drastically improves (Oishi
et al., 2005). The activity in the precuneus linearly increases with
motor complexity (Sadato et al., 1996) which suggests its role in the co-
ordination of complex motor behavior (Cavanna and Trimble, 2006).
Due to its implication in motor imagery (Cavanna and Trimble, 2006),
the precuneus might also facilitate the storage of motor sequences in
spatial workingmemory and allow the production of ongoing sequential
movement with reference to that of buffered memory (Sadato et al.,
1996).

The progressive involvement of the striatumwhich parallels perfor-
mance consistency would instantiate a skilled automatic performance
strategy (Hikosaka et al., 1999).Whereas the implementation of speed-
ing in performance seems to rely on the caudo-ventral sensorimotor
part of the striatum (ventral putamen described above), the establish-
ment of reproducible behavior recruits the rostro-dorsal associative
part of the striatum (caudate nucleus). Indeed, the caudate nucleus
belongs to the associative part of motor striato-cortical loops and has
been described to be recruited during the early phases of learning
(Lehericy et al., 2005). At a higher level, the caudate nucleus has been
described to play an essential role for associative learning strategies
(Moses et al., 2010). Responses in the caudate nucleus were character-
ized by a non linear time course which significantly regressed with the
specific dynamics of performance consistency. This finding is consistent
with the view that the caudate nucleus is related to the implementation
of preferential performance modes which ensure the reproducibility of
sequential motor output during initial training, and are further opti-
mized through practice (Rickard, 1999).

Functional integration of these networks for the implementation of consistent
motor behavior

Functional MRI data suggest that the consistency in performance
is related to a decreased coupling within two distinct systems: a
precuneus/hippocampus/prefrontal network and a lateral prefron-
tal/striatum network.
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The interaction between the precuneus, the hippocampus and
prefrontal areas would support novice performance under con-
trolled processes, as mentioned above (Chein and Schneider, 2005).
More particularly, the precuneus was functionally connected to the
medial prefrontal cortex and to lateral prefrontal areas (BA8-9)
which correspond to the principal extraparietal corticocortical con-
nections of the precuneus with the frontal lobes (Cavanna and
Trimble, 2006). The prefrontal cortex is believed to code for an ab-
stract representation of the temporal order in a sequence which is
rehearsed during learning (Ashe et al., 2006). In addition, the pre-
frontal cortex would participate in the control of strategic processes
through goal selection processes or sequence monitoring in working
memory (Robertson et al., 2001; Schendan et al., 2003; Willingham
et al., 2002). A decrease in prefrontal activity is usually observed
when performance is automated, i.e. when there is a decrease in
the need for consciously regulating and self-monitoring the ongoing
finger movements (Fischer et al., 2005; Jenkins et al., 1994; Jueptner
et al., 1997; Willingham et al., 2002).

The hippocampal responses recorded duringmotor sequence learn-
ing are usually believed to reflect the ability of the hippocampus to as-
sociate temporally discontiguous but structured information (Albouy
et al., 2008; Schendan et al., 2003). The association of consecutive finger
movements would account for the recruitment of the hippocampus
during the early phase of motor sequence learning (Albouy et al.,
2008; Schendan et al., 2003). Alternatively, given the role of the hippo-
campus in spatial processing (Burgess, 2008), hippocampal involve-
ment in motor sequence learning might reflect the inherently spatial
nature of the task. It is tempting to speculate that the hippocampus
participates in the creation of an allocentric map of motor sequences
during initial training, i.e. the organization of finger movements in
space, irrespective of the fingers actually involved in its execution.
This mechanism would be favored by the precuneus (Byrne et al.,
2007), that would participate in the encoding of egocentric representa-
tion of the task andwould, by its connectivity with themedial temporal
lobe, support the translation between egocentric and allocentric repre-
sentations of the task (Burgess, 2008).

The interaction observed between striatum and frontal cortex [lateral
premotor cortex (BA6) and dorso-lateral prefrontal cortex (BA9)] is tigh-
ter when performance is highly variable. This network has already been
described as the associative portion of the motor striato-cortical loops
(Lehericy et al., 2005). Indeed, the anterior part of the striatum is
known to be anatomically connected with the premotor and dorso-
lateral prefrontal cortices (Lehericy et al., 2004) and these circuits
would be involved in the early stages of motor sequence learning
(Lehericy et al., 2005). Learning is usually thought to be associated
with a progressive shift from the cortical control system to the automatic
striatal system, resulting in a systematic and consistent decrease in activ-
ity in the controlled network with practice (Chein and Schneider, 2005).
In keeping with this view, strong fronto-striatal interactions when per-
formance is highly variable, during early learning, would materialize
the influence of sequence representations elaborated in cortical circuits
upon striatal representations. A reproducible motor behavior would be
associated with a decrease of cortical weight upon the striatum.

The temporary overriding of controlled process implemented in cor-
tical networks over automatic strategies supported by the striatum po-
tentially explains the transient increase in performance variability and
within-sequence error rates arising atmid-training. Our results on incor-
rect triplets concord with those of Adi-Japha et al. (2008) and show a
shift in error type from within to between-sequence errors between
mid- and late- training. These findings suggest that a change in strategy
occurred at mid-training and that these qualitative behavioral changes
reflect the adoption of a final coherent and stable representation of the
sequence.

In consequence, the current study provides an objective evidence
that the frontal cortex plays an important role in the balance between
exploitative and exploratory behaviors (Grafton, 2008). Early during
learning and at mid-training, the cortical control of motor behavior
at the expense of automaticity would involve interactions of the pre-
frontal cortex with on the one hand the precuneus and the hippocam-
pus, and on the other hand, the striatum. These interactions would
constitute a crucial process in sequence acquisition by which various
performance modes are serially tried before the most effective mode
is set to represent the whole sequence of movements in motor mem-
ory (Adi-Japha et al., 2008). The final coherent representation specific
to the well-mastered sequence is associated with a decrease in the in-
teractions within both the precuneus/hippocampus/frontal network
and striato-frontal circuits.

Conclusions

Motor sequence acquisition implies the recruitment of distributed
brain networks. The striatum would implement stereotyped perfor-
mance strategies which promote performance consistency whereas
fronto-parietal areas would serially elaborate various performance
modes, among which an allocentric representation of the motor se-
quence could be mapped by the hippocampus. Future research should
characterize the potential impact of these early representations on
the subsequent consolidation of motor sequence memory.
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