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tiens à lui adresser ma reconnaissance pour la confiance et le soutien dont il a fait preuve
à mon égard tout au long de cette thèse afin de m’assurer les meilleures conditions de
travail.

Je remercie aussi les membres du jury pour l’attention qu’ils porteront à ce manuscrit.
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â the estimation of an unknown variable a

a a column vector



xiv NOMENCLATURE

a(i) the ith element of a vector a

{ a }ji sequence of variable ak for k = i to j

|a| the absolute value of a variable a

A a rectangular matrix

A(i, j) the ith element of the jth column from the matrix A

|A| the determinant of matrix A provided that A is a square matrix

A−1 the inverse of a matrix A provided that A is a square matrix

AT the transpose of a matrix A
√
A an upper triangular matrix resulting from the Cholesky factorization of the matrix

A defined by chol(A) =
√
A
T√

A

arg min
x
{f(x)} value of x which minimizes f(x)

arg max
x
{f(x)} value of x which maximizes f(x)

diag (A) a vector made of the diagonal elements of a matrix A

min {a, b} a if a ≤ b and b if b < a

max {a, b} a if a ≥ b and b if b > a

trace (A) the sum of the diagonal elements of a square matrix A

Probabilistic notations

E(a) expected value of a scalar a whose value results from the realization of a random
process with pdf p(a).

E(a|b) conditional expected value of a scalar a whose value results from the realization
of a random process with conditional pdf p(a| b).

p(a) probability density function of a scalar a whose value results from the realization
of a random process.

p(a, b) joint probability density function of two scalars a and b whose value results from
the realization of two random processes

p(a| b) conditional probability density function of two scalars a and b whose value results
from the realization of two random processes when b takes a known, determinis-
tic, value

σa standard deviation of a scalar a whose value results from the realization of a random



xv

process

σ2
a variance of a scalar a whose value results from the realization of a random process



xvi NOMENCLATURE



Chapter 1

Introduction

This introductory chapter establishes some of the most significant opera-
tions related to turbine engine maintenance. The replacement of sched-
uled maintenance by on-condition maintenance for economic reasons is
leading us to performance monitoring which is intended to detect and
isolate engine faults at the earliest possible stage.
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2 CHAPTER 1. INTRODUCTION

1.1 Maintenance of turbine engines

With the first military turbojets that appeared after the second world war, the cost of
maintenance was not an important issue. By that time, the maintenance planning was
limited to scheduled maintenance specified by the engine lifetime or the time between
overhaul (T.B.O.) fixed by the engine manufacturer. When the engine was reaching the
T.B.O., it was removed from the aircraft for overhaul, namely a complete disassembly
into main subassemblies or modules that were sent for individual inspection in specific
facilities. After replacement of non-repairable parts and process of the repairable ones
the engine was tested for acceptance in a ground test cell and returned to service.

With the liberalization of the commercial air transport market the last thirty years it
became more and more vital for airline companies to hold a reliable and cost effective
engine operation. In the meantime, turbine engines for aircraft propulsion steadily became
more complex. The replacement of single shaft engines by two-shaft and three-shaft mixed
flow turbofans (figure 1.1) significantly increased the number of components. Additionally,
variable stator compressors, found for many years only on General Electric engines, are
now used virtually on all high performance engines to cope with steadily rising pressure
ratios. Blow-off valves are also frequently used on starting or when operating at low power
(see [Mattingly, 1996, Rolls-Royce, 1999, Cohen et al., 1998]).

Figure 1.1: Cut of a BMW Rolls-Royce BR710 mixed flow turbofan engine.

As a consequence, the maintenance planning became one of the key factors to keep a close
eye on in order to improve the aircraft availability. In that scope, engine manufacturers
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developed the so-called modular design (figure 1.2) which allowed the replacement of the
T.B.O. method by the on-wing maintenance.

fan frame

hpc rotor

combustor casing
hpt nozzle

lpt frame

hpt rotor

lpt shaft

lpt

lpt nozzle

combustion liner

transfer gearbox

hpc stator

accessory
gearbox

bearing
support

fan and
booster

Figure 1.2: Modular design of the General-Electric Snecma CFM56-7 turbofan engine

Indeed, while the T.B.O. is mainly determined by one or two subassemblies, the other
modules may be healthy and fit to continue in service for a much longer period of time.
Basically it means that a life is no longer specified for the complete engine but only for
certain parts of the engine. Each module is replaced by a similar module when it reaches
its time limit (figure 1.3) and the engine returns to service. The module is returned to
the manufacturer for replacement, repair or complete overhaul.

handling rail
aircraft wing

wing pylon

Figure 1.3: On-wing maintenance on a modular turbofan engine

The replacement of the T.B.O. method by the on-wing maintenance effectively improved
the engine availability and lowered maintenance costs by decreasing the time the engine
is un-mounted from the aircraft. However, apart from the scheduled maintenance, there
exist other works necessitated by some events not related to specified time limits. This
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is for example the case with a bird ingestion, a strike by lightning or a heavy landing.
The problem arising from such unpredictable events resides in that there is no overhaul
planning indicating when the engine will be removed from the aircraft for unscheduled
maintenance. Therefore, no provision is made for a spare engine to be available and
finding an engine is then likely to result in additional costs.

As highlighted in [Rajamani et al., 2004], an improved schedule of the maintenance ac-
tions can be brought by the application of condition based maintenance (CBM) where the
actions are decided based on the actual health condition of the engine rather than on the
sole basis of the number of operating hours. Of course, CBM is only achievable provided
that the health report of the engine is accurately known which involves the recording and
the analysis of engine performances over a period of time. Based on this trend analy-
sis, significant changes in the mechanical conditions of the engine can be detected which
provides a means of deciding which maintenance action has to be carried out. CBM is
intended to improve engine operations (longer lifetime and better availability) but also
to lower the cost of maintenance through a better prediction of the maintenance actions.
This context explains the stronger emphasis on turbine engine performance monitoring
given by engine manufacturers the last years.

1.2 Faults and degradations in turbine engines

In the framework of performance monitoring applied to condition based maintenance,
degradations of interest are those that are neither directly measurable nor detectable
without a deep inspection of the engine. Therefore, these degradations must be detected
through the observation and the analysis of observable performance parameters. Degra-
dations are split up into progressive wear due to normal operations and damages due to
accidental events. While the former vary very slowly, the latter are short events involving
a brutal drift in engine performances.

1.2.1 Progressive wear

When the engine is deteriorating during normal operation, the resulting performance
drifts are slow and arise from few predictable sources. The major causes of degradations
are:

• the erosion or rubbing wear, represented in figure 1.4, which is caused by the friction
of small particles like sand, dust, ashes, . . . suspended in the air,

• the corrosion of engine components which is promoted by high temperatures and
therefore especially impacts hot parts of the engine like turbines and combustion
chambers,

• the fouling which is the accumulation of small particles on the blade and other
surfaces of the engine causing plugged nozzle and reduced flow capacity,
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Figure 1.4: Blade erosion

• the mechanical wear of rotating parts inducing energy losses and vibrations.

However, even if the wears have a continuous character, they do not evolve in a deter-
ministic way and, depending on the environment in which the engine is operating, one
specific type of degradation may prevail on the others. For example, if an aircraft oper-
ates near the sea or in the desert or in highly polluted area, the involved degradations
will not have the same character and the effect on the performances will be quite differ-
ent. All these degradations together with their effects on turbine engine performances are
not described herein and the interested reader is referred to [AGARD, 1994a] for a more
complete information.

1.2.2 Accidental events

Accidental events may be of many different types but some of the most common are hot
starts that often lead to turbine overheatings (fig. 1.6), heavy landings, foreign object
damages like birds or blown tires (fig. 1.5), strikes by lightning, surges, etc . . .

Figure 1.5: Fan blade damaged by a bird
ingestion.

Figure 1.6: Overheated turbine blades
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The main characteristic of accidental events resides in their unpredictable character which
has a dramatic effect on the maintenance planning. This influence is shown by the small
example represented in figure 1.7. It represents a performance parameter (for instance
the EGT margin, namely the difference between the nominal and the actual exhaust gas
temperature) as a function of the number of operating hours. A scheduled maintenance is
forecasted based on the wear of a “mean” engine (dash-dot line). However, if an accidental
event (e.g. FOD) occurs, the EGT margin drops (the actual engine performance is drawn
in plain line) and the actual performance curve crosses an alarm threshold level. When a
performance test is carried out on the ground, this results in an unscheduled maintenance
earlier than it was previously expected. As mentioned in the preceding section, this
generates additional costs and results in an immobilization of the engine.

EG
T

  m
ar

gi
n

number of operating hours

accidental event
(e.g. FOD)

predicted wear
scheduled

maintenance

alarm
threshold

unscheduled
maintenance

Figure 1.7: Profile of an engine deterioration with time in terms of exhaust gas tempera-
ture (EGT) margin.

1.3 From ground testing to on-board monitoring

The checking of the correct performance and the mechanical integrity of a turbine engine
is done through the measurement of some performance parameters. The set of available
performance parameters depends on the type and the mission of the engine but they may
be classified into two main categories: engine instruments used to monitor the operation
of the engine and special devices designed to detect indications of trouble which may not
be revealed by the engine instruments.

Engine instruments convey vital information on rotational spool speeds, engine pressure
ratio (EPR) and exhaust gas temperature (EGT). Fuel flow as well as oil quantity, pres-
sure and temperature indicators are also available on board. For modern fast running
turbine engines, unbalance and vibrations resulting from failure or blade loss may also
be monitored during engine operation. However as actual sensors remain intrusive, their
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integration is always limited by cost, weight or other constraints due to engine operation
and aircraft turbine engine special instrumentation is usually kept to a minimum.

In the context of scheduled maintenance, two test configurations are found. For on-wing
maintenance, the test is carried out while keeping the engine installed in the aircraft (fig.
1.8). While this configuration is sufficient to decide whether the engine is acceptable or
not, it turns out to be insufficient to achieve a diagnostic (detect and isolate an engine
fault) because of the lack of engine instruments available on-board. To overcome the lack

Figure 1.8: F14 fighter aircraft at perfor-
mance test.

Figure 1.9: F100-PW100 military engine at
test bench for overhaul.

of engine instruments, a second configuration is used where the engine is unmounted from
the aircraft for testing in a specific ground test cell (see fig. 1.9). The most striking
argument which justifies the recourse to specific test cells is the availability of the thrust
measurement which is the most meaningfull quantity of interest for an aircraft turbine
engine and which cannot be measured on-board because it would require the engine to
be freely-mounted. Depending on the situations, other instruments may also be installed
(e.g. pressures, temperatures, air mass flow rates,. . . ) increasing the information available
for the diagnostic.

Even if ground testing is well adapted to the solving of the diagnosis problem, it must
be kept to a minimum for economic reasons and for noise problems. It is often only
carried out after engine installation or for overhaul which is not enough to provide an
early detection of engine faults. With the advent of condition-based maintenance and the
steadily rising emphasis on the underlying performance assessment, engine manufacturers
are encouraged to conduct researches on on-board performance monitoring whose purpose
is to detect, isolate and quantify, at the earliest possible stage, a specific component
performance degradation.
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1.4 Problems inherent to on-board performance mon-

itoring

The diagnosis problem is not new for turbine engines and has been addressed for nearly
thirty years. Basically, the diagnosis problem can be illustrated by the small example
represented in figure 1.10(a). The (hypothetical) diagnosis rule associates a discrete engine
health condition of the kind “healthy-fault A-fault B” to each couple of measurements y(1)
and y(2). The aim of diagnosis is to determine whether a maintenance must be carried
out or not and which action must be done. In the case of a turbine engine, y(1) and y(2)
can be any of the engine instruments available at test bench. The health condition of
the engine can be assessed by reporting the measurement readings y(1) and y(2) in the
diagram which leads, in the situation depicted in figure 1.10(a), to diagnose the fault A.
This ideal deterministic situation is unfortunately not encountered in practice due to the
presence of measurement inaccuracies which hide the relevant information about engine
faults into a measurement noise (i.e. random error) or into sensor biases (i.e systematic
errors). Consequently, the deterministic decision rule becomes fuzzy which is represented
in figure 1.10(b) by a hatched area embedding all the possible solutions associated to the
measurement readings y(1) and y(2).

   fault A

 fault B

healthy

y(2)

y(1)

y(2)

y(1)

(a) Without any measurement uncertain-
ties.

   fault A

 fault B

healthy

y(2)

y(1)

y(2)

y(1)

(b) With measurement uncertainties

Figure 1.10: Example of a diagnosis problem.

Many methods are found in the turbine engine literature which are able to solve the di-
agnosis problem represented in figure 1.10(b). However, most of these techniques have
been developed for ground testing in specific test cells where the number of available mea-
surements is generally favorable to the diagnosis problem. In the framework of on-board
performance monitoring, the lack of an exhaustive instrumentation on-board generally
prevents us from having a complete description of the engine faults of interest. Therefore,
even though it is desirable from an economical point of view, the extension of test bench
diagnosis methods to the early detection of an engine fault based only on the engine
devices available on-board is not straightforward in practice.



1.4. PROBLEMS INHERENT TO ON-BOARD PERFORMANCE MONITORING 9

The effect of the lack of a complete description of the engine faults is illustrated in figure
1.11(a) where only one measurement is available (say y(2)) instead of the two previously
available. Even if no measurement noise contaminates the measurement readings, no
deterministic solution can be drawn from the diagnosis rule. From the point of view of an
external observer having only access to the measurement reading y(2), all the situations
located on the dashed line are equally probable. If, based on this information, it is
decided to take the corrective action corresponding to the fault A, there exist a number of
situations, located in the region ‘B’, where the engine needs the action B. Conversely, if the
fault B is considered, there exists a number of situations, located in the region ‘A’, where
the engine needs the action A. In a predictive maintenance purpose, such a result does not
really help the airline company to take the right decision and the resulting maintenance
planning is not significantly better. In the presence of measurement uncertainties (fig.
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(a) Without measurement uncertainties

   fault A

 
  fault B

signal

un
ce

rt
ai

nt
y

A
B

healthy

y(2)

y(1)

y(2)

(b) With measurement noise

Figure 1.11: Influence of the lack of a complete fault description on the diagnosis efficiency.

1.11(b)), the number of possible wrong detections increases (hatched areas ‘A’ and ‘B’)
which often leads to wrong decisions. The level of wrong decisions related to most of the
existing methods used now by engine manufacturers explains why they are little used in
a condition-based maintenance purpose (see [Doel, 2002] for a discussion).

It is not our purpose here to enter into the details of the economical consequences of “no
detections” or ”false alarms” and the interested reader is referred to [DePold et al., 2004]
for such an evaluation in the case of turbine engines. At this point, the only thing of
interest is to underline the fact that the lack of a complete and reliable information involves
an uncertain diagnosis. To overcome these uncertainties and increase the reliability of the
resulting decision making, the diagnosis must be derived by gathering several measurement
samples. Doing so, we improve our knowledge of the system under study by crosschecking
different informations.

It is also interesting to note that the areas ‘A’ and ‘B’ in figure 1.11(b) decrease when the
signal range of interest increases (namely when the faults of interest have an important
magnitude). This explains why, in general, it is often easier to detect large faults (e.g.
efficiency drops of 5%) than small faults (e.g. efficiency drops of 0.5%). For instance, if
one wants to quantify a developing engine fault such as in performance monitoring, the
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signal of interest will be quite small and the number of data needed to reach a reliable
solution will be large. Conversely, if one is only interested in a qualitative diagnosis of the
kind “healthy-faulty” (classification approach), the signal of interest can be larger and
the diagnosis is less sensitive to the measurement noise.

In the framework of performance monitoring, we are interested in detecting developing
problems characterized by small signal amplitudes where the information we are looking
for is likely to be hidden by the measurement noise. Depending on the noise level and
the lack of sensors, the number of data to be gathered may become significant (several
thousands) and the way they are processed turns out to be a key issue in the applicability
of a diagnosis tool.

Differences between the available diagnosis methods mainly reside in the way this large
amount of data is processed. Two approaches are found: batch data processing and
sequential data processing. In the former case, the data are collected and stored in a
database in order to be processed afterwards all at once (by batch). In the latter case,
the health condition of the engine is updated when new data are available without the
need to store any database. The advantage of a sequential processing resides in that the
diagnosis report is available in real-time allowing the user to forecast the maintenance
actions on-line.

1.5 Research framework and original contributions

The research framework in which this PhD thesis takes place is the development of an
on-board performance monitoring tool intended to assess the health condition of each
component of a turbine engine based on gas path measurements available on-board. This
approach thus belongs to the “gas path analysis” (GPA) which has been the subject
of many publications in the scientific literature (see [Volponi, 2003b] for a thorough re-
view of gas path analysis methods in turbine engines). Example applications of such an
approach for turbine engines can be found in [Navez, 1993, Gomez and Lendasse, 2000,
Grodent and Navez, 2001, Aretakis et al., 2003, Volponi, 2003b].

However, the aforementioned approaches use a batch data processing which prevents any
on-line performance assessment from being achievable. Moreover, they also rely on the
double assumption that the process under study achieves steady-state conditions (i.e.
when all initial transient or fluctuating conditions have damped out) and that the health
condition of the engine does not vary during the database collection. The purpose of the
present document is to release these three assumptions in order to improve the application
range of the performance diagnosis tool. The procedure followed in this PhD thesis is
detailed hereafter in four stages where certain original aspects are also highlighted.
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A more robust sequential health parameter estimation

While not new (see for example [Provost, 2003]), the sequential data processing has re-
ceived up to now a limited attention in the case of turbine engine diagnosis. The sequential
health parameter estimation presented further in chapter 4 must be considered as the ex-
tension of the batch diagnosis tool already developed by the industrial partner Techspace
Aero in [Grodent and Navez, 2001]. The present approach is original in the fact that it
attempts to lower the sensitivity of the diagnosis method with respect to sensor faults
through the use of a robust estimation technique which replaces the Gaussian measure-
ment noise with the so-called δ-contaminated function presented in [Huber, 1992].

Indeed, a classical way to deal with sensor faults and impulsive noise is to put a sensor
fault validation and/or detection procedure in front of the diagnosis tool (examples of sen-
sor fault detection procedures can be found in [Healy et al., 1998, Doke and Singh, 1999,
Lu and Hsu, 2001, Dewallef and Léonard, 2001a, Romessis and Mathioudakis, 2002, Surender and Ganguli, 2004]).
Even if such combinations may also be effective, they result in more complicated diag-
nosis tools which may significantly increase the computational load. One of the scope of
the present approach is to derive a more robust sequential health parameter estimation
method which is simple, easy to implement and without too much compromise to the
computational load.

Time-varying health conditions

In the vast majority of cases, batch diagnosis methods developed for test bench conditions
rely on the assumption that the health condition of the engine is constant. In order
to be applicable to on-board performance monitoring, batch methods consider the time
variation of the health conditions as a piece-wise constant function such that each batch
of data is characterized by a constant health condition. Hence, the whole time variation
is represented by placing the results of all batches of data side by side (see for example
[Grodent and Navez, 2001, Kamboukos et al., 2002]).

In a sequential data processing, few applications have been reported in the turbine engine
literature. In [Simon and Simon, 2003] a continuous variation of the health condition is
considered but the slope of the time variation is constrained through inequality constraints
which prevents any abrupt fault (i.e. accidental events) from being effectively tracked.
The detection of abrupt faults is usually addressed by a secondary diagnosis tool such
as the “edge detector” presented in [Volponi, 2003b]. The alternative presented herein in
chapter 4 is based on a method found in [de Freitas et al., 1998] which has the advantage
that it enables both abrupt and slow drifting faults to be tracked in a single framework.
Moreover, this approach leads to a better isolation of the component fault which turns out
to be an interesting feature in a condition-based maintenance perspective since it restricts
the number of maintenance actions to be considered.
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Unsteady-state data processing

For simplicity and low computational load reasons, the data processing is usually restricted
to steady-state data. One of the objectives of this PhD thesis is to investigate the way
the transient data can be included into the diagnosis. The scope is not to prove that
every diagnosis method should be able to process transient data but rather to identify
the improvements which can be expected in terms of diagnosis efficiency and results
availability.

Some early works on transient diagnosis in turbine engines can be found in [Loisy et al., 1992].
However, this type of approach is restricted to time-constant health conditions estimated
in a batch framework (see also [Sampath et al., 2003]). Very recently, sequential per-
formance monitoring techniques based on the Kalman filter have been presented in the
turbine engine literature (see for example [Simon and Simon, 2003]) which derive on-line
estimations of the health condition based on a dynamical turbofan engine model. The
originality of the present approach resides in that the dynamic estimation involves a
sequential performance assessment which can cope with sensor faults and time-varying
health conditions. A distinct advantage of the resulting tool is its modular structure
which makes it relatively easy to implement and adaptable to different situations.

Combination with classification methods

As already stressed in a preceding section, the sensitivity of the diagnosis tool to the
measurement noise depends on the signal range of interest. One of the drawback of
the assessment of continuous health indexes, is that it is sensitive to the measurement
uncertainties and therefore needs lots of data to achieve a reliable result. A classification
approach, whose purpose is the detection of discrete fault cases (healthy-faulty), leads
to coarser results, but yet exhibits a lower sensitivity to the measurement noise. As a
consequence, these methods reach a reliable diagnosis with less data and also achieve a
better fault isolation.

In chapter 5, a combination between a continuous and a discrete health parameter es-
timation is presented in order to assess the benefit that can be achieved in compari-
son to each diagnosis tool working separately. The present approach must be consid-
ered as a first attempt to aggregate several diagnosis tools together in order to benefit
from their mutual advantages. Even if such combinations are still relatively rare in tur-
bine engine diagnosis some recent applications can also be found in [Volponi et al., 2004,
Brotherton et al., 2003].

1.6 Organization of the manuscript

The present document continues in chapter 2 with the statement of the diagnosis problem
for turbine engines. It introduces the elements available to the user to achieve its diagnosis
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task. The diagnosis problem is first stated in terms of unsteady-state diagnosis but, for
simplicity reasons, the general problem of sequential unsteady-state diagnosis is split up
into simpler steps.

The first step is developed in chapter 3, where steady-state conditions, time-constant
health conditions and batch data-processing are assumed. This allows us to introduce the
majority of the techniques used nowadays in turbine engines.

With chapter 4, the assumption of batch data processing is left aside and we enter into the
main subject of the thesis, namely the sequential performance estimation. Furthermore,
the problem of time-varying health conditions is also addressed. The resulting estimation
method is tested on an extensive set of fault cases on a typical civil turbofan layout in
cruise flight conditions.

In chapter 5, the combination with a different diagnosis method is proposed as a possible
extension of the method presented in chapter 4. The combined method is tested on the
previous set of fault cases in order to underline the benefits of such an approach in the
frame of turbine engine diagnosis.

In chapter 6, the steady-state assumption is removed and the processing of transient data
is introduced. The dynamic estimation method is tested on a test bench application where
such a feature may bring significant improvements in terms of test duration.

Finally, some general conclusions and directions for future researches are drawn in chapter
7.
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Chapter 2

Problem statement

Diagnosis is the detection and the isolation of faults which may occur in
a system. In this chapter, basic aspects concerning the diagnosis problem
applied to turbine engines are described. It begins with an introduction
of the diagnosis based on observer models and continues with a short
introduction of the so-called gas path analysis approach. Turbine engine
modeling aspects as well as the statistical treatment of the measurement
uncertainties are also addressed.
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2.1 Diagnosis based on observer models

2.1.1 Principle

The scope of diagnosis is to find out the fault or the set of faults that may occur in the
system under study. One possible approach to this problem is to make use of a simulation
model of the system (the observer) and to perform a comparison of the simulated behavior
drawn from the model with the real observed behavior. The discrepancies between the
model output and the real output, called the residuals, are utilized afterwards into a
threshold detection followed by a fault detection and isolation (FDI) procedure intended
to provide the user with the diagnosis report. In the following, these discrepancies are also
called the fault indicators because they carry the relevant information about the fault.

In such a framework, the basic component of the diagnosis task is a model able to repro-
duce the healthy behavior of the system in terms of the measurable quantity. Generally
speaking, the system of interest is rarely isolated from the external world and, in addition
to the health conditions, the observed signals yk where k denotes the discrete time index,
also depend on some stimuli received from the external world.

In the case of aircraft turbine engines, two types of stimuli are distinguished: commands,
denoted uk, which are external inputs that can be manipulated by the user (i.e. the
thrust demand) and external disturbances, denoted vk, which have the character of inputs
except that they are not controllable by the user. For aircraft turbine engines, external
disturbances are aircraft movements, wind, turbulences, flight velocity, ambient pressure
and temperature, humidity,. . . However, it is generally accepted that the performances
of a turbine engine can be accurately predicted based on the knowledge of the measurable
external disturbances consisting of the inlet total pressure and temperature (p01 and T 0

1 ) as
well as the ambient pressure (p0). These 3 measurable quantities allow the determination
of the more fundamental but not measurable external disturbances made of the ambient

ambient temperature  T0

ambient pressure        p0

Thrust demand
(power setting)

fligth velocity   V0

Figure 2.1: Turbine engine as an integrated system dependent on atmospheric and flight
conditions
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pressure and temperature (p0 and T0) together with the flight velocity V0 represented in
figure 2.1.

Strictly speaking, p0, T0 and V0 are not totally uncontrollable inputs. Indeed, the ambient
pressure p0 and ambient temperature T0 can be predicted based on the standard atmo-
sphere [Walsh and Fletcher, 1996] as a function of the geo-potential flight altitude h0, the
ground temperature Tgd and the ground pressure pgd. As the flight velocity and the flight
altitude are controlled by the pilot through the aircraft control surfaces, the external
disturbances are sometimes split up into flight conditions, consisting of h0 and V0, and
uncontrollable disturbances, consisting of Tgd and pgd. However, in the present document,
no distinction is made between the flight conditions and the uncontrollable disturbances.
As a consequence, the external disturbances vk consist of the three measurable external
disturbances p01, T

0
1 and p0.

The application of the model based diagnosis is represented in figure 2.2 in the case of
discrete time where k is the discrete time index. A simulation model of the turbine engine
generates a simulated value ŷhlk based on a sequence of known command parameter uk and
measured external disturbances vk respectively denoted {u }k1 and { v }k1. The resulting
residual defined by r̂hlk = yk − ŷhlk is intended to be an image of the distance between the
healthy and the actual health condition of the engine.

engine to monitor
commands

from the pilot

{u}1
k

observed
measurements fault indicators

rkhl

healthy turbine engine
simulation model

simulated
measurements

+
+

-

actual external
disturbances

{v}1
k

measured
external disturbances

yk

yk
hl

FDI

resulting
diagnosis

Figure 2.2: Construction of the fault indicators based on a simulation model. FDI refers
to the fault detection and isolation procedure from which the diagnosis is derived.

2.1.2 Models for turbine engines

Physical insights

Most of the time, turbine engine manufacturers develop simulation models for design or
control purposes. These are generally aerothermodynamic models based on the resolution
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of nonlinear balance equations ensuring the conservation of mass, momentum and energy
between the main components of the engine (see [Mattingly, 1996, Walsh and Fletcher, 1996]
for a thorough description of turbine engine simulation models). Such models are able
to predict gas path measurements (i.e. temperatures, pressures, air mass flow rates, ro-
tational spool speeds . . . ) but do not generally include measurements related to the
lubrication system or vibrational data. Consequently, they are usually named gas path
simulation models.

For most of the physical systems, and especially for turbine engines, the measurement sim-
ulation problem can be stated in continuous time by a measurement prediction equation
of the kind:

y(t) = Ht(u(t), v(t), x(t), z(t)) (2.1)

where Ht(·) is a nonlinear, time-varying, equation whose purpose is the generation of
the measurements y(t) at time t based on the knowledge of the current state variables
x(t) and z(t) and the external stimuli u(t) and v(t). x(t) and z(t) are respectively the
differential and algebraic state variables obtained by the resolution of the following con-
tinuous differential-algebraic system of equations represented by the 2 sets of nonlinear,
time-varying equations f zt (·) and fxt (·):

0 = f zt (x(t), x(t),u(t), v(t)) (2.2)

ẋ(t) = fxt (x(t), z(t),u(t), v(t)) (2.3)

where ẋ stands for the temporal derivatives of the differential state variables. Differen-
tial state variables x(t) are defined as the minimal set of variables which are sufficient to
uniquely describe the unforced dynamical behavior of the system handled by the differ-
ential equation (2.3).

For turbine engines, dynamic effects belong to the three following categories [Saravanamuttoo, 1992]:

• heat transfer between the gas path and the constituent elements of the engine,

• mechanical inertia of rotating parts,

• fluid transport delays.

Loosely speaking the transient behaviors generated by these effects exhibit time constants,
on modern commercial turbofans, which vary from several minutes for the heat transfer
effects to hundredths of a second for fluid transport delays. In early performance degra-
dation models, only the mechanical inertias were taken into account since they involve
time constants of about seconds. The remainder effects were considered either too slow or
too fast compared to the effect of interest. An other important advantage of these models
resides in the fact that they result in rather simple models (see [Saravanamuttoo, 1992]).

In regard to their important effects on blade tip clearance, heat transfer effects have been
more and more included in performance degradation models. This is also a consequence of



2.1. DIAGNOSIS BASED ON OBSERVER MODELS 19

both the enormous work realized on heat transfers in turbomachinery and the increasingly
available computational power. Most of the time, heat transfers only impact significantly
hot parts of the engine such as the high pressure compressor, the high and low pressure
turbines and the combustion chamber.

Nowadays, fluid transport delays are still neglected in performance degradation models
but since their modeling would permit the study of engine and component dynamics over
the range of normal operation, and up to the stall point, it would not be surprising to see,
in the next years, the inclusion of those effects in performance models used for diagnosis
(see for example [Shobeiri et al., 1994]).

Discrete time formulation

In order to be usable in discrete time, the model specified by relations (2.2) and (2.3)
must be integrated in time. Regardless the type of integration algorithm to be used, it
can be represented by the following additional relation:

h (ẋ(t+ dt), ẋ(t), x(t+ dt), x(t), dt) = 0 (2.4)

where dt is the integration step [Stamatis et al., 2001]. With this additional relation
the system model can be integrated in time which results in the structure represented
hereafter: uk

vk
xk−1

→


fx (x(t), z(t),u(t), v(t)) = ẋ(t)
f z (x(t), z(t),u(t), v(t)) = 0

h (ẋ(t+ dt), ẋ(t), x(t+ dt), x(t), dt) = 0

→
[
xk
zk

]
(2.5)

where uk, vk and xk−1 are the discrete time inputs of the integration procedure and xk
and zk are the resulting outputs. By conventions, uk and vk are defined as the command
parameters and external disturbances set during the time interval going from k − 1 to
k. If equation (2.5) is denoted Fk(·), then the discrete time simulation model can be
represented under the functional dependency:[

xk
zk

]
= Fk(xk−1,uk, vk) (2.6)

where the nonlinear, time-varying, equation Fk(·) is intended to model the dynamical
behavior of the system. The measurement prediction equation, written in discrete time,
yields:

yk = Hk(xk, zk,uk, vk) (2.7)

The aggregation of (2.6) and (2.7), respectively called measurement and state prediction
equation, constitutes the discrete time formulation of the system model.
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Steady-state formulation

Alternatively, if only a steady-state system description is requested, the nonlinear system
represented by equations (2.2) and (2.3) is solved by ensuring that ẋ(t) = 0, which leads
to the following engine performance model:

yk = Hk(uk, vk) (2.8)

The differential state variables xk degenerate into algebraic state variables zk and the
measurements yk do no longer depend on the past history of the system.

2.1.3 The health parameters

The system model described by relations (2.6) and (2.7) or (2.8) are only able to reproduce
the behavior of a healthy engine. However, due to the availability of a physical model, it is
also possible to incorporate adaptive factors intended to take the actual health condition of
the engine into account. Therefore, the system model is able to simulate the measurements
representative of a degraded engine. In the following, those adaptation factors are called
health parameters and are denoted wk. The exact nature of the health parameters may
change from one engine manufacturer to another and it is still a matter of deep research.
However, they usually belong to the following categories:

flow capacities, representing the increase or decrease of the flow passing through an
active component (compressors, turbines,. . . ),

efficiency factors, representing the efficiency decrease of active component,

fouling factors or effective sections, reflecting the flow decrease in passive compo-
nents such as duct, inlet, nozzles,. . . due to fouling.

Health parameters should apply to each component of an engine but since the number of
measurements is restricted to typically 8 to 10, monitored components are limited to those
that mainly affect the performance of the engine. In the case of a twin spool turbofan
these are the fan, the low and high pressure compressors (lpc and hpc), the high and low
pressure turbines (hpt and lpt) and the core and bypass nozzles (figure 2.3).

With the set of health parameters, the system model specified by relations (2.6) and (2.7)
becomes: [

xk
zk

]
= F(xk−1,uk, vk,wk) (2.9)

yk = H(xk, zk,uk, vk,wk) (2.10)

where the two functions F(·) and H(·) are no longer time-varying mappings but time-
constant mappings and, hence, lose their time index k. In other words, it means that the
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Low-pressure turbine
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Figure 2.3: Main components concerned with performance monitoring on modern turbo-
fan engines.

observable signals are completely determined when the input signals (uk and vk), the state
variables (xk and zk) and the set of health parameters wk are known. If equations (2.9) and
(2.10) are fed by the actual values of the command parameters uk, external disturbances
vk, health parameters wk and state variables xk, they are capable of generating actual
values for the measurements yk and the state variables xk+1.

2.2 Description of the available model

2.2.1 Engine layout

For ease of understanding, the specific configuration used in this document as an appli-
cation test case is first detailed. It consists of a two spool, high bypass ratio, mixed
flow turbofan (see figure 2.4) delivering approximately 12500 daN of take off thrust
with a total air mass flow rate of 417 kg/s1. The available model has been devel-
oped in the frame of the OBIDICOTE project2 and is more thoroughly described in
[Stamatis et al., 2001, Ruiz, 2001].

This type of engine equips nowadays most of the aircrafts flying one-hour flights 12 times
a day such as the Airbus A320 and the Boeing 737. It is comparable in performances to
the International Aero Engines V2500, the SNECMA-General Electrics CFM56-7 or also
to the Pratt & Whitney PW6000 which represents the most important market shares in
turbine engines for aircraft propulsion.

1ISA Sea Level Static performances
2A Brite/Euram project concerned with On-Board Identification Diagnosis and Control in Turbine

Engines.
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Core jet

Bypass jet

(a) Un-mixed flow turbofan

Common

exhaust nozzle

Mixed jet

(b) mixed flow turbofan

Figure 2.4: Comparison of un-mixed flow turbofan and mixed flow turbofan.

2.2.2 Modeling method

The real-time engine model used herein handles both steady and transient responses
through the resolution of a nonlinear 0-dimensional aerothermodynamic model. It means
that the complete engine is decomposed into its main components, each of which is con-
sidered as a black box. The model is then build up by the aggregation of all these black
boxes connected through a set compatibility equations intended to represent the conser-
vation of energy, mass and momentum. Basically, the resulting system of equations has
the generic form specified by relations (2.2) and (2.3).

Component modeling

The complete turbofan layout is decomposed in a set of active and passive components
detailed in figure 2.5. The modeling of passive components such as the nozzle, the en-

combustorhpc

Fan

lpthptlpc

0 1 2 26 3 41 49 6 7 8 9

12 13 16

5

Figure 2.5: Station numbering of a twin spool mixed flow turbofan [AGARD, 1994b]

gine inlet or the inter-component ducts is relatively straightforward and generally in-
volves the calculation of the mass flow rate and some loss coefficients (see for example
[Walsh and Fletcher, 1996]). On the other hand, the modeling of active components is
still a much more difficult task. The approach usually selected is to reduce the model to
characteristic maps which gather the global performances of the components expressed in
terms of the reduced quantities defined in table 2.1.
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reduced mass flow rate D =
ṁ
√
T 0
in

p0in

reduced rotational speed N =
N√
T 0
in

isentropic efficiency η

pressure ratio π =
p0ex
p0in

Table 2.1: Reduced variables used to represent the performances of each active component
where ṁ is the air mass flow rate, N the rotational speed, T 0

in the total temperature at the
inlet and p0in and p0ex are the total pressures at the inlet and the exhaust of the component.

An example of such a characteristic map is given in figure 2.6 for the case of a low pressure
compressor. The plain lines represent the relation between D and π drawn for several
reduced rotational spool speeds N . Dotted lines represent iso-efficiencies η tabulated for
several values of mass flow rate and pressure ratio. The dashed line represents the surge
line above which the behavior of the compressor becomes unstable due to stall. The
precise modeling of each components of the turbofan is detailed in [Stamatis et al., 2001]
to which the interested reader is referred to for more details. In the present model, such
characteristic maps are available for each individual components.
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Figure 2.6: Example of a compressor characteristic map represented in terms of reduced
quantities.

Additionally to the reduced variables listed in table 2.1, the individual active component
can incorporate health parameters expressing their current health condition. Flow ca-
pacities SWiR are defined as the ratio of the actual flow at the component entrance to
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the flow that would take place for a healthy engine. Similarly, an efficiency factor SEi is
defined as the ratio between the actual efficiency and the efficiency related to a healthy
engine:

SWiR =
Di
Dhl
i

and SEi =
ηi

ηhl
i

(2.11)

The index i refers to the component whose entrance is located at the section i (the section
numbering is defined in figure 2.5). An engine in healthy condition is characterized by
health parameters (SWiR and SEi) equal to unity. In addition to the flow capacities and
the efficiency factors, a parameter representative of the effective nozzle area and denoted
A8IMP is also provided. The total set of 11 health parameters is represented in figure
2.7.

Fa
n

LPC HPC com
bust

or HPT LPT NOZZLEINLET

SW12R
SE12

SW2R
SE2

SW26R
SE26

SW41R
SE41

SW49R
SE49

A8IMP

Figure 2.7: Location of the 11 health parameters provided by the system model.

Dynamic modeling

The dynamic modeling provided by the model encompasses shaft inertia and heat transfer
effects. No gas dynamic has been considered since they have no significant impact in the
frequency range of interest. The shaft dynamic is governed by the following equation:

J
dω

dt
=
Pm
t − Pm

c

ω
⇒ dN

dt
=
Pm
t − Pm

c

JN
(
2π
60

)2 (2.12)

where J is the polar moment of inertia, ω the angular rotational speed (rad/s), N the
rotational speed (rpm) and Pm

t and Pm
c are respectively the mechanical powers available

from the turbine and absorbed by the compressor.

The dynamic effect generated by the heat transfer between the gas path and the metal is
modeled by:

h · A(Tg − Tm)︸ ︷︷ ︸
heat flow from gas to metal

= cp ·M ·
dTm
dt︸ ︷︷ ︸

heat stored into the metal

(2.13)
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where h is the heat transfer coefficient, A the surface of metal exposed to the gas, Tg
the static gas temperature, Tm the metal temperature, M the mass of metal and cp the
metal heat capacity. The metal temperatures are not actual temperatures but fictive
or equivalent temperatures allowing the assessment of the actual heat transfer occurring
inside the engine [Stamatis et al., 2001]. Their main role is to model the performance
drifts due to the clearance appearing between the tip of the blade and the rotor casing.
Only the high pressure turbine, the combustion chamber and the high pressure compressor
are assumed to bring a significant contribution to the dynamic behavior of the complete
engine.

Transposed into the turbofan layout represented in figure 2.5, the two types of dynamic
effects represented by equations (2.12) and (2.13) give 7 differential equations: 5 for the
heat transfers and 2 for the shaft dynamics which imply 7 differential state variables xk.
The latter are the low and high pressure rotational spool speeds as well as five blade and
casing surface temperatures for the high pressure compressor, the combustion chamber
and the high pressure turbine (represented in figure 2.8). In order to allow several levels
of accuracy, the model also allows some dynamic effects to be disabled. This results in
simpler models of lower dimensions. Even if the simpler configurations have not been
used in the present document, the complete list of state variables as well as the available
simulation mode are detailed in table 2.2 for information.

Nlp ; Nhp

T42
b ; T42

c

T4
b

T3
b ; T3

c

Figure 2.8: Localization of the 7 differential state variables.

While the rotational spool speeds are measurable and available on-board, the five surface
temperatures are not available at all. Even if dozens of surface thermocouples were
installed in a turbine engine the resulting measurements would be poorly related to the
state variables appearing in the model and a measurement prediction through relation
(2.7) based on these surface measurements would be of poor physical meaning. As a
consequence, the state variables are generally considered as unknown variables since they
are not directly observable.
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Simulation mode
Label Description 1 2 3 4 5
Nlp low pressure spool rotational speed X X X X X
Nhp high pressure spool rotational speed X X X X X
T b3 high pressure compressor blade temperature - X - - X
T c3 high pressure compressor casing temperature - X - - X
T b4 combustion chamber casing temperature - - X - X
T b42 high pressure turbine blade temperature - - - X X
T c42 high pressure turbine casing temperature - - - X X

Table 2.2: Differential state variables involved in the model and available simulation mode.

2.2.3 Model resolution

Model inputs uk and vk

In a real engine, the command parameter accessible to the pilot is the thrust lever which
sets the fuel flow fed into the burner through a control loop. However, as the present
model does not comprise any control loop, the fuel flow is directly set by the operator.
Therefore, even if in practice the fuel flow is not known without inaccuracies, it is assumed
herein that the fuel flow is set with a total precision. The control procedure results in an
open loop where the fuel flow is set regardless of the thrust.

As mentioned before, the actual external disturbances are the static pressure, temperature
at the engine inlet as well as the flight velocity. However, for simplicity reasons they
can be adapted to specific purposes. For design purposes, external disturbances are
the geo-potential altitude h0, the flight Mach number (also named free stream Mach
number) M0 and the offset temperature with respect to the standard atmosphere ∆Tiso
[Walsh and Fletcher, 1996]. Those three variables are sufficient to specify the three basic
external disturbances. However, since these variables are not directly measured on-board,
an other set of external variables is also supplied when the model is used for diagnosis or
control. In this case, model inputs are the three measurements performed on-board: the
inlet total pressure p01, the inlet total temperature T 0

1 and the ambient pressure p0. Those
three variables also allow the determination of the static pressure and temperature at the
engine inlet as well as the flight velocity.

Basic Design Diagnosis and control
T0 h0 T 0

1

p0 M0 p01
V0 ∆Tiso p0

Table 2.3: Different sets of external disturbances available in the model
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The equation system

The complete engine model is built up by gathering all the compatibility equations linking
the components together. Since no gas dynamic effect is considered, their corresponding
compatibility equations are the 7 following algebraic equations:

Dmap
2 −D2 = 0 flow compatibility at lpc inlet

Dmap
12 −D12 = 0 flow compatibility at fan inlet

Dmap
26 −D26 = 0 flow compatibility at hpc inlet

Dmap
41 −D41 = 0 flow compatibility at hpt inlet

Dmap
49 −D49 = 0 flow compatibility at lpt inlet

A8 − A8IMP = 0 flow compatibility at the nozzle

p16 − p6 = 0 mixer momentum conservation

(2.14)

where Dmap
i refers to the value of the reduced mass flow rate read from the characteristic

map of each active component and Di is the reduced flow set by the upstream components.
The first 5 equations ensure that the upstream flow is compatible with the flow acceptable
by this component.

The 7 algebraic equations are completed with the 7 dynamic equations modeling the shaft
dynamic and the heat transfers. This leaves the following set of 7 differential equations:

1

JlpNlp

(
2π
60

)2 (Pm
fan + Pm

lpc − Pm
lpt

)
= Ṅlp lpc shaft power compatibility

1

JhpNhp

(
2π
60

)2 (Pm
hpc − Pm

hpt

)
= Ṅhp hpc shaft power compatibility

(
hA

cpM

)b
3

(
T3 − T b3

)
= Ṫ b3 heat transfer to hpc blades(

hA

cpM

)c
3

(T3 − T c3 ) = Ṫ c3 heat transfer to hpc casing

(
hA

cpM

)b
4

(
T4 − T b4

)
= Ṫ b4 heat transfer to combustor casing

(
hA

cpM

)b
42

(
T42 − T b42

)
= Ṫ b42 heat transfer to hpt blades(

hA

cpM

)c
42

(T42 − T c42) = Ṫ c42 heat transfer to hpt casing

(2.15)
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Integration and state-space formulation

The system model specified by relations (2.14) and (2.15) corresponds to the generic form
represented respectively through relations (2.2) and (2.3). If the unsteady behavior is to
be simulated, this system of equations can be integrated in time through equation (2.5)
which results in the discrete form (2.6) and (2.7).

However, the available model was supplied to us under the aggregated form:

yk =M(xk−1,uk, vk,wk) (2.16)

predicting the current observable signal yk based on the current inputs (uk and vk), the
current health parameters wk and the initial state variables xk−1. As a consequence,
the measurement prediction cannot be done on the basis of the current state variables
xk because the measurement simulation is entirely embedded into the model resolution.
Such a formulation is suitable for design purposes where the aim is only to simulate the
dynamic behavior of a future engine but is of poor interest in the framework of diagnosis
from unsteady data, since it does not give us explicitly access to the current state variables
xk.

As the source code was available, the aggregated model has been split up into a state
variable prediction equation and a measurement prediction equation in order to obtain
a more appropriate formulation. The procedure consists in taking advantage of the two
explicit integration schemes already available in the original software package, namely an
Euler explicit and a five step Runge-Kutta. In an explicit formulation, the state variables
at the next time step are expressed as a function of the current state variables and state
variable derivatives. This involves that a model resolution procedure is available in the
software package which determines the state derivatives ẋk and the measurements yk at
the current time from the resolution of relations (2.14) and (2.15). This procedure has
the following form:

uk
vk
wk

xk

→ {
fx (x(t), z(t),u(t), v(t),w(t)) = ẋ(t)
f z (x(t), z(t),u(t), v(t),w(t)) = 0

}
→
[
ẋk
yk

]
(2.17)

Therefore, solving the model through the procedure (2.17) gives us access to the mea-
surements yk based on the current inputs (uk and vk), the current health parameters wk

and the current state variables xk. Hence, the measurement simulation through the reso-
lution of relation (2.17), denoted G(·), can replace the previous measurement simulation
equation denoted H(·).

On the other hand, the state variable simulation represented by the function F(·) results
from the explicit model integration achieved by one or several successive resolutions of
relation (2.17). For example, in the case of an Euler explicit integration scheme, the
relation (2.4) takes the very simple form:

xk = xk−1 + dt · ẋk−1 (2.18)
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The previous relation together with equation (2.17) allow the simulation of the current
state variables based on the current inputs (uk and vk), the current health parameters
wk and the previous state variables (see [Press et al., 1992] for further details about the
specific implementations of the Euler explicit or Runge-Kutta methods in the present
model). This results in the following state-space representation:

xk = F(xk−1,uk, vk,wk) (2.19)

yk = G(xk,uk, vk,wk) (2.20)

This system description became an increasingly dominant approach after Kalman’s work
on prediction and linear quadratic control (see also [Ljung, 1999] for a more thorough
description of the state-space formulation).

The available model specified by relations (2.19) and (2.20) is supplied under the form
of a software model which is built up by the aggregation of functions, subroutines and
table lookups for which no analytical form is available. In terms of computational load,
the model is announced to achieve real-time simulation on processors whose performances
are close to the one available on on-board turbine engine controllers (namely a Pentium
at 90MHz). The performances of the real-time model are tested in [Stamatis et al., 2001]
where it exhibits simulation time compatible with real-time simulation. One model reso-
lution takes approximately 20ms which allows the simulation of 50 measurement samples
per seconds for unsteady simulation if an Euler-explicit integration algorithm is used.

2.2.4 Steady state model

If a steady-state simulation is required, the state-space formulation specified by relations
(2.19) and (2.20) degenerates in a simpler form where the differential state variables xk
do not appear explicitly at the model input. Therefore, it yields:

yk = G(uk, vk,wk) (2.21)

In terms of computational load, one model resolution takes 25ms on a Pentium at 90Mhz
and 1ms on a Pentium 3 at 1Ghz. Even if not explicitly indicated, the resolution of
equation (2.21) gives us access to the state variables xk as well.

2.2.5 Measurement configuration

The choice of a measurement set is not straightforward in practice since there is no
standard measurement configuration, each manufacturer using its own. However, on
commercial turbofan engines it is unlikely to encounter more than 8 to 10 gas path
measurements. Moreover, they are usually a subset of the measurements represented
in figure 2.9.
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The reference measurement set considered herein is the one specified in the framework of
the OBIDICOTE project and detailed in [Curnock, 2000]. However, as the model allows
more measurements to be simulated, three additional sets are considered. All four sets
are listed below and detailed in table 2.4 where the measurement uncertainties are also
mentioned.

A minimal set containing only measurements that are currently available on-board,

An improved set characterized by two additional measurements p026 and p049 which con-
stitutes a better but still realistic alternative to the minimal set,

An extensive set containing 12 measurements and consisting of measurements that are
technically achievable on-board but which are not performed for economic reasons.

A test bench configuration consisting of the extensive set to which the thrust and the
total air mass flow rate measurements are added.

For evident reasons of cost, no such real turbofan engine was made available at a test
bench that would enable us to test the diagnosis methods on real measurements. The
procedure used herein to generate the raw measurements is detailed in figure 2.10. The
engine performance simulation model is used to generate some noise free measurements
based on a sequence of known command parameters, external disturbances and health
parameters. Simulated Gaussian noise is added to the noise free measurements to generate
the data which are used as if they were raw measurements. It is implicitly assumed that
the model represents faithfully the actual turbofan engine which is unlikely to be the
case in reality. It is also assumed that the diagnosis results can be extended to realistic
situations provided that such a model is available. This highlights the somewhat artificial
nature of the presented results.

T0
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26 ; p0
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3 ; p0

3

wfuel

T0
49 ; p0

49
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Figure 2.9: Available gas path measurements in the case of a commercial turbofan.
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Label uncertainty Minimal Improved Extensive Test bench

ṁair
1 ±5kg/s X

T 0
13 ±2K X X X X
p013 ±100Pa X X X X
T 0
26 ±2K X X
p026 ±500Pa X X X
T 0
3 ±2K X X X X
p03 ±5000Pa X X X X
Nlp ±6rpm X X X X
Nhp ±12rpm X X X X
T 0
49 ±2K X X
p049 ±500Pa X X X
T 0
6 ±2K X X X X
p06 ±300Pa X X
FGN ±500N X

Total 7 9 12 14

Table 2.4: Measurement set definition. Uncertainties are assumed to be three times the
standard deviation.

2.3 The “gas path analysis” approach to diagnosis

2.3.1 The fault signature

In the beginning of this chapter, the fault signature r̂hlk is defined as the difference between
the measurement reading yk and an estimation of this measurement, denoted ŷhlk , repre-
sentative of a healthy engine. In this section, the notion of fault signature is applied to the
specific situation where a system model parameterized through a set of health parameters
is available. For simplicity reasons, it is decided to first deal with the steady-state model

vk
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engine performance
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wk
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Figure 2.10: Procedure followed in the present document for the generation of the artificial
measurements.



32 CHAPTER 2. PROBLEM STATEMENT

(2.21) having the following expression:

yk = G(uk, vk,wk)

Since the command parameters uk are set by the user, they are assumed to be known
without inaccuracies. The external disturbances vk are assumed measurable through a
set of measurements, denoted vk. Therefore, an estimation of the measurements can be
derived from the above model by using known command parameters uk and measured
external disturbances vk:

ŷk|w , G(uk, vk,wk) (2.22)

The index k|w indicates that the resulting simulated measurement is a function of the
unknown health parameters w. Therefore, the residual built by the comparison of the
estimated value ŷk|w to the measurement yk is also a function of the unknown health
parameters wk:

r̂k|w , yk − ŷk|w ≡ f(wk) (2.23)

2.3.2 Diagnosis as a health parameter estimation problem

The availability of the residuals r̂k|w under the form of a function whose value depends on
unknown health parameters wk enables us to formulate the diagnosis problem through the
so-called gas path analysis approach (GPA). The GPA approach to diagnosis considers
that the drifts of the observable signals from healthy values is described by a function of
the health parameters. Therefore, the health parameters wk can be estimated by finding
the value ŵk which minimizes the distance separating the model prediction ŷk|w from
the measured value yk. Such a problem can be stated by the resolution of the following
minimization problem:

ŵk = arg min
wk

{
ρk(yk − ŷk|w)

}
= arg min

wk

{
ρk (̂rk|w)

}
(2.24)

where the form of the loss function ρk(·) must be specified. The diagnosis problem can
be thought of solving the inverse problem of prediction (figure 2.11) .

prediction

gas path analysis
(health parameter estimation)

health parameters fault signature rk|w

Figure 2.11: The gas path analysis approach to diagnosis as a health parameter estimation
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Figure 2.12 gives a more general picture of the GPA approach to diagnosis. Physical
problems (accidental or progressive) induce performance degradations of some specific
components that are represented by the health parameters (flow capacity, efficiency, . . . ).
These performance degradations involve, in turn, changes in the measured signals yk
(temperatures, pressures, . . . ).

Physical problems
✗ erosion
✗ corrosion
✗ fouling
✗ plugged nozzles
✗ foreign object damage

Degraded performances
✗ modified flow capacities
✗ lower efficiencies
✗ lower passage area
✗ increased mechanical

losses

Fault indicator drifts
✗ rotational spool speeds
✗ temperatures
✗ pressures
✗ fuel flow and thrust
✗ vibrations

result in produce

health
parameter
estimation

troubleshooting

Figure 2.12: The GPA approach to the turbine engine diagnosis problem.

The GPA approach to diagnosis uses the physical meaning of the estimated health pa-
rameters to locate the physical underlying problem. This diagnosis can, in turn, be used
to derive a corrective action. The decision of a corrective action involves complex inter-
actions of economic, technical, security and legal aspects which are beyond the scope of
the present PhD thesis. As a consequence, the diagnosis problem will be reduced to the
estimation of the unknown health parameters wk based on a set of observed gas path
measurements yk.

2.3.3 The dual estimation problem

In the case of unsteady-state conditions, the measurement prediction equation takes the
form (2.20), namely:

yk = G(xk,uk, vk,wk)

Hence, in addition to the health parameters wk, the measurement prediction based on
the model is also a function of the state variables xk and the measurement prediction ŷk|w
now becomes:

ŷk|w,x , G(xk,uk, vk,wk) (2.25)

where the index k|w, x denotes the fact that the estimation is a function of both the
unknown state variables and the unknown health parameters. The resulting residual
defined by:

r̂k|w,x , yk − ŷk|w,x ≡ f(wk, xk) (2.26)

is thus a function of wk and xk.

Therefore, the GPA approach depicted in figure 2.11 gives a too simple picture of the
diagnosis problem. In fact, figure 2.11 is faithfull only when steady-state conditions are
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met. The resolution of the diagnosis problem is thus stated by the following minimization
problem where both the state variables xk and the health parameters wk must be assessed
based on the same set of measurements yk:

(ŵk, x̂k) = arg min
wk,xk

{
ρk(yk − ŷk|w,x)

}
(2.27)

Such a situation, where both the model parameters (i.e. the health parameters) and the
dynamical state variables must be determined from the same sequence of noisy measure-
ments is known as the dual estimation problem3 [Wan and van der Merwe, 2001]. For
simplicity reasons, the diagnosis problem is first addressed in chapters 3, 4 and 5 in the
framework of steady-state engine operation. The performance assessment in the presence
of unsteady-state data is addressed further in chapter 6.

The need to deal with the dual estimation problem comes from the sequential data pro-
cessing. Indeed, in a batch framework, it is possible to derive diagnosis methods from
unsteady measurements without the recourse to dual estimation methods. Such a method
is detailed in [Loisy et al., 1992] and consists in assuming that the health parameters are
constant4 and that the initial state variables x0 are known. The latter condition is easily
satisfied if steady-state conditions are met in the beginning of the sequence, which allows
the determination of the initial state variables through the resolution of the steady-state
model (2.21).

Therefore, the state variable prediction equation (2.20) may be used to generate estimated
value of the state variables as a function of the unknown health parameters w. These state
variable estimates, denoted x̂k|w, can be substituted to xk in the measurement prediction
equation (2.25) such that the minimization problem (2.27) becomes a function of only the
health parameters w. Even if it greatly simplifies the problem, such an approach does not
fit our application framework since it is only feasible with batch data processing.

2.4 Sources of uncertainties

In the preceding section, the diagnosis problem is stated in terms of an inversion problem
where the unknown health parameters (and state variables) have to be determined by the
minimization of an objective function. The basic figure of merits is the distance between
the estimated measurements ŷk|w (or ŷk|w,x) and the observed measurements yk. However,
even if they are stimulated by the actual values, system models (2.22) or (2.25) predict
different measurements from those generated by the real world system. As a consequence,
the health parameter value ŵk determined through the resolution of the minimization
problems (2.24) or (2.27) will never be a perfect representation of the actual value wk.

3Here, the qualifier “dual” must be understood as a synonym of “double” and has nothing to see the
mathematical meaning of the word “dual”.

4Alternatively, the health parameters may vary in time but a model of their variation must be known
and parameterized with unknown but constant parameters
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2.4.1 Measurement errors

The first reason lies in the fact that an observable signal can only be known through a
measurement chain which, even if it is stimulated by the actual value yk, provides the
experimenter with the global outcome of the measurement chain: the raw measurement yk
[Asch, 1991]. The difference between the raw measurement and its actual value is defined
as the measurement error.

The measurement error comes from imperfections and external disturbances in the mea-
surement chain corrupting the signal during the measurement process. A typical mea-
surement chain is outlined in figure 2.13 where the quantity to measure is led by a probe
into a sensing element responding to the stimulus by producing a secondary signal. A
transducer with its associated electronics transforms this signal into a conditioned signal
compatible with a digital processing unit. The output of the digital processing unit is
usually considered as the measurement reading yk.

associated
electronic

sensing
element

digital
processing

transducerprobe

raw
signal

primary
signal

secondary
signal

electric
signal

conditioned
signal

measured
signal

yk yk

sensor

Figure 2.13: Typical structure of a measurement acquisition procedure.

Measurement errors can be categorized into systematic errors, denoted b, and random
errors, denoted εk:

yk = yk + b+ εk (2.28)

For a given value of the actual value yk, a systematic error is either constant or exhibits
a slow variation with respect to the duration of the experiment. It introduces a constant
drift between the measurement reading yk and the actual value yk. A significant amount of
documentation is available which describes measurement techniques intended to maintain
systematic errors as low as possible [Asch, 1991]. For a more complete description of the
instrumentation used in turbine engines see also [Saravanamuttoo, 1993, AGARD, 1994b].

In the case of random errors εk, the amplitude and the sign of the errors are not pre-
dictable beforehand. From an external observer point of view, εk seems to be generated
by a random process. The probability of the random error εk to fall in certain ranges is
thus specified by a probability density function (pdf), denoted p(εk) (see [Papoulis, 1998]
for the definition of a random variable and its associated probability density function).
To model the behavior of the random errors, the Gaussian white noise, i.e. a sequence
of real numbers generated by independent, identically distributed, Gaussian random vari-
ables, often appears as a good candidate. This choice is justified by both its relative
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simplicity and its effectiveness in practical applications5. The Gaussian assumption leads
to a description of the random errors through the so-called Gaussian probability density
function stated below:

p(εk) =
1

σy
√

2π
exp

(
− ε2k

2σ2
y

)
(2.29)

where

E(εk) = 0 (2.30)

E(εkεj) =

{
σ2
y for j = k

0 for j 6= k
(2.31)

The symbol E(·) denotes the expected value (i.e. the mean) (see [Papoulis, 1998] for
definition). σ2

y and σy are respectively named the variance and the standard deviation of
the measurement noise and are a good indication of the measurement scattering due to
the random errors. The shape of the Gaussian pdf is represented in figure 2.14.

-1σy-2σy-3σy +1σy +2σy +3σy

63% of area

95.5% of area

99.8% of area

0 εk

p(εk)

Figure 2.14: Confidence intervals in the case of the Gaussian probability density function.

The probability of the measurement noise εk to take values in the interval −3σy and +3σy
is:

P (−3σy ≤ εk < +3σy) =

∫ +3σy

−3σy
p(εk) dεk = 0.998 (2.32)

This interval is called the confidence interval because, in the case of an unbiased mea-
surement (b = 0), it represents the interval in which the actual value can be assumed to
lie with a risk of 1− 0.998 = 0.2%. In practice the confidence interval is of great impor-
tance since the sensor manufacturers specify the sensor accuracies in terms of confidence
intervals. However, something that must always be kept in mind is that, in that case, the

5This is also a consequence of the “central limit theorem” mentioned in appendix A
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confidence interval embeds both systematic errors and random errors and the user must
always ensure that the level of systematic errors is negligible with respect to the level of
random errors.

In order to understand the practical consequences of the systematic and random errors,
let us consider the experiment consisting in determining the actual but unknown value of
the quantity y from n direct measurements yk. Following the definition of the systematic
error b and random errors εk, it holds:

yk = y + b+ εk (2.33)

Once n measurement readings are obtained, the mean value of the sample is (provided
that the measurement uncertainty is constant during the whole experiment):

ŷ =
1

n

n∑
k=1

yk (2.34)

As the number of samples n tends to infinity, the sample mean ŷ converges toward the
true value plus the systematic error b namely:

ŷ → y + b if n →∞ (2.35)

A measurement chain is said reliable if the level of random errors is low which results in
measurement readings grouped around the mean value ŷ (figures 2.15(b) and 2.15(d)).
The exactness is the quality of a measurement chain whose systematic errors are low
(b ' 0) meaning that their mean ŷ is close to the actual value y (figures 2.15(c) and
2.15(d)). The accuracy characterizes the aptitude of the measurement chain to give
results which, individually, are close to the actual value of the quantity of interest: an
accurate sensor is thus exact and reliable (fig. 2.15(d)). Situations in figures 2.15(a) and
2.15(b) lead of course to biased results: regardless of the number of data samples they do
not lead to a faithful estimation of the actual value.

Under the assumption that the measurement chain is unbiased (b = 0), injecting rela-
tion (2.28) into the pdf defined by (2.29) allows us to derive a pdf which describes the
probability density of occurrence of the measurement reading yk:

p(yk) =
1

σy
√

2π
exp

(
−(yk − yk)2

2σ2
y

)
(2.36)

where of course:

E(yk) = yk (2.37)

E
(
(yk − yk)(yj − yj)

)
=

{
σ2
y for j = k

0 for j 6= k
(2.38)

When a measurement sample is made of m simultaneous unbiased measurements (b = 0),
relation (2.28) can be re-written in vector form as:

yk = yk + εk (2.39)
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Figure 2.15: Different repartitions of measurement results

The probability density function (2.36) defined for a scalar measurement can thus be
expressed in matrix notation as:

p(yk) =
1√

(2π)m |Ry,k|
exp

(
−1

2
(yk − yk)

TR−1y,k(yk − yk)

)
(2.40)

where

E(yk) = yk (2.41)

E
(
(yk − yk)(yj − yj)

T
)

= E
(
εkε

T
j

)
=

{
Ry,k for j = k

0 for j 6= k
(2.42)

The m×m square matrix Ry,k is the covariance matrix of the measurement noise (|Ry,k|
refers to the determinant of Ry,k) defined by (A.4). Generally speaking, Ry,k is a plain
matrix. However, it is often restricted to a diagonal matrix because, practically, it is built
up by the collection of the variances (namely σ2

y) of all the sensors under the assumption
that the measurement noises are uncorrelated. The variance of each sensors is then
assessed based on the confidence intervals (also called in this document sensor accuracy)
obtained from the manufacturer or through a calibration procedure.
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For example, in the case of a temperature measurement through a thermocouple, a typical
sensor accuracy is ±2K which results in a standard deviation of σy = 2K

3
= 0.667K. For

m sensors this results in the following matrix:

Ry,k =


σ2
y(1) 0 · · · 0
0 σ2

y(2) 0
...

. . .

0 0 σ2
y(m)

 (2.43)

2.4.2 The notion of statistical system model

The pdf (2.40) of the measurement noise εk involves the actual value of the measurements
yk. When a model of the engine such as (2.20) is available which allows the prediction of
yk, relation (2.39) can be rewritten as:

yk = yk + εk
yk = G(xk,uk, vk,wk)

}
⇒ yk = G(xk,uk, vk,wk) + εk (2.44)

or alternatively, for a steady-state model, in

yk = G(uk, vk,wk) + εk (2.45)

where the measurement noise εk is assumed additive and generated by a white and Gaus-
sian random variable with zero mean and covariance matrix defined by (2.42). Addition-
ally, both the measurements yk and the system model G(·) are assumed to be an unbiased
representation of the actual measurement yk. We call a statistical system model, a system
description like (2.44) or (2.45) together with the specification of a pdf for εk [Ljung, 1999].

2.4.3 Model inaccuracies

In addition to the measurement inaccuracies represented by the random measurement
noise εk, the residual r̂k|w must also take the model inaccuracies into account. To illustrate
the discussion, the residual can be developed as follows:

r̂k|w = yk − ŷk|w = (yk − yk) + (yk − ŷk|w)

= εk + (yk − ŷk|w) (2.46)

where yk stands for the actual value of the measurements. In addition to the random
measurement noise, the residual embeds uncertainties related to the measurement predic-
tion. Indeed, the prediction ŷk|w relies on measured external disturbances vk rather than
on the actual external disturbances. The difference between the actual measurement and
its prediction can be expressed by considering that the system model is unbiased, namely,
that it is able to generate the actual measurement yk provided that it is fed with the
actual values uk, vk and wk:

yk = G(uk, vk,wk) (2.47)
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If the system model G(·) is linearized by a first order Taylor series expansion, it yields:

yk = ŷk|w + Ck(vk − vk) (2.48)

where Ck is the influence matrix defined below:

Ck =
∂G(uk, vk,wk)

∂vk

∣∣∣∣
uk ; vk=vk ;wk

(2.49)

The residuals r̂k|w can thus be expressed by:

r̂k|w = εk + Ck(vk − vk) (2.50)

Provided that the measurements vk are obtained through an unbiased measurement chain,
it holds:

vk = vk + ζk (2.51)

where ζk is a random measurement noise resulting from the realization of a white and
Gaussian random variable with zero mean and covariance matrix defined by:

E(ζk) = 0 (2.52)

E(ζkζ
T
j ) =

{
Rv,k for j = k

0 for j 6= k
(2.53)

Therefore, making use of (2.51), (2.52) and (2.53) into (2.50), it is straightforward to
prove that:

E (̂rk|w) = E(εk) + Ck E((vk − vk)) = 0 (2.54)

and also that:

Rr,k , E (̂rk|w r̂
T
k|w) = E

[
(εk + Ck(vk − vk))(εk + Ck(vk − vk))

T
]

= E(εkε
T
k ) + E(εk(vk − vk)

T )CTk
+Ck E((vk − vk)ε

T
k ) + Ck E((vk − vk)(vk − vk)

T )CTk
= Ry,k + CkRv,kC

T
k (2.55)

In the applications detailed in the present PhD thesis, the covariance matrix Rr,k is
restricted to a diagonal matrix. Indeed, uncertainties related to the measured external
disturbances are lumped together with the measurement uncertainties and the off-diagonal
terms representing the correlation between the different measurement uncertainties are
neglected. Symmetrically to the measurement standard deviation σy,k(i), the standard
deviations σr,k(i) are defined by:

σr,k(i) =
√
σ2
r,k(i) with σ2

r,k = diag (Rr,k) (2.56)

In order to take into account the fact that the information actually available to the user
is the measurement prediction ŷk|w and not the actual value yk, the statistical model
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previously defined in relation (2.45) must be updated. Based on the covariance matrix
Rr,k, the pdf defined for the measurement yk is rewritten as:

p(yk) =
1√

(2π)m |Rr,k|
exp

(
−1

2
(yk − ŷk|w)TR−1r,k(yk − ŷk|w)

)
(2.57)

In the framework of diagnosis, the above pdf is an important constituent because it repre-
sents the data generation model which gives the probability density of the measurements
yk to be observed as a function of only the health parameters wk. In the following, relation
(2.57) is referred to as the data generation model.

2.5 Classification approach to diagnosis

In the present PhD thesis, the set of all possible values for the health parameters wk

is located on the real axis and the fault is said to be of continuous type. The resulting
diagnosis method thus involves the solving of the minimization problem stated by relation
(2.24). However, this is not the only way to represent the health parameters wk. Indeed,
if the possible values of the health parameters wk are a finite set of discrete real numbers,
vectors or symbolic values, say {w(0), . . . ,w(nc)} where nc is the number of classes, the
variable wk is discrete and the corresponding diagnosis involves a classification problem.
Conversely to the health parameter estimation, the solving of a classification problem does
not involve a minimization of the distance between the assumed and the actual health
condition of the engine, such as (2.24), but rather involves the minimization of the risk
of fault misclassification [Romessis and Mathioudakis, 2004].

As far as a continuous fault description is available, it is natural to prefer a health pa-
rameter estimation. However, this choice is not as straightforward as it may seem at
the first sight. Both classification and health parameter estimation approaches can be
interpreted as a kind of model selection for which a classification method encompasses a
finite number of possible models while the health parameter estimation assumes an infi-
nite number of models (i.e. the real axis). As a consequence the classification approach
turns out to exhibit a much better stability with respect to measurement inaccuracies
than their quantitative counterpart based on a continuous health parameter estimation.
Inversely, the former approach results in much coarser results of the kind healthy-faulty
or low-correct-high. Generally speaking, none of the approaches is really better than the
other. The argument which tips the scales resides in the specific performance monitoring
framework where a quantitative health report gives a more precise picture of the health
condition of the engine.
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2.6 Alternatives to the GPA approach

In the preceding sections, the availability of a system model which predicts the observa-
tions yk as a function of the health parameters wk is never discussed. This allows us to
build a fault signature r̂k|w which, in turn, can be used in the minimization procedure
(2.24). In practice, however, the available description of the health condition of the en-
gine in terms of the observable signals yk may be of less formal character (for example, a
database collecting known degradations together with their corresponding observed fault
indicators). Moreover, in this situation, it is unlikely that the faults are formulated as
continuous health parameters and they usually appear as a number of discrete classes
grouping similar physical problems such as fan fouling, erosion of the high pressure com-
pressor, etc . . .

Such a raw information may turn out to be difficult to integrate into the gas path analysis
approach. A possible alternative consists in using automatic learning techniques whose
purpose is to extract a high level synthetic information from databases containing large
amounts of low level data [Wehenkel, 1998]. Such methods can be used to directly in-
fer a diagnosis rule without the recourse to a system description of the form (2.21). To
distinguish these methods from those based on a system model (sometimes named de-
scriptive), the are qualified of predictive or discriminative approaches. Since predictive
methods are not used in this document, the scope of the present section is not to make an
exhaustive review of automatic learning techniques and the interested reader is referred
to [Wehenkel, 1998] for a more complete description of these methods.

The application of automatic learning techniques to turbine engine diagnosis is relatively
new but yet benefits from a significant amount of publications (see [Mathioudakis, 2003]).
By far, the most commonly used techniques are the well known artificial neural networks
(ANN) (such as multilayer perceptrons, probabilistic neural networks and radial basis
function networks). Basically, they consist of a pool of simple processing units which
communicate by sending signals to each other over a large number of weighted connec-
tions [Kröse and Smagt, 1996] (see figure 2.16). The training of ANN is intended to
determine the weights characterizing the connections such that the mapping of the neural
network is able to reproduce the items contained in the database. This is generally done
through a search procedure which minimizes the prediction error of the neural network
[Bishop, 1995].

The massive use of ANN trained by back-propagation techniques (BPANN) is mainly
justified by their relative ease of implementation and also because they bring a simple
solution to the nonlinear diagnosis problem. In fact, BPANN are capable of catching any
nonlinear dependencies of the fault signature upon the health condition. An example
application of ANN can be found in [Eustace and Frith, 2001] where a diagnosis tool is
inferred based only on observed data without the recourse to any system model.

An other distinct advantage of the BPANN (and also of other automatic learning tech-
niques) is that they only need a database gathering known fault cases and raw measure-
ments. Therefore, different kinds of data can be mixed up into the database. This feature



2.6. ALTERNATIVES TO THE GPA APPROACH 43

fa
ul

t 
in

di
ca

to
r s

di
ag

no
se

d 
fa

ul
t

input
layer

hidden
layer

output
layer

Figure 2.16: Predictive diagnosis method where the ANN is directly fed by the raw fault
signature

is used in [Ogaji et al., 2003] to mix aerothermodynamic data to oil or vibrational data in
order to improve the quality of the diagnosis. In situations where a simulation model is
also available, this property may be used to increase the accuracy of the model by mixing
raw data observed from a real engine to simulated data generated by a model (figure
2.17). Such a procedure is used in [Brotherton et al., 2003].
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Figure 2.17: Procedure followed for the database generation supported by an engine
performance model.

In the limit, no observed data can be used and the ANN can be inferred by using only
simulated data. Such an approach may appear surprising because, in that case, a de-
scription of the system properties is available and nothing prevents the GPA approach
from being applicable. However, the application of descriptive methods with nonlinear
models leads to an iterative nonlinear optimization procedure which may turn out to be
computationally too demanding. In that frame, BPANN may be used to supersede the
optimization procedure by finding a direct mapping associating the health parameters to
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a given fault signature. Such an approach is used in [Dambrosio et al., 2002, Gluch, 2003,
Romessis et al., 2001] where the diagnosis is solved directly from measured data6 without
the recourse to an expensive nonlinear optimization making them computationally very
attractive.

Yet, these advantages must be balanced with certain drawbacks. Indeed, in [Volponi et al., 2000],
an ANN-based predictive method showed inferior performance than its GPA based coun-
terpart. The influence of the measurement noise on the diagnosis efficiency is also studied
in [Lu et al., 2000] which emphasizes the improvement brought by a pre-processing of the
fault signatures (aimed at filtering the measurement noise) before feeding them into the
diagnosis tool. Moreover, due to restrictions in the database size, most of the applications
of predictive methods found in the turbine engine diagnostic literature are also restricted
to small neighborhood of cruise flight conditions. Up to now, no application of the BPANN
have been found in the turbine engine literature for a complete flight envelope (different
operating points).

Apart from ANN, other methods exists such as, for example, the decision trees [Geurts, 2002]
or the so-called K nearest neighbors method. While simple and effective these methods
have not yet been studied in the turbine engine diagnosis literature. Up to now, the
solving of the diagnosis problem through automatic learning techniques have only been
considered through the use of artificial neural networks but it will not be surprising that
an increasing number of solutions emerge from this steadily rising research field.

6Indeed predictive methods are sometimes referred to as “diagnosis directly from measured data”



Chapter 3

Batch estimation of the health
parameters

This chapter describes the so-called batch diagnosis methods where data
are gathered in a database and processed afterwards all at once. The
advantage of batch methods compared to sequential methods resides in
their relative simplicity. They are used herein to introduce the basic
tools related to a health parameter identification.
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3.1 Generalities

3.1.1 Simplifying assumptions

Batch data processing

In a batch framework, sequences of measurements are collected and stored for processing
into a database denoted { y }n1 and defined by:

{ y }n1 = [ y1 y2 · · · yn ] (3.1)

where n is the number of data samples. Similarly, the known command parameters and
the measured external disturbances are collected respectively in {u }n1 and { v }n1 . At
the time the diagnosis is carried out, it is assumed that the aforementioned databases
are already collected. Consequently, a batch data processing prevents an on-line data
processing from being achievable.

Constant health parameters

In this chapter, an other assumption is made which consists in considering that the time
needed to accumulate the data is not sufficient to allow a significant variation of the
health parameters wk. The discrete time index k is no longer necessary and the health
parameters representing the whole batch of data are denoted by w.

This assumption holds especially in a test bench where the test duration does not ex-
ceed 10 hours which is not enough to involve important performance drifts. In on-board
performance monitoring, this assumption may also hold but with some restriction on the
batch size.

Steady-state conditions

The steady-state conditions, namely the assumption that all initial transients or fluctuat-
ing conditions have damped out, has the basic advantage that it discards the differential
state variables xk from the estimation procedure. It must be acknowledged that this as-
sumption applies during cruise flights where commercial engines spend as much as 90%
of the time. In this case, the following system model is used:

yk = G(uk, vk,w) + εk (3.2)

which is made of a deterministic simulation model G(uk, vk,w) and a stochastic represen-
tation of the measurement noise εk.
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Linearized model

In addition to the three aforementioned hypotheses, the nonlinear model specified by
relation (3.2) can be approximated by a first-order Taylor expansion around healthy con-
ditions (i.e. w = whl). This leaves the following model:

yk = Gk(w −whl) + ŷhlk + εk (3.3)

where

Gk =
∂G(uk, vk,w)

∂w

∣∣∣∣
uk ; vk=vk ; w=whl

(3.4)

ŷhlk = G(uk, vk,w
hl) (3.5)

The m× p (m and p are respectively the dimensions of the vectors yk and w) matrix Gk

is called the fault influence matrix and characterizes the measurement drifts related to
any modification of the health parameters for the specific operating point (uk and vk).

If the random character of the measurements is left aside, a deterministic simulation ŷk|w
of the measurement can be done based on:

ŷk|w = Gk(w −whl) + ŷhlk ⇒ r̂k|w = yk − ŷk|w

= yk − (Gk(w −whl) + ŷhlk )

= r̂hlk − Gk(w −whl) (3.6)

where r̂hlk = yk − ŷhlk is the residual estimating the distance between the actual and the
health condition of the turbine engine for the time step k.

3.1.2 Square problems

Under these assumptions, the first and more intuitive way to solve the performance as-
sessment problem is to consider one measurement sample (n = 1) where the number of
health parameters to estimate equals the number of measurements (m = p) and to find
that value of w for which r̂k|w = 0. In that case, the matrix G is a square matrix and,
provided that the measurement set allows the determination of all the parameters (G
must be full-ranked in order to be invertible), the diagnosis problem is solved by:

ŵ = whl + G−1r̂hl (3.7)

3.1.3 Over-determined problems

While very simple, the resolution of the diagnosis problem through a square system de-
scription is not very suited in the presence of measurement noise [Loisy et al., 1992] and,
if available, it is often preferable to take advantage of the analytical redundancy of over-
abundant measurement sets (m > p). In this case, the system description is characterized
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by a rectangular matrix G, and the diagnosis problem can be solved in the least-square
sense through:

ŵ = whl + (GTG)−1Gr̂hl (3.8)

3.1.4 Under-determined problems

In the preceding section, it was implicitly assumed that overabundant measurement sets
were available. Nevertheless, in the frame of on-board performance monitoring, the
number of health parameters to be estimated exceeds the number of available measure-
ments and m < p. As a consequence, the matrix product GT

kGk is rank deficient (i.e.
rank(GT

kGk) < p) and cannot be inverted.

To overcome this problem, data samples corresponding to multiple-test points are gathered
to constitute an additional information resulting from the simultaneous incorporation of
various points (say n) [Loisy et al., 1992]. The measurement estimation ŷk|w = Gk(w −
whl) + ŷhlk remains valid and the batch of data is processed by aggregating each individual
matrix Gk and residual r̂hlk into a global matrix G and a global vector r̂hl = y − ŷhl

respectively of dimensions mn× p and mn× 1 with:

y =

 y1
...
yn

 ; ŷhl =

 ŷhl1
...
ŷhln

 and G =

 G1
...
Gn

 (3.9)

If the aggregated model is used to solve the diagnosis problem, it yields:

ŵ = whl + (GTG)−1Gr̂hl (3.10)

If the range of operating points covered by the database is sufficiently broad, the matrix
product GTG is more likely to be full ranked which may enable a stable estimation of the
health parameters w.

3.2 The maximum likelihood approach

The estimation methods described above through relations (3.7), (3.8) and (3.10) do
not make use of the statistical data generation model (2.57). The maximum likelihood
approach is a very general statistical estimation method which is efficient primarily for
large numbers of data samples (large values of n). The present section is intended to give a
short introduction of this method but the interested reader is referred to [Papoulis, 1998]
for a more complete description.
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3.2.1 The maximum likelihood estimator

As already stated in the preceding chapter, the diagnosis task is an inversion process. The
objective is to determine the health parameters w (i.e. the cause) from the observations
yk(i.e. the effects). Basically, the maximum likelihood method assumes that the obser-
vations yk are described by a probability density function p(yk) like (2.57) parameterized
through a set of unknown parameters w. Such a function, called the likelihood function,
is denoted L(w|yk) and represents the probability density of the measurements yk to be
observed as a function of the health parameters w.

At the first sight, the likelihood is just a way of rewriting the pdf of yk. The difference
between the likelihood and the pdf is what is held fixed and what is allowed to vary. In
the likelihood perspective, the observations yk are fixed and the health parameters w are
freely varying.

The maximum likelihood estimator essentially inverts the role of observations (the effects)
and the parameters (the cause) by selecting w in such a way that the observed measure-
ment yk becomes as likely as possible. The maximum likelihood approach to diagnosis is
thus stated as the determination of the health parameter value ŵml which satisfies:

ŵml = arg max
w
{L(w|yk)} (3.11)

In the case of several data samples { y }n1 the maximum likelihood approach leads to:

ŵml = arg max
w
{L(w|{ y }n1 )} (3.12)

3.2.2 Determination of the diagnosis rule

In order to determine the likelihood function in the application of interest, the Gaussian
pdf (2.57) defined for the measurements yk is considered, namely:

p(yk) =
1√

(2π)m |Rr,k|
exp

(
−1

2
(yk − ŷk|w)TR−1r,k(yk − ŷk|w)

)
(3.13)

Substituting ŷk|w by its linearized expression from (3.6) yields the pdf of the measurements
yk as a function of the unknown health parameters w:

L(w|yk) =
1√

(2π)m |Rr,k|
exp

[
−1

2
(̂rhlk − Gk(w −whl))TR−1r,k (̂r

hl
k − Gk(w −whl))

]
(3.14)

Since, the measurement noise is generated by a white and Gaussian random variable, the
likelihood defined for several measurement samples becomes:

L(w|{ y }n1 ) =
n∏
k=1

L(w|yk) (3.15)
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The maximization problem defined in (3.12) can be transformed in:

ŵml = arg max
w

{
n∏
k=1

L(w|yk)

}
(3.16)

and the maximization problem can be transformed into a minimization one by defining
the following objective function:

Jml(w) = −ln
n∏
k=1

L(w|yk)

= −
n∑
k=1

ln L(w|yk) (3.17)

The minimization problem can be solved by finding that value of w which cancels the
derivative of the objective function with respect to w and it holds, after using (3.14) into
(3.17):

∂Jml(w)

∂w
=

n∑
k=1

−GT
kR
−1
r,k (̂r

hl
k − Gk(w −whl)) = 0 (3.18)

If we adopt the notation r̂hl and G defined by (3.9) and also noting that:

Rr =


Rr,1 0 · · · 0

0 Rr,2 0
...

. . .

0 0 Rr,n

 (3.19)

equation (3.18) can be written as:

GTR−1r r̂hl = GTR−1r G(w −whl) ⇒ ŵ = whl +
(
GTR−1r G

)−1
GTR−1r r̂hl (3.20)

The lines of the matrix G must be linearly independent so that the product GTR−1r G
remains invertible (i.e. full ranked). Apart from this restriction, solving the diagnosis
problem is relatively straightforward. If Rr reduces to the unit matrix I, relation (3.20)
reduces to the method of least squares:

ŵ = whl +
(
GTG

)−1
GT r̂hl (3.21)

Moreover, relation (3.20) is derived to take advantage of situations where mn > p but it
still holds in the case of square problems where the number of available measurements
equals the number of parameters. The matrix G becomes a square matrix and relation
(3.20) leads to:

ŵ = whl + G−1
(
GTR−1r

)−1
GTR−1r r̂hl = whl + G−1r̂hl (3.22)

The preceding relation shows that the maximum likelihood approach embeds the deter-
ministic solution of the diagnosis problem. Indeed, in the preceding relation, no reference
is made to the statistical nature of the problem as the covariance matrix Rr disappears.
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3.2.3 The projection matrix

Relation (3.20) represents the orthogonal projection of the mn-dimensional measurement
space onto the p-dimensional health parameter space. Since mn > p the model cannot
exactly match the data and the resulting solution minimizes the distance between the
measurements y and the model prediction. Hence the prediction error is:

r̂ = y − ŷ = y − G(ŵ −whl)− ŷhl (3.23)

where ŵ is given by (3.20). Therefore, it yields:

r̂ = y − ŷhl − G(GTR−1r G)−1GTR−1r r̂hl

=
(
I− G(GTR−1r G)−1GTR−1r

)
r̂hl

= (I− T)̂rhl (3.24)

which leaves the definition of the projection matrix:

T = G(GTR−1r G)−1GTR−1r (3.25)

The mn × mn matrix T is called the projection matrix since it projects y onto ŷ. In
the case of a square system where mn = p, it can be verified that T = I and hence
r̂ = 0. The projected measurements equal the raw measurements which indicates an
exact mapping of the measurements onto the health parameter space and therefore a lack
of cross correlation between measurements. If one of the measurements is removed, the
system cannot be solved. When mn > p, the measurement overabundance creates a cross-
correlation which is noticeable in the matrix T by the appearance of linear dependencies.
Those correlations can be detected by observing the eigen vectors and values of the matrix
T.

Loosely speaking, the necessity of a specific measurement can be assessed by looking at
the diagonal terms of T: if T(i, i) = 1 no redundancy exists and the measurement is
critical (i.e. cannot be removed). Otherwise, 0 < T(i, i) < 1 indicates the presence
of redundancy and cross-correlations with other measurements. In the latter case, the
corresponding measurement can be discarded without loosing the parameter separability.
The projection matrix turns out to be very useful in a measurement validation purpose by
providing a means of detecting which measurements can be cross-validated [Navez, 1993,
Camus, 1997, Dewallef and Léonard, 2001a].

3.2.4 Availability of multiple test-points

In the vast majority of cases in turbine engine diagnosis, there is no analytical redundancy
(m < p) and the inner product GT

kGk is rank deficient. As a consequence, the only solution
to improve the rank of GTG is to include as many operating points as possible. Thus, the
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aggregation of different matrices Gk is likely to increase the rank of the matrix GTG and
therefore to improve the resulting health parameter identification.

In that scope, many methods are found in the turbine engine diagnosis literature which
gather measurements related to different operating points [Loisy et al., 1992, Grönstedt, 2002].
For example, in a test bench, this comes down to run the engine at several operational
regimes and to wait for steady-state conditions to be achieved. Several data samples are
then collected for each individual levels and used afterwards in a health parameter estima-
tion procedure through relation (3.20). Even if it is relatively costly, due to the duration
of the test (up to several hours), such a framework has already been tested in practical
applications where it has shown to improve the diagnosis, but yet, without allowing the
diagnosis of all the faults of interest (see for example [Doel, 2002]).

Nevertheless, in on-board performance monitoring, the availability of steady-state data
points related to different operating conditions (i.e. altitude, flight Mach number, fuel
flow,. . . ) is not straightforward in practice. As shown in figure 3.1, where a typical flight
envelope for a commercial aircraft is represented, steady-state conditions are rarely met
outside the cruise flight (namely for 1700s < t < 3500s) and the availability of multiple
steady-state operating points is difficult to ensure.
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Figure 3.1: Profile of a typical flight envelope for a commercial aircraft.

As a consequence, a matrix G obtained by collecting several individual matrices Gk re-
lated to nearly the same operating conditions is unlikely to be better conditioned than
the individual matrix GT

kGk. In other words, the data samples related to nearly the same
operating point do not constitute a set of independent observations and therefore, the
identification problem remains “ill-conditioned”. By ill-conditioned, it is meant a mathe-
matical problem for which no unique solution exists because, in effect, there is not enough
information specified in the problem [Tikhonov and Arsenin, 1977].
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3.3 Maximum a posteriori

3.3.1 Bayesian perspective to diagnosis

One problem of the likelihood approach is that the variable w is thought of as a deter-
ministic constant parameter while the observations yk are the realization of a random
process (i.e. the measurement uncertainties) so their role are not interchangeable. An-
other problematic issue is that there is no mathematical statements like: based on the
measurements { y }n1 , what is the confidence that w falls in a certain range.

In the Bayesian view, the health parameters w to be determined are considered as the re-
alization of a random variable with probability density function p(w). If p(yk, w) denotes
the joint probability density function describing the probability density of the measure-
ments yk to be observed when the health parameters are w, it holds:

p(yk, w) = p(w| yk) · p(yk)
= p(yk|w) · p(w) (3.26)

p(yk|w) is the conditional probability density of the measurements when the health pa-
rameters take the specific value w. It describes the data generation model as a function
of the health parameter value w. The pdf p(w) describes the prior information about the
value of the health parameters w namely, the information available before the measure-
ments yk are observed. Since the measurements yk are observed, the factor p(yk) is just a
normalizing constant. The pdf p(w| yk), called the posterior, represents the pdf according
which the health parameter values w are distributed. Therefore, the posterior pdf is the
relevant quantity to determine and the diagnosis problem can be stated by solving the
following equation, known as the Bayes’ rule:

p(w| yk) =
p(yk|w) · p(w)

p(yk)
(3.27)

Since the pdf p(yk|w) represents the probability density of the measurements as a function
the health parameter values w it has the same form as the aforementioned likelihood and
p(yk|w) ≡ L(wk|yk). Therefore, with some abuse of notation, relation (3.27) can be
interpreted through the small relation here below:

posterior =
likelihood · prior

evidence
(3.28)

The Bayesian view of the diagnosis problem has several advantages over the maximum
likelihood approach:

• it properly inverts the relationship between causes and effects,

• it enables the incorporation of prior knowledge into the diagnosis rule (which, for
example, could come from previous experiments) and
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• it leads to more accurate estimators (provided that the prior knowledge is accurate).

In the vast majority of cases, one is not interested in the complete posterior conditional
pdf p(w| yk) and it is usually preferable to determine a point estimation ŵ among all
possible values of the health parameters. For example, the mean value of the health
parameters may be estimated by:

ŵexp = E(w) =

∫ +∞

−∞
w p(w| yk) dw (3.29)

An other approach which achieves an important success in turbine engine diagnosis (see
for example [Volponi, 2003b]) is the maximum a posteriori approach where the aim is to
determine that value of w which maximizes the posterior pdf. This comes down to solve
the following maximization problem:

ŵmap = arg max
w
{p(w| yk)}

= arg max
w
{p(yk|w) · p(w)} (3.30)

where, in the last expression, the normalization factor p(yk) has been dropped since its
value does not depend on w.

As a summary, the following one-dimensional example represented in figure 3.2 compares
the maximum likelihood approach to the maximum a posteriori approach. The prior pdf
p(w) is drawn in dashed line together with its most likely value ŵ0 (i.e. the value of w
for which p(w) is maximum). When the measurements yk are observed, the likelihood
function p(yk|w) can be drawn together with the most likely value ŵml. In a Bayesian
perspective, the posterior pdf p(w| yk) can also be found by resolving relation (3.27) which
results in the plain line in figure 3.2. The map estimate ŵmap is found by searching for
the maximum of this function. As shown in the figure, the two maximum values ŵmap

and ŵml do not coincide since the map estimate is “attracted” by the prior belief showing
that, if badly chosen, the prior belief can completely spoil the diagnosis results. Another
thing of interest is that the flatter the prior belief is, the more the posterior coincides
with the measurement likelihood such that, in the extreme situation characterized by
p(w) = constant, it holds :

arg max
w
{p(yk|w)} = arg max

w
{p(wk| yk)}

⇒ ŵmap = ŵml (3.31)

In the case of multiple measurement samples, the whole batch of measurements { y }n1
must be processed all at once and the Bayes’ rule (3.27) becomes:

p(w| { y }n1 ) =
p({ y }n1 |w) · p(w)

p({ y }n1 )
(3.32)

Consequently, the map estimate is found by resolving:

ŵmap = arg max
w
{p({ y }n1 |w) · p(w)} (3.33)
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Figure 3.2: Example of Bayesian estimation

3.3.2 Determination of the diagnosis rule

A suitable way to solve relation (3.33) is to choose some parametric form for both pdf’s
p(yk|w) and p(w). For the former pdf, the analytic expression derived in relation (3.14)
may be used again (since p(yk|w) ≡ L(wk|yk)) and it yields:

p(yk|w) =
1√

(2π)m |Rr,k|
exp

[
−1

2
(̂rhlk − Gk(w −whl))TR−1r,k (̂r

hl
k − Gk(w −whl))

]
(3.34)

The most important objective in the choice of a suitable prior p(w) is that it faithfully
reflects the prior knowledge available to us. In general however, our prior knowledge is
imprecise and any number of prior densities may hardly capture this information. There-
fore, it is sometimes desirable to choose a prior density that models our prior knowledge
but yet that nicely matches the form of the likelihood p(yk|w) so that the optimal esti-
mator can take a simple analytic relation. In our specific application, it is thus natural
to choose a Gaussian prior. The main advantage of such a choice resides in that the
posterior density is also Gaussian (i.e. p(w) is the conjugate prior of p(w| yk)). An other
distinct advantage of the Gaussian statistics is that the map estimate defined by (3.30) is
equivalent to the mean defined by (3.29) and hence:

ŵmap = ŵexp (3.35)

Therefore, if w is assumed Gaussian with mean ŵ0 and covariance matrix Q0, the analytic
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expression for the prior is:

p(w) =
1√

(2π)p |Q0|
exp

[
−1

2
(w − ŵ0)

TQ−10 (w − ŵ0)

]
(3.36)

where:

E(w) = ŵ0 (3.37)

E
(
(w − ŵ0)(w − ŵ0)

T
)

= Q0 (3.38)

In general, the p×p prior covariance matrix Q0 is a plain matrix. However, as mentioned
above, the prior knowledge available to the user is usually quite simple and comes down
to specify a neighborhood around the reference value ŵ0 to which the health parameters
are expected to belong. As a consequence, the prior covariance will be considered strictly
diagonal. Since no other information is available, it is also assumed that the prior refers
to nominal conditions (ŵ0 = whl).

Since the measurement noise is assumed white and Gaussian, relation (3.33) can be trans-
formed in:

ŵmap = arg max
w

{
p(w) ·

n∏
k=1

p(yk|w)

}

= arg min
w

{
−ln p(w)−

n∑
k=1

ln [p(yk|w)]

}
(3.39)

which also transforms the maximization problem into a minimization one. With the two
pdf’s defined by relations (3.14) and (3.36), an analytical expression can be found for the
preceding minimization problem. For ease of notations, the following objective Jmap(w)
is defined:

Jmap(w) = −ln p(w)−
n∑
k=1

ln [p(yk|w)]

= cst +
1

2
(w −whl)TQ−10 (w −whl)

+
n∑
k=1

1

2
(̂rhlk − Gk(w −whl))TR−1r,k (̂r

hl
k − Gk(w −whl)) (3.40)

By adopting the notations defined in (3.9) and (3.19) the objective function yields:

Jmap(w) = cst +
1

2
(w −whl)TQ−10 (w −whl)

+
1

2
(̂rhlk − Gk(w −whl))TR−1r (̂rhlk − Gk(w −whl)) (3.41)

The second term in relation (3.41) is a “constraint” which penalizes solutions far from
the nominal values. The maximum a posteriori estimation is also sometimes referred to
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as ridge regression or again regularization depending on the underlying assumptions or
the application context. However, all these methods rely on the same assumption that
the process generating the data obeys certain smoothness constraints.

The resulting estimation is found similarly to the maximum likelihood approach by equat-
ing the derivative of (3.41) with respect to w to zero:

∂Jmap(w)

∂w
= −GTR−1r (̂rhlk − Gk(w −whl)) + Q−10 (w −whl) = 0

⇒ ŵ = whl +
(
Q−10 + GTR−1r G

)−1
GTR−1r r̂hl (3.42)

The difference between relations (3.20) and (3.42) resides in the presence of the additive
matrix Q−10 . As mentioned earlier in section 3.2, a reliable diagnosis is obtained when
the inner product GTR−1r G is invertible (i.e. full ranked) which is obtained if the lines of
G are linearly independent. This simply states that the parameters must be separable1

from each other.

The most favorable situation occurs if the product GTR−1r G is diagonal dominant. Practi-
cally this situation occurs with measurement sets providing a sufficient redundancy such
that each parameter is separable. As the number of available measurements decreases
to p, the matrix becomes less diagonal dominant. If mn < p linear dependencies appear
into the matrix G and make the product GTR−1r G badly conditioned such that its in-
version is impractical. The main effect of the additive term Q−10 is to make the matrix
Q−10 + GTR−1r G closer to a diagonal matrix in order to improve its ability to be inverted.

3.3.3 Effective number of parameters

The effect of the constraints on the diagnosis procedure can be highlighted through the
effective number of parameters. This notion, introduced in [Moody, 1992]2, is intended to
estimate the number of effectively identified parameters in the presence of prior informa-
tion into the identification. The simplest formula for the determination of p′ is found in
[Orr, 1996] and is:

p′ = trace (T) (3.43)

where T is the projection matrix defined in relation (3.25) but which takes a different
form in the case of a map estimation since the determination of ŵ is now done through
(3.42) instead of (3.20). The matrix T is now determined through:

T = G(GTR−1r G + Q−10 )−1GTR−1r (3.44)

The relation (3.43) can be used to illustrate the effect of the constraints on p′ by con-
sidering an identification problem with a diagonal prior covariance matrix of the form

1The ”separability” of a health parameter determines its ability to be individually assessed based on
a set of fault indicators

2The effective number of parameters is also denoted in [MacKay, 1995] by the number of good param-
eter measurements
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Q−10 = κI where κ is a scalar and it yields:

p′ = trace
(
G(GTR−1r G + κI)−1GTR−1r

)
= trace

(
(GTR−1r G + κI)−1GTR−1r G

)
= trace

(
(GTR−1r G + κI)−1(GTR−1r G + κI− κI)

)
= trace

(
I− κ(GTR−1r G + κI)−1

)
= p− κ trace

(
(GTR−1r G + κI)−1

)
= p− κ

p∑
j=1

1

κ+ λj
=

p∑
j=1

λj
κ+ λj

(3.45)

where λj are the eigen values of the matrix GTR−1r G. It is interesting to note that p′ = p
if κ = 0 and decreases if κ is higher. The effect of the constraints on the diagnosis
is to lower the effective number of parameters [Moody, 1992]. The effective number of
parameters turns out to be a useful indicator of the influence of the constraints on the
health parameter identification. If p′ is close to p, the identification method favors the
observed data yk and if p′ is close to 0 (i.e. when p′ � p), the identification favors the
prior knowledge.

3.4 Fault isolation and dimensionality reduction

3.4.1 Possible side-effects of the map estimation

Besides the improvements brought by the matrix Q0 mentioned in the previous section,
the introduction of such prior knowledge may have some undesirable side-effects. Let us
consider again a prior covariance matrix of the form Q−10 = κI where the health parameters
are assumed uncorrelated and bounded in a neighborhood (parameterized by the scalar
κ) of the prior value whl. The higher κ is, the easier the inversion of Q−10 + GTR−1r G will
be, but also, the smaller the neighborhood of whl will be. As already stressed in the small
example represented in figure 3.2, the solution is attracted by the prior such that, if κ is
too large, the resulting diagnosis may turn out to be biased.

In the context of component fault isolation (i.e. identifying and isolating the component
in which a specific fault is occurring), the map estimation distributes the fault onto sev-
eral components. For example, a single fault on the high pressure compressor is seen,
through a map estimation, as several smaller faults concerning not only the high pressure
compressor but also other components. The decrease of the isolation capacity due to the
map estimation is referred to as the smearing effect in [Provost, 2003]. It is a direct con-
sequence of the assumption for which the process under study follows certain smoothness
constraints. Therefore, a fault characterized by several small deviations from the nominal
values is more probable than one important drift on a single health parameter.

In the framework of on-board performance monitoring, such a smearing effect may dra-
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matically decrease the efficiency of the diagnosis tool and the recourse to fault isolation or
fault concentration techniques turns out to be mandatory. The purpose of fault isolation
techniques is to reduce the number of health parameters to assess by discarding those
which are not expected to participate to the fault. It must be pointed out that most of
the methods used with success in turbine engine diagnosis rely on some sort of dimension-
ality reduction techniques. The available approaches to concentrate engine faults may be
split up into the three following categories.

3.4.2 Subset selection

The purpose of subset selection is to remove parameters by working on subsets (say p′)
of the complete set of parameters. For example, in [Aretakis et al., 2003], an incremental
search procedure compares all the possible combinations made of p′ parameters. Since
the number of possible combination is p!/ [(p− p′)!p′!], this may become impractical when
p is large (above 10), restricting the feature selection to small sets of parameters.

An other approach found in [Kobayashi and Simon, 2003] builds a bank of diagnosis meth-
ods, each of which considering a subset of p′ parameters. The individual diagnosis tool
which best re-predicts the observed fault indicators is selected. If several models are in-
volved in the fault, results must be gathered to lead to the final diagnosis. The so-called
“fault concentrator” implemented in [Provost, 2003] may also be cited. The subset selec-
tion is achieved by removing one by one each health parameters from the complete set of
parameters until the fault is concentrated onto one and only one parameter. This method
is equivalent to the bank of diagnosis methods where p′ is set to 1.

3.4.3 Unsupervised methods

Similarly to the subset selection, the scope of unsupervised methods is to remove un-
necessary dimensions from the health parameter space by finding redundancies into the
available fault signatures. One of the most well known method is the so-called princi-
pal component analysis (PCA) which is mainly a data analysis tool within a statistical
framework. The aim of PCA is to search for linear or nonlinear relationships among the
available measurements. This results in two subspaces, a principal component subspace
(PCS) and a residual subspace (RS). The PCS describes a linear subspace where mea-
surements must lie while the RS is orthogonal to the PCS and is such that the orthogonal
projection of the data onto the RS is negligible [Gomez et al., 2000].

While largely used in chemical processes [Amand et al., 2000] or also in structural analysis
[DeBoe and Golinval, 2001], PCA-based diagnosis methods are little documented in the
turbine engine literature. In [Gomez and Lendasse, 2000] a PCA-based diagnosis method
uses an incremental combinatorial sub-space selection to find the optimal subspace that
best reproduces the observed fault indicators. This rather elegant method achieves a very
efficient diagnosis in terms of fault isolation. However the extension of PCA to sequential
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data processing is not straightforward and, as far as we know, no on-line application based
on PCA has been referred in turbine engine diagnosis.

3.4.4 Prior knowledge

In relation (3.42), it is assumed that the engine is healthy (whl) and the range of possible
faults is specified by a diagonal covariance matrix Q0. A possible way to improve the
fault concentration would consist in improving the prior knowledge by favoring some
faults based, for example, on engine records. In practice, however, the availability of such
a prior knowledge on the health parameter values is not straightforward. Even though
analytic models exist describing how the faults influence engine performances, there exists
only few studies linking them to a specific engine history. Classically, the performance
degradations are expressed as a function of only the amount of operating hours. They
rarely encompass information about engine degradations resulting from more complete
engine records such as a foreign object damage, a strike by lightning, operation in harsh
environment like sands,. . . . The use of more “informative” prior knowledge has been
consequently little documented in the turbine engine literature.

An other possible lead consists in selecting a different pdf than the Gaussian pdf to model
the prior knowledge (i.e. p(w)). Such an approach has been studied in [Williams, 1994]
in the frame of Neural network learning where some improvements in terms of parameter
selection have been reported. In turbine engine diagnosis, such an approach has also
been used in [Grodent and Navez, 2001] where the Gaussian pdf is replaced by the δ-
contaminated pdf detailed further in section 3.5.2. Without completely removing the
smearing effect, such a substitution slightly improves the fault isolation by concentrating
the fault on a smaller set of parameters.

3.5 Diagnosis in the presence of sensor faults

Under the Gaussian assumption, the expected value (i.e. the mean) of the random errors
εk is 0. In other words, the measurements are considered unbiased which means that, if
the measurement experiment is repeated several times, the resulting estimation converges
toward the actual value of the quantity to be measured. Nevertheless, situations may
occur where such an assumption does no longer hold. Those situations are referred to as
sensor faults and may be originated by systematic errors (e.g. sensor biases) or also by
random errors which do not respect the Gaussian assumption (e.g. impulsive noise). In
the presence of sensor faults, diagnosis results given by relations (3.20) or (3.42) become
unstable and unreliable (see [Poljak and Tsypkin, 1980] for such a discussion).
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3.5.1 Sensor fault detection techniques

In turbine engine diagnosis the problem of sensor faults is the subject of an increasing
number of contributions. There are mainly three approaches found in the turbine engine
literature to protect the diagnosis against sensor faults.

Measurement pre-processing

The first and most obvious technique consists in protecting the diagnosis tool from sensor
faults through the use of a sensor fault detection and isolation (sfdi) procedure intended
to remove aberrant data from the data samples before they are used by the diagnosis tool.
Many of such techniques can be found in the literature from the most general one (see
for example [ASHRAE, 1976]) to some others which take advantage of more specific con-
figurations. Of course, they are too numerous to be all mentioned herein but the interested
reader is referred to [Healy et al., 1998, Lu and Hsu, 2001, Romessis and Mathioudakis, 2002,
Surender and Ganguli, 2004, Kobayashi and Simon, 2004] for example applications which
are thought to be well representative of the state of the art.

Instrumental variables

A second approach, detailed in [Volponi, 2003a], treats sensor biases symmetrically to
component faults through the use of instrumental variables intended to estimate the
sensor biases b:

yk = Gk(w −whl) + ŷhlk + b + εk (3.46)

where εk is still a white and Gaussian measurement noise with zero mean and covariance
matrix defined by (2.42). The diagnosis problem is then solved on the augmented health
parameter vector [wTbT ]T through relations (3.42). However, such a simple framework
achieves only a poor sensor fault isolation and other additional techniques aimed at iso-
lating the sensor faults are needed. The interested reader is referred to [Volponi, 2003a]
for a more complete information.

Robust health parameter estimation

The Gaussian pdf is a reasonable choice if there is no doubt that it represents faithfully
the random process generating the data. In practice, however, the precise shape of the
probability density function is unknown and the choice of a parametric statistical model
p(yk|w) is a simplification of the often complex real phenomena. Recent developments
in mathematical statistic [Huber, 1992, Lecoutre and Tassi, 1987] are directed to the re-
search of solutions in a context where the validity of a statistical model is not ensured and
where limited assumptions are done on the probability density function. Several defini-
tions of the concept of robustness have been proposed in the literature. In this document
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the following definition is adopted: a statistical procedure is robust if its performance is
slightly affected by little modifications of the law p(yk|w), model of the observations.

The robust approach focuses on making the health parameter estimation robust against
sensor faults. The measurement pre-processing through an sfdi technique is superseded by
a health parameter assessment shielding itself from sensor faults. This approach, which
makes use of robust statistics rather than of the instrumental variables mentioned above,
treats differently sensor faults and component faults. Basically, the Gaussian pdf specified
by (2.36) is replaced by an other pdf named the δ-contaminated function which is intended
to be more stable in the presence of sensor faults.

3.5.2 The δ-contaminated pdf

The basic idea of the δ-contaminated pdf is to consider a Gaussian pdf which is contam-
inated by an other, least informative, pdf intended to model outliers (i.e. sensor faults).
The complete reasoning leading to the determination of the δ-contaminated pdf being
beyond the scope of the present document, the reader is kindly referred to [Huber, 1992]
for the complete development. The resulting pdf is given hereafter:

p(εk) =


1− δ
σy
√

2π
exp

(
− ε2k

2σ2
y

)
if |εk| ≤ ∆σy

1− δ
σy
√

2π
exp

(
−∆|εk|

σy
+

∆2

2

)
if |εk| > ∆σy

(3.47)

where δ is a contamination level which characterizes the amount of sensor faults expected
in the measurement samples. Advised values for this contamination parameter giving the
best compromise between the robustness and the efficiency of the estimation method are
between 1% and 5%. The threshold ∆ is determined based on the value of δ (values of ∆
as a function of δ are given in table 3.1).

The probability density function is rarely used in its generic form (3.47) since the quantity
appearing in the objective function is the negative logarithm denoted here ρh(·), and it
yields:

ρh(εk) = −ln p(εk) =


cst +

ε2k
2σ2

y

if |εk| ≤ ∆σy

cst +
∆|εk|
σy
− ∆2

2
if |εk| > ∆σy

(3.48)

Figure 3.3(a) represents ρh(·) (the constant terms have been dropped) and highlights the
way the δ-contaminated pdf protects against outliers: above a threshold ∆σy a linear
penalizing term is applied instead of a quadratic one which bounds the influence of the
outliers.

At the first sight, the δ-contaminated function is only slightly different from the Gaussian
pdf. However, in practice it involves an important consequence in the resolution of the
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δ ∆
0 ∞

0,001 2,630
0,002 2,435
0,005 2,160
0,01 1,945
0,02 1,717
0,05 1,399
0,1 1,140
0,15 0,980
0,20 0,862
0,25 0,766
0,3 0,685
0,4 0,550
0,5 0,436
0,65 0,291
0,80 0,162

1 0

Table 3.1: Values of ∆ tabulated for different values of δ

diagnosis problem. This is well represented by plotting the derivative of ρh(εk):

ψh(εk) = σ2
y

∂ρh(εk)

∂εk
= max {−∆σy,min {εk,∆σy}} (3.49)

Figure 3.3(b) shows the nonlinear character of the function ψh(·). The consequence on
the resulting diagnosis method is the need of a nonlinear optimization method even in
the case of a linear system model.

The important consequence of the introduction of robust statistic in parameter identifica-
tion can be illustrated by a simple example where a quantity must be estimated through
a set of 10 direct measurements:

yk = y + εk 1 ≤ k ≤ 10 (3.50)

The true value y (i.e. the quantity to estimate) being 1, two measurement samples are
considered. The first one (left column in table 3.2) is created by adding Gaussian white
noise with standard deviation 0.1. The second one (right column in table 3.2) is the same
sample where, however, an outlier is introduced to test the sensitivity of the estimation
process.

To illustrate the influence of the chosen probability density function, three of them are
compared on these two samples.

• The Gaussian pdf with unknown mean y and known variance σ2
y leads to the method

of least squares and simplifies, in the case of a one dimensional problem, to the
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Figure 3.3: Comparison of the δ-contaminated and the Gaussian pdfs.

sample 1 sample 2
0.9300 0.9300
1.0650 1.0650
1.0069 0.0069
1.0421 1.0421
0.8767 0.8767
1.1322 1.1322
1.0233 1.0233
0.7907 0.7907
1.0268 1.0268
1.1063 1.1063

Table 3.2: Two measurement samples generated using a mean value of 1 and a standard
deviation 0.1. A sensor fault is added in sample 2 (indicated in bold).

sample mean :

ŷ =
1

10

10∑
k=1

yk ⇒
{
ŷ(1) = 1.00
ŷ(2) = 0.90

• The Laplace distribution (see [Rousseeuw, 1984]):

p(εk) =
1

2σy
exp

(
−|yk − y|

σy

)
(3.51)

leads to the method of least absolute values and comes down, in this example, to
the sample median3:

ŷ = median({ yk }101 ) ⇒
{
ŷ(1) = 1.025
ŷ(2) = 1.025

3The sample median is a number that separates the highest half of a sample from the lowest half.
More precisely 1/2 of the population will have values less than or equal to the median and 1/2 of the
population will have values equal to or greater than the median.



3.5. DIAGNOSIS IN THE PRESENCE OF SENSOR FAULTS 65

• The δ-contaminated pdf with mean y, variance σ2
y and contamination factor δ = 5%,

which results in the following minimization problem:

ŷ = arg min
y

{
n∑
k=1

ρh(yk − y)

}
⇒
{
ŷ(1) = 1.00
ŷ(2) = 0.99

The estimation based on the Gaussian pdf is very sensitive to sensor faults. Even if it is
the most accurate with Gaussian measurement noise, it is also the worst in the presence
of an outlier. Conversely, the Laplace function is insensitive to the outlier but results in
a less accurate estimation in the case of Gaussian noise. The δ-contaminated distribution
appears as a good tradeoff between the Gaussian pdf and the Laplace pdf. It provides
an accurate estimation in the presence of Gaussian measurement noise while it keeps a
sufficient stability when outliers have to be dealt with.

3.5.3 Determination of the diagnosis rule

The procedure followed to introduce robustness in the health parameter estimation pro-
ceeds similarly to the Gaussian case. The probability density function defined for the
scalar measurement noise εk and given by relation (3.47) is extended to the m-dimensional
residual r̂k|w = r̂hlk − Gk(w − whl) with mean 0 and covariance matrix Rr,k to obtain the
data generation model p(yk|w) defined by:

p(yk|w) =
(1− δ)m√
(2π)m |Rr,k|

exp

[
−1

2
r̂Tk|w(Sr,kRr,k)

−1r̂k|w

]
(3.52)

where r̂k|w = r̂hlk −Gk(w−whl) and the matrix Sr,k is a weighting diagonal matrix intended
to model the influence of the δ-contaminated function :

Sr,k =


s1 0 · · · 0
0 s2 0
...

. . .

0 0 sm

 (3.53)

where each diagonal term si is defined as:

si =
r̂k|w(i)

ψh(̂rk|w(i))
= max

{
1,

r̂k|w(i)

∆σr,k(i)

}
(3.54)

The map estimation problem stated by equation (3.33) therefore leads to a new objective
function of the form:

Jmap(w) = cst +
1

2
(w −whl)TQ−10 (w −whl)

+
1

2

n∑
k=1

(̂rhlk − Gk(w −whl))T (Sr,kRr,k)
−1(̂rhlk − Gk(w −whl)) (3.55)
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whose minimization leads to the resolution of the following equation where the aggregated
quantities G, r̂hl, Rr and Sr (Sr is aggregated similarly to Rr) are used:

∂Jmap(w)

∂w
= −GT (SrRr)

−1(̂rhlk − Gk(w −whl)) + Q−10 (w −whl) = 0

⇒ ŵ = whl +
(
Q−10 + GT (SrRr)

−1G
)−1

GT (SrRr)
−1r̂hl (3.56)

Relation (3.56) can unfortunately not be solved using linear algebra because the matrix
Sr depends on w through relation (3.54). As a consequence the one step ahead relation
(3.42) must be superseded by an iterative procedure where Sr is updated at each iteration.
Relation (3.56) is initialized with Sr = I where I is the unit matrix, and is updated
iteratively until convergence is achieved (see [Huber, 1992] for further explanations and
proof of convergence).

As an example illustration, a linear regression problem based on a set of 30 data samples
contaminated by 5 outliers (15% of the data sample) is considered. Figure 3.4(a) summa-
rizes the results given by the δ-contaminated pdf through relation (3.56) with Q−10 = 0.
The regression obtained assuming a Gaussian measurement noise is attracted by the cloud
of outliers: the resulting line lies far from the reference line (plain line). Conversely, the
use of the δ-contaminated pdf with δ = 5% together with relation (3.56) leads to a much
better result. The resulting line lies close to the true one and is only slightly attracted by
the cloud of outliers.

Furthermore, the δ-contaminated pdf leads to a much clever sensor fault isolation. Figure
3.4(b) represents the detected bias defined by r̂k = r̂hlk −G(ŵ−whl). If the estimated bias
lies outside the confidence interval [−3σy; +3σy] the corresponding measurement may be
considered faulty. The sensor fault detection using the Gaussian pdf is not straightforward
since many measurements lie outside the confidence interval. The search procedure for
detecting and isolating the sensor faults is likely to result in a tricky procedure. With
the δ-contaminated pdf, the isolation is easier since the only points lying outside the
confidence interval are the outliers. It must be noted that, in this case, the sensor fault
detection is a post-processing operation.

3.5.4 Reported applications

Relation (3.56) is tested in [Dewallef and Léonard, 2001a, Dewallef and Léonard, 2001b]
in the framework of steady-state snapshot measurement validation (one measurement
sample at a time) supported by a nonlinear system model representing a single spool,
single flow turbojet equipped with a variable geometry nozzle. Measurement samples are
snapshot data constituted by 14 gas path measurements used to estimate 4 parameters.
The important redundancy provided by such samples allows up to 4 sensor faults to be
detected simultaneously. The δ-contaminated function is found to be far more suitable
than the Gaussian pdf for identification in the presence of sensor faults. The effect of
the Gaussian pdf is nearly the same as shown in figures 3.4(a) and 3.4(b): the estimated
parameters are biased and the sensor faults are spread onto all the fault indicators. With
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Figure 3.4: Comparison of both δ-contaminated (δ = 5%) and Gaussian pdfs on a linear
regression where 30 data are contaminated by 5 outliers.

the robust estimation procedure, the estimated parameters are less biased and the sensor
fault isolation is easier.

The first real application of the δ-contaminated function in the framework of turbofan
engine diagnosis is detailed in [Grodent and Navez, 2001]. A set of 11 health parameters
are identified through a set of 9 fault indicators. The resulting diagnosis is also found to
be resistant to sensor faults added to the database.
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Apart from the aforementioned applications, robust estimation methods are rare in the
turbine engine community. A robust estimation procedure based on the Laplace pdf can be
found in [Sampath and Singh, 2004]. However, such an approach leads to the least median
of square estimation where the function to be minimized is not a quadratic function of the
residuals r̂k|w but the absolute values of the residuals and involves an objective function
whose derivatives with respect to w are discontinuous. Genetic algorithms are proposed
to overcome the problems inherent to the discontinuous minimization but, unfortunately,
the efficiency achieved in terms of sensor fault detection is not detailed.

3.6 Nonlinear system models

3.6.1 Origin of nonlinearities

In most of the aforementioned diagnosis methods, a linearized system model is used.
While easier from a computational point of view such an assumption may not be valid in
some situations and it may turn out to be mandatory to consider nonlinear dependencies
between the health parameters and the measurements (this aspect is more thoroughly
discussed in [Kamboukos and Mathioudakis, 2003]). When using nonlinear models the
residuals r̂k|w are no longer a linear function of the health parameters and become:

r̂k|w = yk − G(uk, vk,w) (3.57)

If the last expression is used within a map or a ml framework, the solving of the diagnosis
problem does not lead any more to the resolution of a linear problem. Furthermore, the
recourse to the δ-contaminated pdf involves additional nonlinearities. In these situations,
the error surface generated by the objective functions Jml or Jmap is no longer a paraboloid
and the minimization problem does not result in the resolution of a linear system of
equations.

Since the nonlinear model has no simple analytic expression and is available only under
the form of a software package, the nonlinear optimization results in an iterative procedure
where the model is repeatedly used together with the data until the minimum is reached
(fig. 3.5).

3.6.2 Acceleration of the optimization procedure

Modern turbofan models consist in nonlinear mass, momentum and energy balance equa-
tions concerning all the components of the engine. Solving such nonlinear equations
involves numerous table look-up, internal loops and sub-routine calls which may be com-
putationally too demanding in on-line or real-time applications and it is sometimes manda-
tory to speed up the complete procedure.

An approach often encountered to accelerate the optimization procedure is depicted in
figure 3.6. It relies on the use of automatic learning to “train” a black box mathematical
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Figure 3.5: Block diagram of an iterative optimization algorithm.

model which “imitates” the original software model. In the framework of diagnosis, such
an approach is tested in [Dewallef and Léonard, 2001b] in which the estimation is made
500 times faster compared to the one based on the resolution of the software model.
Other applications of such a method can be found in [Adam and Léonard, 2002] in the
framework of turbine engine modeling or again in [Pierret, 1999] for turbine engine blade
design.

The problem inherent to such an acceleration method hints to the difficulty to train artifi-
cial neural networks (through back-propagation techniques) with numerous inputs having
very different relevance on the output signals (i.e. the measurements) [de Ubieta, 2004].
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Figure 3.6: Procedure for the training of a neural network to replace the engine simulation
model.
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In fact, successfull applications are restricted to relatively small neural networks (4 to 5
input signals). Of course, there are other methods from automatic learning techniques
that may fit such an application framework but, as far as we know, no such applications
have been reported in the turbine engine literature.

3.6.3 Multiple minima

In the preceding section no mention was made about the nature of the optimization
problem to solve and it was implicitly assumed that the objective function was convex. In
fact, little nonlinearities let the resulting error surface convex (fig. 3.7(a)) such that the
minimum can be found with a reasonable computational load by first-order optimization
methods making use of successive linear approximations of the nonlinear model (gradient
descent, conjugate gradient, . . . ).

w

w1

w2

J

(a) Convex function with a single minimum

wa

w1

w2

wb

JJ

(b) Non convex function with multiple optima

Figure 3.7: Different situations for the minimization of the objective function.

However, when the effect of nonlinearities is more important the error surface may be-
come non-convex and the resulting optimization method must cope with multiple op-
tima. Because first-order methods rely mainly on local information (the derivative at
the current position), they are likely to be trapped in a local minimum (ŵb in figure
3.7(b)). Zero order methods like simulated annealing [Kirkpatrick et al., 1983] or ge-
netic algorithms [Goldberg, 1989] have been proposed to supersede first-order optimiza-
tion methods. For example, genetic algorithms use a global information rather then
the local information contained in the derivatives at the current estimate. This feature
makes them able to escape from local minima. Even if successfully applied in design
engineering [Pierret, 1999, Kelner and Léonard, 2002, Kelner and Léonard, 2003], those
methods gave results, in turbine engine diagnosis, that do not out-perform first-order
methods (see [Sampath and Gulati, 2002, Gulati et al., 2003] for example applications
and [Kamboukos et al., 2003, Grönstedt and Wallin, 2004] for comparative studies of sev-
eral optimization methods in turbine engine diagnosis).



Chapter 4

Sequential identification

This chapter is dedicated to the introduction of the recursive solving
of the diagnosis problem. Due to its very general view, the Bayesian
perspective to system identification is used to derive a Kalman filter
which sequentially estimates the health parameters. Problems related to
the robustness against sensor faults and time-varying health conditions
are also addressed in this chapter. The introduction of the diagnosis
method is followed by an application to on-board performance monitoring
on the turbofan layout detailed in chapter 2.
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4.1 Context and motivations

In chapter 3, the diagnosis problem is addressed in terms of batch data processing for
which a database is stored and processed afterwards. Within this framework, the GPA
approach to diagnosis leads us to the map estimation of the health parameters which is
based on the processing of several measurement samples related to different operating
conditions (defined by uk and vk). The lack of sensors is circumvented by including a
prior information on the possible engine faults.

The issues related to fault isolation procedures, sensor fault detection and isolation tech-
niques as well as nonlinear system models are also introduced. Generally speaking, all
the applications mentioned in chapter 3 are relevant and achieve satisfactory diagnosis.
The choice of a specific method depends on the precise application of interest.

The present research follows some previous works done at the University of Liège [Navez, 1993,
Camus, 1997] and by the industrial partner Techspace Aero [Grodent and Navez, 2001].
However, these contributions are all restricted to a batch data processing and require
that steady-state conditions are achieved. The extension of these diagnosis tools to ap-
plications where data are growing continuously requires sequential estimation procedures
which do not involve the batch processing of the full block of data but only a simple
update of the health parameters as new data are available. The development of such a
sequential approach is the main objective of this PhD thesis.

The procedure followed hereafter to derive a sequential estimation of the health parameters
begins with the Bayes’ rule (3.27) and extends the map estimates (3.42) and (3.56), derived
for batch data processing, to a sequential data processing through the well known Kalman
filter. In fact, the Kalman filter is viewed as a way to sequentially solve the Bayes’ rule.

The basic Kalman filter is a linear, discrete time, finite-dimensional system with a re-
cursive structure that makes it well suited for an implementation on a digital computer.
A key property of the Kalman filter is that it is the minimum mean-square (variance)
estimator of a linear system. Applications of Kalman filter theory may also be extended
to nonlinear systems [Haykin, 2001].

The derivation of the Kalman filter propagation-update rule presented herein is based on
the map perspective and is not the most general one since it requires Gaussian statistics.
The interested reader is referred to [Kalman, 1960] (or also [Zarchan and Musoff, 2000])
for a more general derivation of the Kalman filter where Gaussian statistics are not re-
quired. The present approach considers that map estimation methods are massively used
in turbine engine diagnosis and benefit from a significant literature. Hence, such a frame-
work appears more natural to developers of turbine engine diagnosis tools.
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4.2 MAP approach to sequential identification

4.2.1 Bayesian perspective

Given the observations { y }k1 up to the time step k, the goal is to determine a suitable
estimation of the health parameters w. In a sequential data processing, the data samples
yk are processed one by one. Therefore, applying the Bayes’ rule to the intermediate time
step k yields:

p(w, { y }k1) = p(w| { y }k1) · p(yk| { y }k−11 ) · p({ y }k−11 )

= p(yk|w, { y }k−11 ) · p(w| { y }k−11 ) · p({ y }k−11 ) (4.1)

In the preceding relation p(yk|w, { y }k−11 ) can be simplified in p(yk|w) since yk described
by relation (2.44), namely:

yk = G(uk, vk,w) + εk (4.2)

is statistically independent of { y }k−11 . This is a consequence of the assumption according
which the random measurement noise is white and Gaussian. Therefore, relation (4.1),
can be solved for p(w| { y }k1) and it holds:

p(w| { y }k1) =
p(yk|w) · p(w| { y }k−11 )

p(yk| { y }k−11 )
(4.3)

The preceding recursion specifies that the current pdf for the health parameters is a
function of the previous pdf and the most recent data. Relation (4.3) is similar to relation
(3.27) since it represents the same update rule where the prior information is updated
once the observations yk are realized:

posterior =
likelihood · prior

evidence
(4.4)

In relation (4.3), the likelihood is still p(yk|w) which expresses the correlation between
the observations and the health parameters w. The prior p(w| { y }k−11 ) contains all the
knowledge about the health parameters accumulated from past data and from any prior
knowledge available before the data have been observed. The denominator p(yk| { y }k−11 )
is still a normalization factor whose value is independent of w.

Therefore, a map estimate of the health parameters w can be found by solving the fol-
lowing maximization problem:

ŵmap = arg max
w

{
p(w| { y }k1)

}
= arg max

w

{
p(yk|w) · p(w| { y }k−11 )

}
(4.5)

The likelihood function can be expressed again by the relation (3.14) namely:

p(yk|w) =
1√

(2π)m |Rr,k|
exp

[
−1

2
(̂rhlk − Gk(w −whl))TR−1r,k (̂r

hl
k − Gk(w −whl))

]
(4.6)
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where r̂hlk = yk − ŷhlk . For the reasons already mentioned in section 3.3.2, the prior
p(w| { y }k−11 ) may be modelled by a Gaussian pdf of the form:

p(w| { y }k−11 ) =
1√

(2π)p
∣∣P−w,k∣∣exp

[
−1

2
(w − ŵ−k )T (P−w,k)

−1(w − ŵ−k )

]
(4.7)

with

ŵ−k = E(w| { y }k−11 ) =

∫ ∞
−∞

w p(w| { y }k−11 ) dw (4.8)

P−w,k = E
(
(w − ŵ−k )(w − ŵ−k )T | { y }k−11

)
(4.9)

where ŵ−k and P−w,k are respectively the prior mean and covariance of the health parameters
at time step k. Their physical meaning is similar to the one of the prior value ŵ0 and
covariance Q0 defined in the preceding chapter except that ŵ−k and P−w,k also embed the
information of all past data from time step 1 to k−1. A reasonable solution to determine
the prior health parameter estimate ŵ−k and covariance matrix P−w,k consists in using the
posterior statistics at the previous time step.

For constant health conditions, the health parameters to be determined are unchanged
for all the data yk. Therefore, the priors ŵ−k and P−w,k are equal to the previous estimate
ŵk−1 and Pw,k−1 and substituting (4.6) and (4.7) into (4.5) leads to a simple update rule
similar to relation (3.42). However, for variable health condition, this simple recursion
is not feasible since the current health parameters wk are different from their previous
value wk−1. In such cases, the determination of the priors is not straightforward since no
knowledge is available to determine, in advance, the evolution of the health parameter
values in time.

4.2.2 Health parameter state-space representation

In order to introduce variable health conditions, it is very convenient to give the health
parameters wk their own state-space representation. Such a state-space formulation can
be introduced by the following relation:

wk = wk−1 + ωk (4.10)

ωk is called the process noise because, similarly to the measurement noise εk, it introduces
a random character of the time series created by the health parameters. The health
parameter state space representation is equivalent to a first-order Markov process which
states that the health condition of the engine at time step k depends only on its condition
at the previous time step k − 1 [de Freitas et al., 1998]. The variation rate is controlled
by the process noise ωk which is assumed generated by a white and Gaussian random
variable with zero mean and covariance matrix Rw,k defined by:

E(ωk) = 0 (4.11)

E(ωk ω
T
j ) =

{
Rw,k if k = j
0 if k 6= j

(4.12)
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The state-space representation (4.10) constitutes an exogenous information intended to
estimate the prior pdf according to the following decomposition:

p(wk| { y }k−11 ) =

∫
p(wk|wk−1) · p(wk−1| { y }k−11 ) dwk−1 (4.13)

The state-space representation comes into play by specifying the probability density of
the health parameter transition p(wk|wk−1). Consequently, the recursive estimation can
be stated on the basis of the current measurement yk and the preceding health parameter
estimate ŵk−1 so only the previous estimate requires storage.

Using relation (4.10) in the definition (4.8) of the prior mean ŵ−k yields:

ŵ−k = E(wk| { y }k−11 ) = E(wk−1 + ωk| { y }k−11 )

= E(wk−1| { y }k−11 ) + E(ωk| { y }k−11 )

= ŵk−1 (4.14)

since the process noise ωk is white with 0 mean. Similarly, if relation (4.10) is used in the
definition (4.9) of the prior covariance matrix P−w,k, it yields:

P−w,k = E
(
(wk − ŵ−k )(wk − ŵ−k )T | { y }k−11

)
= E

(
(wk−1 + ωk − ŵk−1)(wk−1 + ωk − ŵk−1)

T | { y }k−11

)
= E

(
(wk−1 − ŵk−1)(wk−1 − ŵk−1)

T | { y }k−11

)
+ E

(
ωkω

T
k | { y }k−11

)
+E

(
(wk−1 − ŵk−1)ω

T
k | { y }k−11

)
+ E

(
ωk(wk−1 − ŵk−1)

T | { y }k−11

)
= Pw,k−1 + Rw,k (4.15)

where E
(
(wk−1 − ŵk−1)ω

T
k | { y }k−11

)
= E

(
ωk(wk−1 − ŵk−1)

T | { y }k−11

)
= 0 since the

process noise ωk is independent of the previous health parameters wk−1.

In time constant systems (wk = constant), the health parameters constitute a constant
deterministic process and the related covariance matrix Rw,k equals 0 such that P−w,k =
Pw,k−1. Yet, even if the health parameters are constant, a constant diagonal matrix Rw,k is
often introduced to improve the stability of the estimation process (this aspect is detailed
further in section 4.2.5).

4.2.3 Update rule determination

The determination of the health parameter update rule consists, similarly to the preceding
chapter, in applying the maximum a posteriori approach stated by relation (4.5) which
leads to:

ŵk = arg max
wk

{
p(yk|wk) · p(wk| { y }k−11 )

}
= arg min

wk

{
−ln p(yk|wk) − ln p(wk| { y }k−11 )

}
= arg min

wk

{Jmap(wk)} (4.16)
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The objective function Jmap(wk) can be developed using (4.6) and (4.7) which yields:

Jmap(wk) = cst + (̂rhlk − Gk(wk −whl))TR−1r,k (̂r
hl
k − Gk(wk −whl))

+ (wk − ŵ−k )T (P−w,k)
−1(wk − ŵ−k ) (4.17)

After derivation of (4.17) with respect to wk, the resolution of the minimization problem
leads to the resolution of the following equation:

∂Jmap(wk)

∂wk

= −GT
kR
−1
r,k (̂r

hl
k − Gk(wk −whl)) + (P−w,k)

−1(wk − ŵ−k ) = 0 (4.18)

By introducing the prior measurement estimate ŷ−k and the prior residual r̂−k defined by:

ŷ−k = Gk(ŵ
−
k −whl) + ŷhlk (4.19)

r̂−k = yk − ŷ−k = yk − Gk(ŵ
−
k −whl)− ŷhlk

= r̂hlk − Gk(ŵ
−
k −whl) (4.20)

the previous equation can be solved and it holds:

∂Jmap(wk)

∂wk

= −GT
k (Rr,k)

−1 (̂r−k − Gk(wk − ŵ−k )
)

+ (P−w,k)
−1(wk − ŵ−k ) = 0

⇒
[
(P−w,k)

−1 + GT
k (Rr,k)

−1Gk

]
(wk − ŵ−k ) = GT

k (Rr,k)
−1r̂−k

⇒ ŵk = ŵ−k +
[
(P−w,k)

−1 + GT
k (Rr,k)

−1Gk

]−1
GT
k (Rr,k)

−1r̂−k (4.21)

The last equation leaves the update rule for the estimated health parameters:

ŵk = ŵ−k + Kr̂−k (4.22)

where the matrix K is called the Kalman gain and is defined by:

K =
[
(P−w,k)

−1 + GT
k (Rr,k)

−1Gk

]−1
GT
k (Rr,k)

−1 (4.23)

The computation of the Kalman gain involves the 2 inversions of a p× p matrix where p
is the number of health parameters and 1 inversion of an m ×m matrix where m is the
number of measurements. Alternatively, the application of the matrix inversion lemma:(

A−1 + BDC
)−1

= A− AB
(
CAB + D−1

)−1
CA (4.24)

to the Kalman gain defined in (4.23) yields:

K =
[
P−w,k − P−w,kG

T
k (GkP

−
w,kG

T
k + Rr,k)

−1GkP
−
w,k

]
GT
kR
−1
r,k

= P−w,kG
T
kR
−1
r,k − P−w,kG

T
k (GkP

−
w,kG

T
k + R−1r,kGkP

−
w,kG

T
kR
−1
r,k

= P−w,kG
T
k (GkP

−
w,kG

T
k + Rr,k)

−1 (4.25)
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which is the commonly used form for the Kalman gain. The health parameter update
mechanism is represented schematically in figure 4.1: the health parameter estimate re-
lated to the time index k − 1 is fed into a health parameter transition model in order
to predict the prior value ŵ−k which is, in turn, fed into the engine performance model
in order to predict a measurement estimate through ŷ−k = Gk(ŵ

−
k − whl) + ŷhl. This

prior estimate ŷ−k is compared to the raw measurements in order to build the residuals
r̂−k = yk − ŷ−k needed by the health parameter update.

engine performance
model

yk

  K

health parameter
transition model

vkuk

prediction

correction

yk
-

rk-

unit delay
wk

wk-1 wk
-

Figure 4.1: Block diagram of a linear Kalman filter for the sequential estimation of the
health parameters.

The Kalman gain worths a more thorough explanation in order to understand its impor-
tance in the stability of the estimation procedure. The matrix GkP

−
w,kG

T
k represents the

projection of the health parameter prior covariance onto the measurement space which
allows its comparison to the measurement uncertainty represented by the noise covariance
matrix Rr,k. The Kalman gain can therefore be considered as a weighting factor which
balances the update from the measurement with the prior knowledge. Loosely speaking
the Kalman gain can be interpreted as follows:

Kalman gain =
prior uncertainty

prior uncertainty + measurement uncertainty
(4.26)

If the prior belief is undoubtful (P−w,k = 0), the Kalman gain is cancelled so as to avoid

any update by the measurements. Otherwise, if no prior is available, (P−w,k)
−1 = 0 and the

Kalman gain tends to (GT
kR
−1
r,kG

T
k )−1GT

kR
−1
r,k: the measurement sample is “fully” trusted

since no other information is available (this comes down to a maximum likelihood esti-
mate). The reference which determines if the prior is “high” or “low” is the measurement
uncertainty represented by the measurement noise covariance matrix Rr,k.

If the Kalman gain allows the update of the health parameter estimate based on the
current fault indicators and the previous estimate, it is still not sufficient to completely
describe the recursive estimation algorithm. Indeed, the posterior covariance matrix Pw,k
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must also be determined so as to complete the description of the posterior pdf. The update
rule for the covariance matrix is based on the “reconstruction” of the covariance matrix
around the new estimate ŵk. As the posterior pdf p(wk| { y }k1) is assumed Gaussian, it
yields:

ŵk = arg max
wk

{
p(wk| { y }k1)

}
= E(wk|{ y }k1) =

∫ ∞
−∞

wk p(wk| { y }k1) dwk (4.27)

and the maximum a posteriori estimate is equivalent to the expected value [Nelson, 2000,
Volponi, 2003b]. Therefore, the definition of the covariance matrix (A.4) yields:

Pw,k = E[(wk − ŵk)(wk − ŵk)
T |{ y }k1] (4.28)

By replacing ŵk by its expression from (4.22), it comes:

Pw,k = E
[
(wk − ŵ−k −Kr̂−k )(wk − ŵ−k −Kr̂−k )T |{ y }k1

]
= E

[
(wk − ŵ−k )(wk − ŵ−k )T |{ y }k1

]
+ E

[
Kr̂−k r̂

−T
k KT |{ y }k1

]
−E

[
(wk − ŵ−k )̂r−Tk KT |{ y }k1

]
− E

[
Kr̂−k (wk − ŵ−k )T |{ y }k1

]
(4.29)

where the first term in (4.29) is simply the prior covariance matrix P−w,k and the last three
terms are developed, noting that:

r̂−k = r̂hlk − Gk(ŵ
−
k −whl) = r̂k|w + Gk(wk − ŵ−k ) (4.30)

and also that the residual r̂k|w is independent of the health parameters:

E
[
(wk − ŵ−k )̂rTk|w|{ y }k1

]
= E

[̂
rk|w(wk − ŵ−k )T |{ y }k1

]
= 0 (4.31)

The expression for the last three terms are thus:

E
[
Kr̂−k r̂

−T
k KT |{ y }k1

]
= KGkP

−
w,kG

T
kK

T + KRr,kK
T

= K(GkP
−
w,kG

T
k + Rr,k)K

T (4.32)

E
[
(wk − ŵ−k )̂r−Tk KT |{ y }k1

]
= P−w,kG

T
kK

T

= P−w,kG
T
k

(
Rr,k + GkP

−
w,kG

T
k

)−1
GkP

−
w,k

= K
(
SrRr + GkP

−
w,kG

T
k

)
KT (4.33)

E
[̂
r−k (wk − ŵ−k )TKT |{ y }k1

]
= KGkP

−
w,k (4.34)

Merging relations (4.32), (4.33) and (4.34) into the covariance update rule leads to:

Pw,k = P−w,k −K
(
Rr,k + GkP

−
w,kG

T
k

)
KT + K

[
GkP

−
w,kG

T
k + Rr,k

]
KT −KGkP

−
w,k

= (I−KGk)P
−
w,k (4.35)



4.2. MAP APPROACH TO SEQUENTIAL IDENTIFICATION 79

Relation (4.35) is the second update rule which completes the estimation procedure. The
covariance decreases from a factor (I−KGk), where I is a unit matrix of appropriate
dimension, for each new data sample. This covariance decrease is proportional to the
gain K and is an image of the amount of information extracted from the data.

With the two update rules (4.22) and (4.35), it is now possible to have a more accurate
picture of the whole procedure. The Kalman filter is detailed in algorithm 1 extracted
from [Haykin, 2001]. This algorithm can also be compared to the block diagram depicted
in figure 4.1.

Algorithm 1 Linear Kalman filter algorithm for health parameter estimation

Require: ŵ0 = whl and Pw,0 = Q0

1: for k = 1 to n do
2: ŵ−k = ŵk−1

3: P−w,k = Pw,k−1 + Rw,k

4: r̂−k = yk − Gk(ŵ
−
k −whl)− ŷhlk

5: K = P−w,kG
T
k

(
GkP

−
w,kG

T
k + Rr,k

)−1
6: ŵk = ŵ−k + Kr̂−k
7: Pw,k = (I−KGk)P

−
w,k

8: end for

The recursion begins with initial values ŵ0 and Pw,0 respectively for the health parameter
estimate and the covariance. Pw,0 corresponds to the prior knowledge Q0 used in chapter
3 and represents our belief on the health parameters before any measurement has been
performed. Pw,0 is usually chosen large enough to embed all possible faults. It must be
kept in mind that a too important constraint (Pw,0 too small) is likely to result in a biased
estimation. With the first measurement samples the covariance P−w,k is high which involves
an important speed of convergence. After a while, the covariance decreases through the
covariance update rule (4.35) which decreases the Kalman gain. As a consequence, the
convergence speed decreases and the algorithm converges with small steps to the final
value.

The Kalman filter may be considered as a minimization procedure where the data are
processed sequentially rather than by batches. For linear models and Gaussian noise,
algorithm 1 is completely equivalent to relation (3.42). Such a framework possesses very
appealing properties in practical applications since the user is provided with the results
on-line which allows him to make a decision earlier than if he had to wait for the database
to be built and processed.

4.2.4 The projection matrix

Based on the Kalman gain K, a parallel can be made with the projection matrix T defined
in relation (3.44). The purpose of this matrix is to represent the projection of the predicted
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measurements ŷk onto the raw measurements yk. The matrix T takes the following form
in the case of a batch map estimate:

T = G(GTR−1r G + Q−10 )−1GTR−1r (4.36)

If one wants to define this matrix for each time step k within the Kalman filter it yields:

Tk = GkP
−
w,kG

T
k

(
GkP

−
w,kG

T
k + Rr,k

)−1
= GkK (4.37)

The matrix Tk can be used to assess the effective number of parameters p′ through:

p′ = trace(Tk) (4.38)

The effective number of parameters is a useful image of the magnitude of the Kalman
gain. If p′ = p the map estimate degenerates into a maximum likelihood estimator and if
p′ < p the effect of the prior is more important.

4.2.5 Divergence phenomenon

The Kalman filter procedure described above in algorithm 1 is subject to serious numerical
difficulties that are documented in the literature (see for example [Puskorius and Feldkamp, 2001,
Kaminsky et al., 1968]). The covariance update rule is formulated as a difference between
two matrices P−w,k and KGP−w,k and hence, the matrix Pw,k resulting from this computa-
tion may become non definite positive. Such a situation is unacceptable since Pw,k is
a covariance matrix which must remain positive definite. The unstable behavior of the
Kalman filter due to numerical inaccuracies is called the divergence phenomenon. To
overcome this problem, the matrix Pw,k is propagated in a square root form using the
Cholesky factorization:

Pw,k =
√

Pw,k
T√

Pw,k (4.39)

where
√
Pw,k is an upper triangular matrix. In linear algebra, the Cholesky factor is

commonly referred to as the square root of the matrix Pw,k. Accordingly, any variant of
the Kalman filter based on the Cholesky factorization is referred to as the square-root

filtering. It is important to note that the matrix product
√

Pw,k
T√

Pw,k is much less
likely to become indefinite, because the product of any square matrix and its transpose
is always positive-definite. Indeed, even in the presence of roundoff errors, the numeri-
cal conditioning of the Cholesky factor

√
Pw,k is generally much better than Pw,k itself

[Haykin, 2001].

In order to avoid the more complicated square-root formulation a constant diagonal matrix
Rw,k may be introduced as an artificial process noise. Adding a constant term to the
diagonal of the covariance matrix Pw,k−1 allows us to control the proper evolution of Pw,k.
The artificial process noise is also found in [Puskorius and Feldkamp, 2001] to accelerate
the convergence and, more importantly, to improve the results even with constant health
conditions.
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4.3 Making the Kalman filter sensor fault tolerant

4.3.1 Principle

As described in the previous chapter, the use of the Gaussian probability density func-
tion to model the measurement noise is not always purposeful where sensor faults and
outliers are present in the measurement samples. The introduction of robustness in se-
quential estimation algorithms, while not new, has not been the subject of many pub-
lications in the framework of turbine engine diagnosis. Some early works found for ro-
bust stochastic approximation algorithms can be found in [Martin and Masreliez, 1975,
Price and Vandelinde, 1979, Mitter and Shick, 1965, Martin and Masreliez, 1975]. After
Kalman’s work, other studies intended to derive robust versions of the Kalman filter have
been published mainly in the control literature [Martin and Masreliez, 1977, Ershov and Lipster, 1978,
Ershov, 1978], but their practical impact is limited since they give few clues to derive a
practical application.

The approach detailed in the present section is similar to the one advised in [Masreliez, 1975]
and more recently in [Yang et al., 1997, Tsai and Kurz, 1983, Connor et al., 1994, Rao, 1996]:
a more robust Kalman filter is proposed which models the measurement noise εk (i.e.
p(yk|wk)) by a heavy tailed distribution (e.g. the δ-contaminated pdf). Due to its good
behavior in the presence of outliers, the δ-contaminated pdf appears a good candidate
and is selected in the present document to make the Kalman filter sensor fault tolerant.
The prior p(wk| { y }k−11 ) is kept Gaussian.

The substitution of the Gaussian pdf by the δ-contaminated one is, however, not straight-
forward in practice. The nonlinearity involved by the function ψh(̂rk|w) has already been
recognized to increase the computational load, even in the case of a linear system model. In
the framework of sequential estimation, the consequence is even more important since nei-
ther the product of two individual δ-contaminated pdf nor the product of a δ-contaminated
pdf by a Gaussian pdf gives a δ-contaminated pdf. Accordingly, the simple analytic rela-
tions of algorithm 1 are no longer valid.

4.3.2 Health parameter update rule

The procedure detailed herein results in a rather pragmatic view of robust estimation
for which the estimate resulting from the observation of several samples following a δ-
contaminated pdf is assumed to be asymptotically Gaussian [Huber, 1992]. The method
proposed herein has the advantage of being computationally attractive as well as easy to
understand and implement.

In section 3.5.3, a robust estimation procedure is developed by having recourse to the
following δ-contaminated pdf:

p(yk|wk) =
(1− δ)m√
(2π)m |Rr,k|

exp

[
−1

2
r̂Tk|w(Sr,kRr,k)

−1r̂k|w

]
(4.40)
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where r̂k|w = r̂hlk − Gk(wk − whl) and the weighting matrix Sr,k bounds the influence of
outliers. Since Sr,k depends on wk, the estimation of the health parameters comes down to
an iterative procedure where Sr,k is updated at each iteration. In a sequential estimation
framework this would result in an iterative procedure for each time step which would
significantly increase the computational load. Therefore, it appears more appropriate to
estimate Sr,k for wk = ŵ−k and to “linearize” the estimation procedure by replacing the
δ-contaminated pdf representing the measurement likelihood by an equivalent Gaussian
pdf with covariance matrix defined by:

E (̂rk|w r̂
T
k|w) =

{
S−r,kRr,k if k = j

0 if k 6= j
(4.41)

where S−r,k is still diagonal but with the diagonal terms s−i defined by:

s−i =
r̂−k (i)

ψh(̂r
−
k (i))

= max

{
1,

r̂−k (i)

∆σr,k(i)

}
(4.42)

The corresponding update rule is derived by the resolution of the following equation
obtained by substituting Rr,k by Rr,kS

−
r,k into relation (4.17).

∂Jmap(wk)

∂wk

= −GT
k (S−r,kRr,k)

−1(̂rhlk − Gk(wk −whl)) + (P−w,k)
−1(wk − ŵ−k ) = 0

⇒ ŵk = ŵ−k + P−w,kG
T
k

(
GkP

−
w,kG

T
k + S−r,kRr,k

)−1
r̂−k (4.43)

which leaves the Kalman gain:

ŵk = ŵ−k + Kr̂−k with K = P−w,kG
T
k

(
GkP

−
w,kG

T
k + S−r,kRr,k

)−1
(4.44)

The Kalman gain defined above is slightly different from the one defined by relation
(4.25). The measurement noise covariance Rr,k is now multiplied by the matrix S−r,k
which deemphasizes the influence of large residuals. In effect, a large residual generates a
multiplying factor S−r,k greater than one which decreases the Kalman gain for this specific
residual.

Besides the Kalman gain, the introduction of the δ-contaminated function may also be
expected to modify the covariance update rule stated by relation (4.35) since it must take
into account the fact that some measurements are “less” used than it is specified by the
measurement noise Rr,k. If the procedure followed for the Gaussian case is applied to the
present situation, the covariance update rule takes the same expression, namely:

Pw,k = E[(wk − ŵk)(wk − ŵk)
T |{ y }k1]

= P−w,k −K(GkP
−
w,kG

T
k + S−r,kRr,k)K

T

= (I−KGk)P
−
w,k (4.45)

The estimation procedure, adapted from algorithm 1 is summarized in algorithm 2.
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Algorithm 2 Robust linear Kalman filter algorithm for health parameter estimation

Require: ŵ0 = whl and Pw,0 = Q0

1: for k = 1 to n do
2: ŵ−k = ŵk−1

3: P−w,k = Pw,k−1 + Rw,k
4: r̂−k = yk − Gk(ŵ

−
k −whl)− ŷhl

5: Compute S−r,k through relation (4.42)

6: K = P−w,kG
T
(
GkP

−
w,kG

T
k + Sr,kRr,k

)−1
7: ŵk = ŵ−k + Kr̂−k
8: Pw,k = (I−KGk)P

−
w,k

9: end for

The robust estimation procedure does not involve an important increase of the computa-
tional load since the new algorithm requires only a few additional matrix multiplications.
One important characteristic of the developed algorithm is that, as the contamination
factor δ decreases to zero, the matrix S−r,k approaches the unit matrix such that rela-
tions (4.44) and (4.45) degenerate respectively in relations (4.25) and (4.35): the robust
Kalman filter coincides with the generic Gaussian Kalman filter when no sensor fault are
expected.

4.4 Time varying health parameters

4.4.1 Adaptive estimation

Up to this point, the health parameters wk were assumed time constant meaning that
wk = cst ∀ 1 ≤ k ≤ n or, in other words, that the health condition of the engine does
not vary in time. However, in on-board performance monitoring, the health of the engine
is expected to vary due to the environmental conditions and to accidental events. If
the health parameters do vary in time and if a model of their variations is known and
parameterized by a set of constant parameters, it results in a time constant system and
the aforementioned estimation methods may be used.

In practice, however, the health of a turbine engine depends strongly on unpredictable
events undergone by the engine. Many of these events are simply not recorded or when
they are recorded no information or models exist to link them to a specific performance
degradation. Most of the time, no suitable model is available about the model parameter
variations and it is only known, or it can be assumed, that the health parameters do vary
“sufficiently slowly”.

In a batch framework, semi-adaptive methods may be used which process batches of data
where the health parameters are assumed constant. Of course, the size of the batches
strongly depends on the variation rate of the engine faults. The resulting estimate is used
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as a guess for the next batch [Grodent and Navez, 2001, Kamboukos et al., 2002].

In a sequential framework, the time variation of the health parameters is represented by
the state-space form (4.10), namely wk = wk−1 +ωk. Loosely speaking, the process noise
covariance represents the confidence given to the health parameter prediction equation
(4.10). The more accurate the model is, the smaller the covariance Rw,k of ωk will be. If
relation (4.10) is considered too vague it may be decided to increase the accuracy of the
model. For example, in [Simon and Simon, 2003], a linear health parameter prediction
model is used to improve the diagnosis results where it is assumed that the efficiency
factors (similar to the one defined in 2.11) decrease at a given rate. If available, such
a knowledge may be included in relation (4.10) but, in the present document, no such
knowledge is assumed to be available and the identity is conserved.

4.4.2 Role of the process noise covariance Rw,k

Before going further, it is interesting to understand the role of the process noise covariance
Rw,k. In effect, Rw,k is an additive term which increases the prior covariance P−w,k through:

P−w,k = Pw,k−1 + Rw,k (4.46)

If the process noise covariance matrix Rw,k increases, so does the prior covariance P−w,k
and the Kalman gain K also increases, producing bigger updates of the health parameters.
An increase of Rw,k places more importance on the most recent data. Consequently, the
matrix Rw,k can be viewed as a way to control the “memory” of the estimation method.
By memory, it is meant the amount of data that is represented by the prior estimate ŵ−k
and prior covariance P−w,k. It is also sometimes viewed as a clipping window over the data.
A large window (i.e. small Rw,k) means a long term memory and a small adaptivity when a
small one means a high adaptivity. Thus stated, the problem of adaptive health parameter
estimation comes down to the specification of a suitable process noise covariance matrix
Rw,k.

As already mentioned before, the matrix Rw,k may be set to a constant diagonal value
to help assure that the covariance matrix Pw,k would retain the necessary property of
nonnegative-definiteness. However, in tracking purposes, this approach is not satisfac-
tory because of its poor physical meaning which makes it difficult to select in advance a
proper value for Rw,k. Rather than to choose a constant diagonal value, the process noise
covariance may be defined as a fraction of the covariance matrix Pw,k−1.

Rw,k =

(
1

λrls
− 1

)
Pw,k−1 (4.47)

where the factor λrls is called the forgetting factor since it controls the width of a clipping
window over the data through an exponentially decaying weighting on past data. λrls is
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more described in [Nelson, 2000]. The prior covariance matrix thus yields:

P−w,k = Pw,k−1 +

(
1

λrls
− 1

)
Pw,k−1 =

1

λrls
Pw,k−1 (4.48)

where 0 ≤ λrls ≤ 1. Correct values for λrls must be chosen according to the time constant
of the system variations. Even if this formulation is relatively simple, the choice of λrls may
sometimes turn out to be difficult in practice. If λrls is chosen low, the clipping window is
narrow and the estimation procedure can adapt to abrupt faults. However, doing so, the
number of measurement samples used to estimate the health parameters decreases and
the estimation becomes very sensitive to the measurement noise. In practice, there exists
a minimum value for λrls below which the clipping window is so narrow that the resulting
estimates are too noisy to be usable in performance monitoring. Hence, there exists a
tradeoff between the stability and the adaptivity of the health parameter estimation.

As highlighted further in section 4.6, the on-board performance monitoring is character-
ized by a minimum value for λrls leading to a wide clipping window which turns out to be
unable to catch abrupt changes of the health parameters (e.g. accidental events). The re-
sulting estimation method acts as low pass filter which restricts its use to situations where
all the health parameters are varying slowly (e.g. progressive wear). Nevertheless, even
if the forgetting factor approach may lead to poor results in the case of abrupt changes
involving few components, it can result in good health parameter estimates for tracking
progressive wears.

4.4.3 Sequentially updated process noise covariance

In order to cope with abrupt changes of the health parameters, it turns out to be helpful
to adapt the process noise covariance Rw,k to the actual behavior. To do so, the magnitude
of the prior residuals r̂−k , already defined in (4.20), resulting from the observation of yk
at the current time step k is compared to the magnitude that can be expected from the
covariance of the residuals E (̂r−k r̂

−T
k |{ y }

k−1
1 ).

If the prior residuals are expressed as:

r̂−k = r̂hlk − Gk(ŵ
−
k −whl) = r̂k|w + Gk(wk − ŵ−k ) (4.49)

the covariance matrix of the prior residuals is:

E [̂r−k r̂
−T
k |{ y }

k−1
1 ] = E

[
(̂rk|w + G(wk − ŵ−k ))(̂rk|w + G(wk − ŵ−k ))T |{ y }k−11

]
= E

[̂
rk|w r̂

T
k|w|{ y }k−11

]
+ GkE

[
(wk − ŵ−k )(wk − ŵ−k )T |{ y }k−11

]
GT
k

= S−r,kRr,k + GkP
−
w,kG

T
k

= S−r,kRr,k + Gk(Pw,k−1 + Rw,k)G
T
k (4.50)

Since Gk, Pw,k−1, S
−
r,k and Rr,k are known, the preceding relation expresses the covariance

of the prior residuals as a function of the process noise covariance Rw,k. Once the mea-
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surement sample yk is observed, the prior residual r̂−k is known and the matrix r̂−k r̂
−T
k can

be equated to its expected value given by relation (4.50):

r̂−k r̂
−T
k︸ ︷︷ ︸

observation

= S−r,kRr,k + Gk(Pw,k−1 + Rw,k)G
T
k︸ ︷︷ ︸

prediction

(4.51)

Therefore, the matrix Rw,k appears as a redundant quantity and consistent estimates may
be obtained if Rw,k is determined so as to satisfy relation (4.51) over time [de Freitas et al., 1998].
To introduce the method used to sequentially update the process noise covariance Rw,k,
it is chosen to first restrict the study to a process noise covariance described by a single
scalar parameter ϕk such that Rw,k = ϕkI. The sequential update of the process noise
covariance is thus based on a covariance matching method where ϕk is determined so as
to verify the following equation which is obtained by replacing Rw,k = ϕkI in relation
(4.51):

r̂−k r̂
−T
k = GkPw,k−1G

T
k + ϕkGkG

T
k + S−r,kRr,k (4.52)

A sequential estimation method of the scalar parameter ϕk intended to satisfy the equation
(4.52) is presented in [de Freitas et al., 1998] for single output systems where m = 1.
This procedure increases ϕk each time the residual r̂−k exceeds its value predicted by
E [̂r−k r̂

−T
k |{ y }

k−1
1 ]. When ϕk increases, the Kalman gain also increases and consequently

the health parameter update increases respectively. That is, the estimator places more
emphasis on the incoming data. As long as the level of the residuals remains smaller than
the one predicted by the covariance, the process noise covariance is cancelled out and the
filter tends to achieve a regularized solution.

4.4.4 Improving the fault isolation

In [de Freitas et al., 1998] the advised estimation method is restricted to a single output
and a single process noise factor ϕk. Nevertheless, in turbine engine diagnosis, it would
be desirable to generalize this estimation method to multiple measurements and a vector
valued ϕk. Indeed, a vector valued ϕk (one per health parameter) should be expected to
achieve a better selection of the parameters involved in the degradation, yet it involves
more factors to be estimated which can lead to instabilities. It is usually wiser to decrease
the number of regularization factors to l where l ≤ p. A reasonable choice is to assign
a regularization factor to each component of the engine (fan, lpc, hpc, . . . ) such that
all the health parameters related to the same engine component are related to the same
process noise factor. This yields to the following definition for Rw,k and ϕk:

Rw,k =



ϕk(1) 0 0 0 · · · 0
0 ϕk(1) 0
0 ϕk(2) 0
0 ϕk(2) 0
...

. . .

0 ϕk(l)


and ϕk =


ϕk(1)
ϕk(2)

...
ϕk(l)

 (4.53)
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The recourse to multiple noise factors is also expected to achieve a kind of dimensionality
reduction by releasing only the health parameters that are suspected to be involved in
the fault. This approach is strongly connected to the Statistical Local Approach detailed
in [Gomez and Lendasse, 2000] which relies on testing hypothetical changes in the health
parameters rather than repeatedly estimating all the health parameters.

For low computational effort reasons, only the information contained in the diagonal part
of both matrices r̂−k r̂

−T
k and E [̂r−k r̂

−T
k |{ y }

k−1
1 ] is considered. This leaves the following,

vector valued, residual:

dk = diag
(̂
r−k r̂
−T
k − S−r,kRr,k + Gk(Pw,k−1 + Rw,k)G

T
k

)
(4.54)

whose dependency on ϕk is assessed by the matrix Bk which may be computed rapidly
by:

Bk =
∂dTk
∂ϕk

=


G(1, 1)2 G(1, 2)2 · · · G(1, p)2

G(2, 1)2
. . . G(1, p)2

...
G(m, 1)2 G(m, p)2

 · L (4.55)

where L is a p × l matrix mapping the l-dimensional vector ϕk onto the p-dimensional
vector wk. L(i, j) is 1 if the process noise factor ϕk(j) concerns the health parameter
wk(i) and 0 otherwise.

The estimation of ϕk may thus be achieved through the minimization of the inner product
dTkR

−1
d dk over time, where Rd is a scaling factor which is set to R2

r,k. A Kalman filter may
be applied to this kind of estimation but, nevertheless, with a much simpler structure
than the one described in algorithm 1. It is chosen to discard the covariance update
and a covariance matrix Pϕ,0 should be provided in advance. This leaves the sequential
estimation procedure depicted in the block diagram in figure 4.2.

rk- rk-T

noise covariance
prediction

  K

φk-1
P-

r,k

dk
-

unit delay

φk

Figure 4.2: Sequential process noise estimation

The simplified Kalman filter used for the estimation of ϕk is based on the structure
depicted in algorithm 1. The only difference resides in the constant covariance matrix
Pϕ,0. Hopefully, if the number of process noise factors is sufficiently low (typically for
l < m), a diagonal matrix is often sufficient and its determination does not require a
careful monitoring. Moreover, this approach shows very good generalization properties
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since it remains unchanged for a wide range of component faults (from fast to slow drifting
faults). In the applications presented further in section 4.6, the covariance matrix Pϕ,0 is
a diagonal matrix with the diagonal terms 10−5 ≤ σϕ(i) ≤ 10−4.

Algorithm 3 Sequential estimation of the process noise covariance Rw,k

Require: r̂−k , Rr,k, S
−
r,k, Pw,k−1, Rw,k−1, Gk, Pϕ,0 and ϕk−1

1: d̂−k = diag
(̂
r−k r̂
−T
k

)
− diag

(
Gk(Pw,k−1 + Rw,k−1)GT

k + S−r,kRr,k
)

2: Compute Bk through relation (4.55)

3: Rd = R2
r,k

4: K = Pϕ,0BT
k

(
BkPϕ,0BT

k + Rd
)−1

5: ϕk = ϕk−1 + Kd̂−k
6: Rebuild Rw,k based on ϕk through (4.53).

The introduction of the process noise covariance estimation, detailed in algorithm 3, into
the health parameter estimation procedure, detailed in algorithm 2 involves to slightly
reorganize the sequence of operations. The resulting procedure is detailed in algorithm
4. The estimation of the process noise covariance may be considered as a pre-processing
intended to isolate the fault by decreasing the number of parameters effectively identified.
This aspect is more detailed in section 4.6.

Algorithm 4 Robust linear Kalman filter algorithm for health parameter estimation
including the sequential process noise covariance estimation.

Require: ŵ0 = whl, Pw,0 = Q0, Pϕ,0 and ϕ0

1: for k = 1 to n do
2: ŵ−k = ŵk−1

3: r̂−k = yk − Gk(ŵ
−
k −whl)− ŷhlk

4: Compute S−r,k through relation (4.42)

5: Compute Rw,k through algorithm 3

6: P−w,k = Pw,k−1 + Rw,k

7: K = P−w,kG
T
(
GkP

−
w,kG

T
k + Sr,kRr,k

)−1
8: ŵk = ŵ−k + Kr̂−k
9: Pw,k = (I−KGk)P

−
w,k

10: end for

4.5 Extensions to nonlinear system models

The estimation problem considered up to this point has addressed the estimation of a set
of health parameters linked to the measurements through a linear fault description. The
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Kalman filter exploits the fact that the application of a linear operator to a Gaussian pdf
yields another Gaussian pdf (see appendix A). Under this assumption the Kalman filter
generates the best possible estimate of the health parameters and their covariance.

However, the requirement that the system model is linear is rarely satisfied in practical
applications. In the present application, this comes down to replace the linear system
description:

yk = Gk(wk −whl) + ŷhlk + εk (4.56)

by the nonlinear one defined by relation (3.3), namely:

yk = G(uk, vk,wk) + εk (4.57)

In order to apply the mechanism of the Kalman filter to nonlinear system models, the
extended Kalman filter (EKF) was developed [Jazwinski, 1970, Haykin, 2001] which sim-
ply calls for the replacement of every nonlinear transformations with linear approxima-
tions. To supersede the EKF, the unscented Kalman filter (UKF) is also proposed as
an alternative to represent the mean and the covariance of a nonlinear transformation
[Julier and Uhlmann, 1996].

Recently, an other alternative called the particle filter [Arulampalam et al., 2001] has
also appeared for nonlinear/non-Gaussian estimation problems. However, in the present
document, it is chosen to represent the posterior pdf p(wk| { y }k1) by a Gaussian pdf
for simplicity reasons. Moreover, the nonlinearities characterizing the dependency of
the measurements upon the health parameters are not very important in turbine engine
diagnosis (see the comparison in [Kamboukos and Mathioudakis, 2003]) and the recourse
to the particle filter is not evident. Even if the preceding arguments favor the use of the
EKF or the UKF, they do not constitute any proof that the particle filter would not be a
better alternative. However, in the present application it seems wiser to implement first
the simpler approaches and to consider more advanced ones if the simpler approaches
turn out to be insufficient.

4.5.1 Extended Kalman filter

The extended Kalman filter extends the linear Kalman filter through a linearization of
the system model around the most recent health parameter estimate ŵ−k :

Gk =
∂G(uk, vk,wk)

∂wk

∣∣∣∣
uk;vk=vk;wk=ŵ−

k

(4.58)

Once the linearized model is obtained, the mechanism described in algorithm 4 is modified
to hold for nonlinear transformations. The algorithm 5 is adapted from [Wan and Nelson, 2001]
to hold for robust estimation.

In the EKF, the probability distribution of the health parameters is still approximated
by a Gaussian pdf which is now propagated through the first-order linearization of the
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Algorithm 5 Extended Kalman filter algorithm for health parameter estimation.

Require: ŵ0 = whl and Pw,0 = Q0

1: for k = 1 to n do
2: ŵ−k = ŵk−1

3: r̂−k = yk − G(uk, v̂k, ŵ
−
k )

4: Compute S−r,k through relation (4.42)

5: Compute Gk through relation (4.58)

6: Compute Rw,k through relation (4.47) or algorithm 3

7: P−w,k = Pw,k−1 + Rw,k

8: K = P−w,kG
T
k

(
GkP

−
w,kG

T
k + S−r,kRr,k

)−1
9: ŵk = ŵ−k + Kr̂−k

10: Pw,k = (I−KGk)P
−
w,k

11: end for

nonlinear model. This can introduce large errors in the true posterior mean and covariance
of the transformed Gaussian pdf (ŵk and Pw,k) which may lead to suboptimal performance
and sometimes divergences of the filter.

4.5.2 Unscented Kalman filter

The unscented Kalman filter addresses the approximation issues of the EKF. The health
parameters are again represented by a Gaussian probability density function, but it is now
specified using a minimal set of carefully chosen sample points. These sample points com-
pletely capture the true mean and covariance of the Gaussian pdf, and when propagated
through the true nonlinear system capture the posterior mean and covariance up to the sec-
ond order (Taylor series expansion) for any nonlinearity [Wan and van der Merwe, 2001].

The unscented transformation

Consider a parameter wk of dimension p that is the realization of a random variable
with mean ŵk and covariance Pw,k and a nonlinear function defined by yk = G(wk). To
calculate the statistics related to the variable yk, a matrix W of 2p + 1 vectors Wi is
formed and perturbed according to the following (fig. 4.3):

W0 = ŵk, (4.59)

Wi = ŵk +
(
γ
√

Pw,k

)
i
, for i = 1, . . . , p (4.60)

Wi = ŵk −
(
γ
√
Pw,k

)
i
, for i = p+ 1, . . . , 2p (4.61)



4.5. EXTENSIONS TO NONLINEAR SYSTEM MODELS 91

nonlinear
transformation

Figure 4.3: Sample points transferred independently through the nonlinear model to
capture the mean and covariance of a random variable

where γ =
√
p+ λ and

(√
Pw,k

)
i

is the ith line of the matrix square root (e.g. upper
triangular Cholesky factorization). These vectors are propagated through the non-linear
function:

Yi = G(Wi), for i = 0, . . . , 2p (4.62)

and the mean and covariance for yk are approximated using a weighted sample mean and
covariance of the posterior estimation Yi:

ŷk '
2p∑
i=0

τ
(m)
i Yi and Py,k '

2p∑
i=0

τ
(c)
i (Yi − ŷk)(Yi − ŷk)

T , (4.63)

with τi given by

τ
(m)
0 =

λ

p+ λ
, (4.64)

τ
(c)
0 =

λ

p+ λ
+ 1− α2 + β, (4.65)

τ
(c)
i = τ

(m)
i =

1

2(p+ λ)
,∀i = 1, . . . , 2p (4.66)

where λ = α2(p + κ) − p is a scaling parameter and β is used to incorporate prior
knowledge about the probability density function. In the application detailed further
in section 4.6: α = 10−4, β = 2 and κ = 3 − p. The interested reader is referred to
[Julier and Uhlmann, 1996] for a detailed information about other parameter values and
their significance.

The unscented Kalman filter

The unscented Kalman filter is a straightforward extension of the unscented transforma-
tion to the recursive estimation of algorithm 4. The procedure detailed in algorithm 6 is
adapted from [Wan and van der Merwe, 2001] in order to hold for robust estimation and
variable health condition. The UKF achieves an equal or better level of performance than
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the EKF at a comparable level of complexity [Wan and van der Merwe, 2001]. There are
number of clear advantages to the UKF. First, the mean and the covariance of the health
parameters are calculated to second-order or better, as opposed to first-order in the EKF.
While equations specifying the UKF may appear more complicated than the EKF, the
actual computational complexity is equivalent: both EKF and UKF are of order p2 (where
p is the number of parameters).

Algorithm 6 Unscented Kalman filter algorithm for health parameter estimation

Require: ŵ0 = whl and Pw,0 = Q0

1: for k = 1 to n do
2: ŵ−k = ŵk−1

3: r̂−k = yk − G(uk, vk, ŵ
−
k )

4: Compute S−r,k through relation (4.42)

5: Compute Rw,k through relation (4.47) or algorithm 3

6: P−w,k = Pw,k−1 + Rw,k

7: Wk−1 =
[
ŵ−k ŵ−k + γ

√
P−w,k ŵ−k − γ

√
P−w,k

]
8: Yi,k = G(uk, vk,Wi,k−1) for all 0 ≤ i ≤ 2p

9: ŷ−k =

2p∑
i=0

τ
(m)
i Yi,k

10: r̂−k = yk − ŷ−k

11: Py,k =

2p∑
i=0

τ
(c)
i (Yi,k − ŷ−k )(Yi,k − ŷ−k )T + S−r,kRr,k

12: Pwy,k =

2p∑
i=0

τ
(c)
i (Wi,k−1 − ŵ−k )(Yi,k − ŷ−k )T

13: K = Pwy,kP
−1
y,k

14: ŵk = ŵ−k + Kr̂−k
15: Pw,k = P−w,k −KPy,kKT

16: end for

Furthemore, a distinct advantage of the UKF is its ease of implementation. In contrast
to the EKF, no derivatives must be found either from an analytical re-derivation of the
system, or through costly and inaccurate numerical methods (e.g., by perturbation). In
contrast, the UKF relies only on functional evaluations (input and outputs) through the
use of deterministically drawn samples from the prior distribution of the health parame-
ters. From a coding perspective, this also allows for a much more general and modular
implementation in cases of software models such ad the one described in chapter 2.

In algorithm 3, the matrix Gk is required to estimate the influence matrix Bk involved in
the estimation of the process noise covariance Rw,k. Hence, it is mandatory to dispose of
the model linearization Gk which is not computed in the procedure detailed in algorithm
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6. Hopefully, such a linearization may be assessed within the UKF framework by noting
that:

Pwy,k ' P−w,kG
T
k =

√
P−w,k

T√
P−w,kG

T
k

⇒ Gk '
[
(
√

P−w,k)
−1(
√

P−w,k)
−1Pwy,k

]T
(4.67)

Since
√
P−w,k is an upper triangular matrix, relation (4.67) may be solved by two backward

substitutions at the price of a moderate computational effort. Nevertheless, Gk is not yet
available when the algorithm 3 is used (since it is only available after the P−w,k is projected
through the model). Hence, the matrix Gk−1 is used instead of Gk in algorithm 3.

The square root UKF

For the standard UKF implementation in algorithm 6, the matrix square-root
√
P−w,k

is computed at each time step. Similarly to the square-root filtering, the UKF possesses
a square-root UKF implementation where

√
Pw,k is propagated directly, avoiding the need

to refactorize at each time step. This algorithm is detailed in [van der Merwe and Wan, 2001].

4.6 Application to on-board performance monitoring

4.6.1 Description

The sequential health parameter estimation procedures detailed in the present chapter
are well suited for on-board performance monitoring of commercial turbofans. The most
important reason resides in the fact that such engines spend as much as 90% of the
time in cruise flight conditions where no transient effects perturb the health parameter
estimation. The measurement prediction may thus be represented by the nonlinear steady-
state model (3.3). To estimate the 11 health parameters wk in figure 2.7, the UKF
estimation procedure detailed in algorithm 6 is selected. The probability density function
describing the measurement noise is the δ-contaminated function for which δ is set to 5%.

Fault cases

In order to test the identification method, an extensive set of faults is used which rep-
resents possible situations expected to be encountered in practice. This set of fault
cases, defined in [Curnock, 2000], is shown in table 4.1. Faults related to all individ-
ual components are included: different types of faults are considered by involving one
or more health parameters of a component. This engine and the fault cases examined
herein have been used as a test case by several diagnostic methods and can therefore
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be considered as a benchmark case (see [Aretakis et al., 2003, Grodent and Navez, 2001,
Romessis and Mathioudakis, 2004]).

a -0.7% on SW2R -0.4% on SE2 fan, lpc
-1% on SW12R -0.5% on SE12

b -1% on SE12
c -1% on SW26R -0.7% on SE26 hpc
d -1% on SE26
e -1% on SW26R
f +1% on SW42R hpt
g -1% on SW42R -1% on SE42
h -1% on SE42
i -1% on SE49 lpt
j -1% on SW49R -0.4% on SE49
k -1% on SW49R
l +1% on SW49R -0.6% on SE49
m +1% on A8IMP Nozzle
n -1% on A8IMP

Table 4.1: Fault cases of a turbofan engine.

Flight conditions

As already detailed in section 2.2.5, simulated measurements are used where artificial
Gaussian noise is added. Simulated data are generated using the nonlinear steady-
state engine model (3.2) for constant cruise flight conditions (ALT=10800m, Mach=0.82,
∆Tisa=0K). The data sequences { y }n1 are generated for a duration of 5000s with a data
acquisition rate of 2Hz. Profile of simulated faults is a steep fault with amplitude defined
in table 4.1 occurring at time=50s followed by a slow drift occurring at time=2500s. In
this way the behavior of the method for both abrupt faults and gradual deteriorations is
examined.

Measurement set

The very low measurement redundancy encountered on-board is represented by the min-
imal measurement set made of the 7 measurements specified in table 2.4. This measure-
ment set is the one specified in the frame of the OBIDICOTE project and is intended to
represent a realistic situation encountered in currently available turbofans.



4.6. APPLICATION TO ON-BOARD PERFORMANCE MONITORING 95

4.6.2 Estimation of the external disturbances

Instead of feeding directly the measured external disturbances vk into the system model
G(·), the presented estimation procedure is preceded by an extended Kalman filter detailed
in algorithm 14, appendix B which recursively estimates v̂k. Such a procedure is intended
to lower the uncertainties related to the measured external disturbances. Indeed, if the
measurements vk are directly fed into the system model G(·), the noise covariance matrix
Rr,k increases significantly and Rr,k ' 9Ry,k. Conversely, feeding the system model with
the estimate v̂k leads to a lower noise covariance for which Rr,k ' Ry,k.

The complete estimation procedure is summarized in figure 4.4 where estimated external
disturbances v̂k are used for the health parameter identification. Hence, measured external
disturbances vk are pre-processed through an external disturbance estimation in order to
allow a better measurement noise filtering which makes the health parameter estimation
more efficient.

Kalman filter

uk yk vk

Kalman filter

available data

external
disturbance

filtering

health
parameter
estimation

unit delay

unit delay

vkvk-1

wkwk-1

Figure 4.4: Block diagram of the health parameter estimation preceded by a filtering of
the measured external disturbances.

4.6.3 “Forgetting factor” approach

The first results to be presented correspond to a process noise covariance matrix Rw,k
assessed through the forgetting factor approach. The test is made on a high pressure
compressor degradation represented by the test case ’c’ involving a drop of two health
parameters SW26R and SE26. The process noise covariance Rw,k is determined through
relation (4.47), namely:

Rw,k =

(
1

λrls
− 1

)
Pw,k−1 (4.68)

with λrls = 0.95 which is the minimum value leading to a stable estimation. Estimated
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health parameters are summarized in figure 4.5. Estimated values for SW26R and SE26
are far from their actual values represented by dotted lines. Moreover, lpc health pa-
rameters (SW2R and SE2) are detected faulty while those related to the fan (SW12R
and SE12) oscillate around their actual value. As a result, the fault is spread on several
parameters of the cold part.
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Figure 4.5: Identification results for a hpc fault (case ’c’) using the forgetting factor
approach. Dotted lines show actual parameter values.

This is a typical example of the so-called “smearing effect” originated by the low redun-
dancy where the available measurements do not carry enough information about every 11
health parameters at the same time. This leads to an ill-posed problem where, as already
explained in chapter 3, none of the possible solutions can prevail on the others because
there is not enough information in the data. To guarantee a stable estimation, the health
parameter covariance must be maintained low so as to keep the Kalman gain low. In the
situation depicted in figure 4.5 the undetermination is so low that the resulting Kalman
gain is too low to track the abrupt fault. Hence, the fault spreads on several parameters,
which permits a fault detection but prevents any isolation or assessment of the fault. The
final report given by such results is of little interest for an airline company since it does
not give any lead for the selection of a corrective action.

4.6.4 Updated process noise covariance

To overcome the smearing effect, a more advanced determination of the process noise
covariance Rw,k is proposed where it is updated for each new data sample. This deter-
mination is made through the algorithm 3 where ϕk is a 5× 1 vector defined as follows:
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w =



SW12R ← ϕ(1)
SE12 ← ϕ(2)

SW2R ← ϕ(1)
SE2 ← ϕ(1)

SW26R ← ϕ(3)
SE26 ← ϕ(3)

SW41R ← ϕ(3)
SE41 ← ϕ(3)

SW49R ← ϕ(4
SE49 ← ϕ(4)

A8IMP ← ϕ(5)



(4.69)

Hpc fault - case ’c’

Results obtained by updating the process noise covariance Rw,k at each iteration are
represented in figure 4.6. The fast convergence of SW26R and SE26 to their actual values
(dotted lines) and the fact that all other parameters remain close to the nominal values
indicates a clear localization of the fault.
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Figure 4.6: Health parameter estimation for the hpc fault (case ’c’) using an updated
process noise covariance Rw,k through algorithm 3. Dotted lines show actual parameter
values.

When the fault undergoes a slow drift at time 2500 seconds, the efficiency drop is more
closely tracked than the flow capacity but the whole performance monitoring still results
in an effective fault tracking. Conversely to the forgetting factor approach, no smearing
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effect is observed and the fault is detected and isolated but, furthermore, accurately
assessed.

Fan and lpc fault - case ’a’

The simultaneous fault on the fan and the low pressure compressor is well suited to
understand from a nice physical interpretation how parameter estimation is made more
stable when the process noise covariance is updated recursively rather than considering a
constant forgetting factor λrls. Figure 4.7 shows the fault signature r̂k = yk−G(uk, v̂k, ŵk)
(continuous line) together with the measurement noise εk (crosses) and the uncertainty
(dash-dot lines).
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Figure 4.7: Observed residuals for all fault indicators on fault case ’a’
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When the abrupt fault occurs, drifts are observed on nearly all of the fault indicators,
which appears as an increased observed measurement noise variance. Actually, the process
noise covariance is assessed so as to reproduce the observed noise variance. Figure 4.8(a)
summarizes the process noise covariance estimation on the five components. At this stage,
no estimation is made but, for sure, the hpc and the hpt are not involved (their related
process noise factor remains close to zero). The first step achieved by the process noise
covariance estimation is thus to determine that the fault occurs on the low pressure spool
or the nozzle.
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Figure 4.8: Effect of the process noise covariance estimation on the fan and lpc fault
detection (case ’a’).

The influence of the process noise covariance increase can be noticed by taking a closer look
at the standard deviations (square root of the covariance Pw,k diagonal terms) illustrated
in figure 4.8(b). All the parameters related to the fan, lpc, lpt and nozzle are relaxed when
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the fault occurs (at time=50s) because the process noise covariance estimation detects that
something is going wrong there. When the observed residuals fit the expected residuals
(when relation (4.51) is satisfied) the covariance stops to rise and decreases through the
covariance update equation (4.45) until correct values for the parameters are found (at
time=250s).

Another way to notice the increased adaptivity involved by the process noise covariance
estimation consists in considering the effective number of parameters defined in chapter
3 and assessed through relation (4.38). It is represented in figure 4.8(a) for the specific
situation of fault case ’a’ and comprises a brutal increase at time t=50s which hints to an
increased adaptivity.

The resulting health parameter estimation is represented in figure 4.9 where the good
convergence of the health parameters toward their actual value can be observed. This
allows a good fault isolation except for the short spike in A8IMP (related to the nozzle).
This short spike is originated by the low signal to noise ratio which involves the confusion
between a fault on the nozzle and a fault on the fan. This does not mean that the fault
on the nozzle is exactly the same as the one on the fan, but rather that they are not
separable within the measurement noise. This non-separability is only removed when a
sufficient number of data samples is performed so as to filter the measurement noise. The
effect of the signal to noise ratio is more detailed in a further section.
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Figure 4.9: Identification results for a fan-lpc fault (case ’a’) using an updated process
noise covariance Rw,k. Dotted lines show actual parameter values.
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Lpt fault - case ’j’

This fault case (-1% on SW49R and -0.4% on SE49) constitutes the most difficult one since
the low pressure turbine is the less identifiable component of the engine. The measurement
configuration (7 measurements) makes it difficult to distinguish efficiency drops between
the high pressure turbine and the low pressure turbine. Figure 4.10 summarizes the
identification results. The fault on SW49R is under-estimated and the fault on SE49 is
not detected. Moreover a false alarm on SE41 spoils the fault isolation. The diagnostic
does not allow a reliable decision making.
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Figure 4.10: Identification results of lpt fault (case ’j’) using an updated process noise
covariance Rw,k. Dotted lines show actual parameter values.

Diagnosis effectiveness overview

Even if the 3 preceding test cases highlight the main characteristics of the developed
identification method, they do not give a sufficient description of the diagnosis efficiency.
Table 4.2 summarizes the component fault isolation related to all of the 15 test cases
listed in table 4.1. Tabulated values represent the maximum bias in estimated health
parameters defined by:

max

{∣∣∣∣ŵk −wk

whl

∣∣∣∣} (4.70)

where wk stands for the actual value of the health parameters and whl refers to the
healthy value. Those maximum biases are calculated at time t=4900s when the asymptotic
solution is assumed to be reached. The typical standard deviation related to the estimated
health parameters being around 0.1%, a diagnosis characterized by a bias lower than 0.25%
is considered as successful which is indicated by a checkmark in table 4.2.

Achieved accuracies remain within 0.1% on the cold parts (fan, lpc, hpc) and on the
nozzle (A8IMP) and within 0.25% for the high pressure turbine. The only component
that is still difficult to monitor is the low pressure turbine (cases ’j’,’k’ and ’l’), where
biases are above 0.5%, indicating a false alarm and a poor localization of the fault.
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Minimal meas. set Improved meas. set

a 0.03% on SW49R X 0.08% on SW49R X
b 0.09% on SE12 X 0.08% on SE12 X
c 0.07% on SW26R X 0.06% on SE2 X
d 0.03% on SE12 X 0.05% on SE2 X
e 0.03% on SW26R X 0.05% on SW26R X
f 0.02% on SE42 X 0.03% on SW41R X
g 0.17% on SW49R X 0.06% on SW12R X
h 0.24% on SW49R X 0.05% on SW12R X
i 0.19% on SW49R X 0.08% on SE2 X
j 0.82% on SW49R - 0.06% on SE49 X
k 0.53% on SW49R - 0.02% on SW49R X
l 0.41% on SW49R - 0.04% on SW2R X
m 0.06% on SE41 X 0.02% on SW26R X
n 0.06% on SW2R X 0.04% on SW12R X

Table 4.2: Identification results obtained by using an updated process noise covariance
Rw,k. Computation has been done for both the minimal set and the improved set detailed
in table 2.9.

How to tackle test cases ’j’, ’k’ and ’l’ ?

The problem of test cases ’j’, ’k’ and ’l’ arrives because of a lack of information related
to the low pressure turbine which prevents a fault on the low pressure turbine from being
separated from a fault on the high pressure turbine. To overcome this problem, more
information must be made available. Figure 4.11 summarizes the identification results on
test case ’j’ with the improved set of measurements.detailed in table 2.9 and containing 9
measurements instead of 7.

The two additionnal sensors are the total pressure at the inlet of the low pressure tur-
bine (p049) and the total pressure at the inlet of the high pressure compressor (p026). As a
consequence, SW49R as well as SE49 are identified close to their actual values without

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−1.5

−1

−0.5

0

0.5

%
 o

f d
ev

ia
tio

n 
fro

m
no

m
in

al
 v

al
ue

   
   

time (s)

SW41R
SE41
SW49R
SE49
A8IMP

SW49R 

SE49 

Figure 4.11: Identification results of lpt fault (case ’j’) using an updated process noise
covariance Rw,k and 9 measurements. Dotted lines show actual parameter values.
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any influence on other parameters. Table 4.2 also mentions complete results on OBIDI-
COTE test cases using this improved set of 9 measurements. Achieved accuracies are
all within 0.1% indicating that all of the 15 test cases can be solved using these 2 ad-
ditional measurements. This extended set of measurements is also successfully tested in
[Grodent and Navez, 2001] and therefore seems to be a better configuration for an indus-
trial application.

4.6.5 Effect of the signal to noise ratio

This section is dedicated to a more thorough understanding of the effect of the signal to
noise ratio. In order to understand the problem, figure 4.12 represents the fault signature
seen by the estimation method for the fault cases ’b’ and ’d’.
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(b) Test case ’d’

Figure 4.12: Observed residuals on two different test cases. The plain lines represent r̂k
and crosses the raw measurements. The uncertainty is materialized by the dash-dot lines.

Even though they both involve one efficiency parameter (SE12 and SE26 respectively),
the fault signatures exhibit very different characteristics. In test case ’b’ (fig. 4.12(a)),
the fault signature involves only 2 fault indicators (p013 and Nlp) and remains within the
uncertainty (represented by a dash-dot line) while for test case ’d’ (fig. 4.12(b)) nearly
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all of the fault indicators undergo a drift exceeding the uncertainty. The effect of the two
different fault signatures on the resulting diagnosis is represented in figure 4.13. Although
the asymptotic solution reaches the actual value (dotted lines) in both figures 4.13(a) and
4.13(b), the time response of the estimation procedure is quite different. In the former
case, the response is very slow and the solution needs approximately 1400s to be reached
while for the latter case, only 14 seconds are necessary.
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(a) Test case ’b’, the asymptotic solution is reached in 1400s.
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(b) Test case ’d’, the asymptotic solution is reached in 14s.

Figure 4.13: Comparison of time needed to converge toward the asymptotic solution for
two different fault cases.

The signal to noise ratio mainly affects the identification process in terms of convergence
speed. Indeed more accurate measurements (less noise) mean more adaptability (since
the Kalman gain K is higher), an improved tracking capability and therefore an increased
convergence speed. Loosely speaking the signal to noise ratio acts as a damping which re-
duces the bandwith of the health parameter estimation but does not affect the asymptotic
solution.

The dependency of the convergence speed on the measurement noise level is illustrated in
figure 4.14. Crosses represent the relative increase of time required to accumulate enough
data samples so as to converge to the asymptotic solution. The crosses compare well
to the theoretical prediction (plain line), which states that the number of data samples
required to obtain a given accuracy must increase as a quadratic function of the noise
level.

Moreover systematic calculations have shown that the final diagnostic (asymptotic solu-
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Figure 4.14: Influence of the measurement noise level on the convergence speed for one
specific test case.

tion) is only slightly affected by the level of noise in the measurements. Apart from the
effects of the noise level, the non-observability of some parameters can lead to a false
diagnostic even though the noise level is strongly reduced.

4.6.6 Robustness against sensor faults

As introduced in chapter 3, the measurement noise exhibits a random character which can
be modelled in most of the cases by the Gaussian probability density function. However,
it occurs that the behavior of the measurement noise deviates from the assumed one.
Such deviations are called sensor faults. While often confused, there exist two different
types of sensor faults. The first one is related to the notion of reliability and represents
measurements contaminated by random errors whose magnitude is much larger than the
one specified by the standard deviation σy. The second category is related to the notion
of exactness and represents measurements encompassing a significant systematic error. In
this section, it is proposed to test the opportunity of the δ-contaminated pdf introduced
in chapter 3 to cope with both kinds of sensor faults.

Impulsive noise

The impulsive noise is a good example of reliability error since the measurements are
contaminated by spikes whose amplitude may be several times the standard deviation.
The impulsive noise considered herein is characterized by two parameters, namely, the
amplitude of the spikes and their frequency. For example, figure 4.15 represents a Gaussian
measurement contaminated by 1% of impulsive noise whose amplitude is 10 times the
standard deviation.

Figure 4.16 summarizes identified health parameters resulting from the use of the Gaussian
pdf and related to test case ’b’ where all the measurements are contaminated by the
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Figure 4.15: Gaussian white noise (σy = 1) contaminated by 1% of impulsive noise with
amplitude 10σy.

impulsive noise represented in figure 4.15. Results exhibit a very high sensitivity to the
impulsive noise. The estimation is noisy and unstable but furthermore biased.
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Figure 4.16: Identification results on test case ’b’ using the Gaussian pdf with the impul-
sive noise described in figure 4.15.

Conversely, the health parameters estimated by using the δ-contaminated pdf with δ = 5%
(fig. 4.17) exhibit a much better stability without any bias.

Table 4.3 summarizes the sensitivity of the results obtained using both probability density
functions to the magnitude of the impulsive noise. With levels of 4 times σy the Gaussian
pdf cannot solve test cases ’a’, ’c’,’i’ and ’m’ and with impulsive noise levels up to 10
times the standard deviation none of the test cases can be effectively solved.

Results related to the δ-contaminated function exhibit a much less important sensitivity
to impulsive noise since all test cases are still solved. This is only when the amplitude
of the impulsive noise reaches 50σy that its effect on the identified health parameters is
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Figure 4.17: Identification results on test case ’b’ using the δ-contaminated pdf. with the
impulsive noise described in figure 4.15.

noticeable. Such results tend to prove that the robust form of the Kalman filter based
on the δ-contaminated pdf is a better candidate than the Gaussian pdf for a practical
application since it brings more stability with respect to the nature of the measurement
noise.

Sensor biases

The health parameter estimation based on the δ-contaminated function is robust against
sensor biases if the redundancy is above 3 to 4 (m ≥ p + 4) which involves, with 11
health parameters, measurement sets of at least 14 or 15 measurements. With smaller
sets, such as the minimal and the improved sets encountered on-board, the redundancy
needed by the robust identification algorithm to detect outliers is missing and the effect
of the δ-contaminated pdf is limited to the impulsive noise filtering.

Clearly, obtaining 14 or 15 different gas path measurements on-board of a modern turbofan
engine on commercial aircrafts is more a wish than a reality. However, in order to test
the robustness of the Kalman filter based on the δ-contaminated pdf, a theoretical but
still realistic configuration is considered. On modern turbofans, engine instruments and
control devices are doubled for security reasons, but the fault logic that is usually used is
rather simple and consists in comparing the results of both controllers and to apply them,
only if they agree. Otherwise, the controller switches on a secure mode which decreases
the performances but guarantees a safe flight.

In the frame of diagnosis, such a situation does not improve the health parameter estima-
tion but yet improves the robustness by providing 14 measurements instead of 7 which
may enable a more reliable health parameter estimation. Such a configuration allows us
to compare the δ-contaminated pdf to the Gaussian pdf in terms of sensor fault detection.
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Gaussian pdf δ-contaminated pdf
1% of 4 σy 1% of 10 σy 1% of 4 σy 1% of 10 σy 1% of 50 σy

a 0.39% - 0.82% - 0.24% X 0.25% X 0.15% X
b 0.20% X 0.96% - 0.05% X 0.07% X 0.06% X
c 0.28% - 0.61% - 0.11% X 0.09% X 0.08% X
d 0.14% X 0.72% - 0.08% X 0.06% X 0.07% X
e 0.10% X 0.99% - 0.15% X 0.15% X 0.07% X
f 0.16% X 1.20% - 0.04% X 0.08% X 0.12% X
g 0.22% X 1.13% - 0.13% X 0.23% X 0.44% -
h 0.20% X 0.60% - 0.07% X 0.09% X 0.11% X
i 0.27% - 0.70% - 0.24% X 0.09% X 0.10% X
j 0.86% - 1.21% - 0.86% - 0.91% - 0.89% -
k 0.67% - 1.04% - 0.92% - 0.80% - 0.89% -
l 0.52% - 0.73% - 0.80% - 0.42% - 0.75% -
m 0.28% - 0.56% - 0.22% X 0.16% X 0.22% X
n 0.22% X 1.09% - 0.07% X 0.14% X 0.12% X

Table 4.3: Identification results obtained by assuming the Gaussian pdf compared to the
one obtained by assuming a δ-contaminated pdf when the measurement noise is contam-
inated by impulsive noise.

Figure 4.18 summarizes the sensor fault detection and isolation related to the fault case
’a’ where a bias of +4K is added to the fan outlet temperature T 0

13. The bar graphs
represent the scaled estimated residual r̂k/σy, for each sensor, 1500 seconds after the fault
has occurred in order to ensure that this analysis refers to converged solutions.

Figure 4.18(a) illustrates the generally observed behavior of the Gaussian assumption:
the sensor fault is spread on several parameters which does not allow an easy localization
of the fault. In such a situation, the only simple solution is to disable the identification.
However, when the δ-contaminated pdf is used, the localization of the sensor fault is
easier and the associated fault logic is simpler. As a consequence of this good isolation,
the specific sensor can be discarded and the identification can continue based on the
remaining sensors.

The different behaviors in terms of sensor fault isolation exhibited by both approaches can
be compared in terms of the stability of the health parameter estimation in each cases.
Results summarized in figure 4.19 which refers to the use of the Gaussian pdf are strongly
influenced by the sensor faults.

The effect of the δ-contaminated pdf is exhibited in figure 4.20 where health parameters
are closer to their actual values (dotted line) than in figure 4.19. The δ-contaminated
pdf is not insensitive to the sensor fault but the resulting diagnosis is much less sensitive
which explains the better ability to isolate the sensor fault.

Unfortunately, the sensor fault isolation is not always as efficient with all sensors. Figure
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Figure 4.18: Comparison of the Gaussian and the δ-contaminated pdf for sensor fault
detection and isolation with a systematic error of +4K on T 0

13 (+6σy).

200 400 600 800 1000 1200 1400 1600 1800

−4

−2

0

C
om

pr
es

so
rs

200 400 600 800 1000 1200 1400 1600 1800

−4

−2

0

Tu
rb

in
es

 a
nd

 n
oz

zl
e

SW41R
SE41
SW49R
SE49
A8IMP

SW12R
SE12
SW2R
SE2
SW26R
SE26

time (s)

Figure 4.19: Results identified by using the Gaussian pdf on test case ’b’ in the presence
of a sensor fault (+4K on T 0

13).

4.21 gathers sensor fault detection results related to different sensor faults. The detection
is efficient for T 0

13, p
0
13 and T 0

3 but for p03, Nlp, Nhp and T 0
6 the fault isolation is not so clear

and needs a more advanced fault logic to isolate the faulty sensor.

All the poor sensor fault isolations have in common a failure in the process noise covariance
estimation. Indeed, when a sensor fault occurs, the early detection of the faulty component
is no longer efficient and the resulting diagnosis is biased. The most probable reason which
explains such a behavior is the way the observed residual covariance r̂−k r̂

−T
k is computed

in algorithm 3 where it is still assumed that the measurement noise is Gaussian.

Though very simple and robust enough to cope with impulsive noise, this strategy is
not sufficient to cope with sensor biases. A possible extension, which is not explored
herein, would consist in computing a robust covariance of the residuals such as the
pseudo covariance described in [Huber, 1992] or also the robust covariance detailed in
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Figure 4.20: Results identified by using the δ-contaminated pdf on test case ’b’ in the
presence of a sensor fault (+4K on T 0

13).

[Hubert et al., 2001].
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Figure 4.21: Sensor fault detection and isolation on component fault case ’a’ for different
sensor faults
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4.6.7 EKF or UKF?

Although the presented results refer to the application of the unscented Kalman filter, the
resolution of the diagnosis problem can be achieved as well within the extended Kalman
filter framework. Indeed, if the fault influence matrix Gk is computed by central differences
it involves 2p+1 model resolutions such that the EKF represents the same computational
load as the UKF. Since the UKF is more accurate, it may appear as a better choice.
However, in some particular applications the matrix Gk may be computed more effectively
than by central differences and, provided that the nonlinearities are not too important,
the EKF may be preferred. The scope of this PhD thesis is not to advise any framework
and, generally speaking, both approaches are presented without any preference. In fact,
both EKF and UKF have been compared on the set of faults detailed in table 4.1 and no
difference has been observed between the identified health parameters obtained by both
methods. In the particular application of steady-state diagnosis in turbine engines, EKF
and UKF are equivalent.

4.6.8 Real-time implementation

In the preceding section it is implicitly assumed that the unscented Kalman filter is re-
quired since the system model is nonlinear. Even if real-time performances are easily
achieved on a Pentium 3 desktop computer, such a procedure may simply become un-
achievable due to the low computational power available on embarked controller whose
computational power are close to a Pentium at 90MHz.

Indeed, the application of the unscented Kalman filter, as detailed in algorithm 6, requires
2p+ 1 model simulations where p is the number of health parameters. In the application
of interest this results in approximately 50 model evaluations per second with a data
acquisition rate of 2Hz. A nonlinear model resolution taking approximately 20ms on
a Pentium at 90MHz, the whole process would consume around 1 second of cpu time.
The whole computational power of the real-time controller would be entirely dedicated to
the measurement prediction. This situation is unacceptable and the development of an
application more compatible with real-time computing is preferable. A possible alternative
is to train a black box model by using automatic learning so as to imitate the initial
software model such as described in figure 3.6. However, up to now, no such model is
available to us and this solution is not tested herein.

Otherwise, a generic Kalman filter based on linearized model may be used but leads to
much coarser results [Kamboukos and Mathioudakis, 2003]. A reasonable alternative to
the linear Kalman filter is a semi-linear procedure similar to the extended Kalman filter
detailed in algorithm 5, except that the influence matrix Gk is not evaluated at each time
step. Doing so, the nonlinear character of the system model is not completely neglected at
the price of a moderate computational cost. Results of such a procedure are summarized
in table 4.4 where they are compared to those of the unscented Kalman filter. As it can
be expected, the results of the semi-linear estimation are slightly less accurate than those
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related to the full nonlinear model but the loss of accuracy is limited and still allows an
effective fault detection and isolation.

UKF SLKF

a 0.03% on SW49R X 0.16% on A8IMP X
b 0.09% on SE12 X 0.05% on SW12R X
c 0.07% on SW26R X 0.14% on SW26R X
d 0.03% on SE12 X 0.05% on SE2 X
e 0.03% on SW26R X 0.03% on SW26R X
f 0.02% on SE42 X 0.05% on SW26R X
g 0.17% on SW49R X 0.14% on SW49R X
h 0.24% on SW49R X 0.22% on SW49R X
i 0.19% on SW49R X 0.15% on SW12R X
j 0.82% on SW49R - 0.95% on SW49R -
k 0.53% on SW49R - 0.96% on SW49R -
l 0.41% on SW49R - 0.62% on SW49R -
m 0.06% on SE41 X 0.12% on A8IMP X
n 0.06% on SW2R X 0.15% on A8IMP X

Table 4.4: Comparison of the fault detection and isolation capacities of both the UKF
and the semi-linear Kalman filter.



114 CHAPTER 4. SEQUENTIAL IDENTIFICATION



Chapter 5

Combination with a classification
algorithm

This chapter is intended to introduce a health parameter estimation
which combines the results of two different diagnosis tools, namely the
health parameter estimation based on the Kalman filter detailed in chap-
ter 4 and a classification algorithm based on a Bayesian Belief Network.
The combined diagnosis tool is tested on the set of fault cases already
used in chapter 4 in order to underline the benefits of the coupling.
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5.1 Motivations

The will to combine several diagnosis tools together comes from the acknowledgement that
no individual tool available nowadays is able to detect and isolate all the faults of interest
based only on the small measurement sets provided by the on-board instrumentation.
This is in fact the case for the health parameter estimation method illustrated in chapter
4 which solves nearly all of the test cases but for which the faults on the low pressure
turbine remain difficult to separate from those related to the high pressure turbine.

Such non-separability effects generate some false alarms and wrong decisions which pe-
nalize the efficiency of the condition-based maintenance. On the other hand different
diagnosis tools generally give different diagnosis results and the fault non-separability are
not the same for all of them. The objective to combine several diagnosis tools is to de-
crease the amount of undetected faults and false alarms by crosschecking their diagnosis
reports (see for example [Volponi et al., 2004] for such applications).

5.2 Classification methods

5.2.1 Generalities

The diagnosis tool developed in chapter 4 and based on a health parameter estimation
method is intended to quantify performance degradations of some components of a turbine
engine. As already mentioned in section 2.5, this is not the only way to proceed. Indeed,
there exist diagnosis methods whose purpose is to assign a fault signature r̂hlk to one of a
number of discrete classes or categories [Bishop, 1995]. For example, in the case of aircraft
engine diagnostics, each health parameter may be assigned to a given class (faulty-not
faulty or low-correct-high). Those approaches are referred to as diagnosis through fault
classification. Some results of classification techniques applied to turbine engine diagnostic
can be found in [Mathioudakis, 2003].

Since both approaches solve the same problem in different ways, they can be expected
to give different results. While giving coarser diagnosis reports, classification meth-
ods are less sensitive to the measurement noise. In effect, they generally exhibit a
better fault isolation than health parameter estimation methods. Moreover, they may
allow some qualitative knowledge (i.e. user experience, some events that have been
observed but can not be modeled, . . . ) to be introduced into the classification rule
[Romessis and Mathioudakis, 2004]. Those characteristics make classification algorithms
very complementary to health parameter estimation methods. In this PhD thesis, it is
proposed to test the ability to combine results from a classification technique to a Kalman
filter in order to profit from their mutual advantages.
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5.2.2 Bayesian Belief Network

The approach presented herein is based on a Bayesian Belief Network (BBN) developed at
the Technical University of Athens (NTUA) and detailed in [Romessis and Mathioudakis, 2004].
The structure of the network employed later in the application includes 18 nodes repre-
senting deviations of the 11 health parameters wk, and 7 measurements yk for the test
case of a turbofan engine.

whl engine simulation
model

uk vk yk

Bayesian Belief Network

+
yk

hl +
-

rkhl

Pc(i)

Figure 5.1: Classification procedure using BBN

As represented in figure 5.1, the BBN is supported by the same engine performance
model as the one used within the Kalman filter except that it is fed with nominal health
parameter values whl. A set of measurement readings (yk) is preprocessed together with
vk and uk to derive the deviations of the 7 measurements from their nominal values.
These deviations are presented to the BBN, from which the diagnosis report is obtained.
Each output node produces the probability for a health parameter to belong to a certain
interval, for example to be around the value that represents a “healthy” component or to
be away from this value for a fault condition. These probabilities, denoted Pc(i) represent
the probabilities that the health parameter wk(i) belongs to the interval c. If the interval
c is bounded by τc−1(i) and τc(i) (where τc−1(i) ≤ τc(i)), the probability Pc(i) is

Pc(i) = P (τc−1(i) ≤ wk(i) < τc(i)) (5.1)

The output is thus an indication of which are the most probable health parameter val-
ues and from this information the stand alone BBN derives a fault diagnosis. For a
thorough description of the Bayesian Belief Network, the interested reader is referred to
[Judea, 1991] or again to [Castillo et al., 1997].
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5.3 Combination technique

5.3.1 Principle

Neither the Kalman filter presented in chapter 4 nor the BBN has been primarily designed
for a combination. Indeed, both methods have been developed by two different research
groups to solve the diagnosis problem individually. Moreover, the source code of the BBN
was not available to us and no deep modification of the BBN was considered due to time
limitations. As a consequence, the solutions conceivable to combine the Kalman filter to
the BBN are significantly reduced due the fact that, from the Kalman filter point of view,
the BBN is seen as a black box. The present chapter is not dedicated to a deep review of
the different methods intended to integrate a classification method into a Kalman filter but
rather to underline the improvements brought by combining two different diagnosis tools
in a specific situation. The flowchart block diagram represented in figure 5.2 summarizes
the adopted solution.

Kalman filter

uk yk vk

Kalman filter

available data

external
disturbance

filtering

health
parameter
estimation

unit delay

unit delay

vk
vk-1

wk
wk-1

Bayesian Belief
Network

whl
wk classification

algorithm

Figure 5.2: Block diagram of the procedure followed to combine the Bayesian belief
network with the Kalman filter.

The principal diagnostic tool is the Kalman filter which produces the estimations of
the unknown health parameters by incorporating information derived by the BBN. The
communication between the BBN and the Kalman filter is ensured by wk whose precise
nature is detailed in the next section. Both BBN and Kalman filter use the same pre-
processing through external disturbance filtering described in algorithm 14, appendix B.
It increases the measurement prediction accuracy for both algorithms. The final outcome
of the combination is the Kalman filter results called in the following “results of the
combination”.
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5.3.2 Communication between the BBN and the Kalman filter

The communication between a classification algorithm and a Kalman filter, such as de-
picted in figure 5.2, is not straightforward in practice because each method uses a different
representation of the probabilities. While the Kalman filter processes probability density
functions, outputs of the BBN are the probabilities for a health parameter to belong to a
specific interval, and therefore do not possess any probability density function. By making
use of the Heaviside step function θ(x) defined by

θ(x) =


0 if x < 0
1/2 if x = 0
1 if x > 0

(5.2)

the probabilities related to outputs of the classification algorithm can be represented as
a piecewise constant pdf:

p(wk(i)) =
nc∑
c=1

Pc(i)
θ [wk(i)− τc−1(i)]− θ [wk(i)− τc(i)]

τc(i)− τc−1(i)
(5.3)

where nc is the number of classes for each health parameter. The situation is depicted
in figure 5.3 where the piecewise constant pdf from the BBN must be converted into a
Gaussian pdf in order to be fed into the Kalman filter. The problem depicted in figure
5.3 underlines the more general situation where a qualitative knowledge, often discrete,
is to be compared to a quantitative knowledge which is basically continuous.
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wk(i) is
high

wk(i) is
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Figure 5.3: Conversion of probability density from a piecewise constant function into a
Gaussian function.

The solution proposed herein is to preserve as much as possible the probability density
given by the classification method. If a specific fault case is diagnosed with a probability
of 100% this must appear in the Gaussian pdf by a small variance. Inversely, if the
classification method is unable to make a diagnostic, the probability is spread on the
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whole set of possible categories and this must also appear in the pdf fed into the Kalman
filter by an important variance. If the definitions of the mean and the variance are applied
to the pdf defined in (5.3), it yields

wk(i) = E(wk(i)) =

∫ ∞
−∞

wk(i) p(wk(i)) dwk(i)

=
nc∑
c=1

Pc(i)

2
(τc−1(i) + τc(i)) (5.4)

σw,k(i)
2 = E

[
(wk(i)−wk(i))

2
]

=

∫ ∞
−∞

(wk(i)−wk(i))
2 p(wk(i)) dwk(i)

=
nc∑
c=1

Pc(i)

3
[(τc−1(i)−wk(i))

2 + (τc(i)−wk(i))
2

+(τc−1(i)−wk(i))(τc(i)−wk(i))] (5.5)

Therefore, the BBN is seen as a black box which generates an estimation wk and a
covariance matrix Qk defined by:

Qk =


σw,k(1)2 0 · · · 0

0 σw,k(2)2 0
...

. . .

0 0 σw,k(p)
2

 (5.6)

where the σw,k(i)
2 are obtained through relation (5.5). It must be noted that the matrix

Qk is kept diagonal meaning that only the most probable values together with their
corresponding variance are conserved.

5.3.3 Including the additional measurements

From the point of view of the Kalman filter, a natural way to proceed for including the
information coming from the BBN consists in considering the outputs of the BBN wk

as “fictive” measurements with covariance matrix Qk. These fictive measurements wk

constitute an additional information intended to increase the separability of the engine
faults. Hence, similarly to what has been done for the measurements yk, a measurement
prediction equation can be written in the form:

wk = wk + ηk (5.7)

where ηk is a noise term intended to represent the uncertainty related to the “fictive”
measurements. In fact, ηk is very similar to the measurement noise εk. If equation (5.7)
is aggregated to the measurement prediction equation, the joint measurement prediction
takes the form: [

yk
wk

]
=

[
Gk

I

]
wk +

[
ŷhlk − Gkwhl

0

]
+

[
εk
ηk

]
⇔ yek = Ge

kwk + qk + εek (5.8)
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where yek, G
e
k and εek are respectively the joint measurement set, the joint influence matrix

and the joint noise term. The joint noise term εek is assumed Gaussian with 0 mean and
covariance matrix Rey,k defined by:

E(εekε
eT
j ) =

{
Rey,k if j = k
0 if j 6= k

with Rer,k =

[
Ry,k 0

0 Qk

]
(5.9)

In the preceding relation, the noise term ηk is assumed independent of εk (the off diagonal
terms in Rey,k are 0). While this assumption strongly simplifies the estimation problem,
one must keep in mind that the “fictive” measurements are estimated by the BBN through
the measurements yk. As the scope of the present procedure is not to completely integrate
the two tools, from the Kalman filter point of view, the BBN is seen as a black box which
generates some preferred values for the health parameters regardless of the origin of this
information.

Additionally, if the δ-contaminated pdf is used to protect the health parameter estimation
against outliers, a joint weighting matrix Se−y,k may be defined by:

Se−y,k =

[
S−y,k 0

0 S−w,k

]
(5.10)

where S−w,k is also a diagonal matrix whose diagonal terms s−w,k(i) are defined as:

s−w,k(i) = max

{
1,

wk(i)− ŵ−k (i)

∆σw,k(i)

}
(5.11)

Thus stated, the estimation problem comes down to estimate the health parameters wk

through a measurement sample of size m+ p instead of m. Therefore, the update mech-
anism defined by relations (4.43) and (4.45) can be applied to the joint measurement
prediction equations (5.8) by replacing the Kalman gain K by an p×(m+p) joint Kalman
gain Ke defined by

Ke = P−w,kG
eT
k

(
Ge
kP
−
w,kG

eT
k + Se−y,kR

e
y,k

)−1
(5.12)

Therefore it yields:

ŵk = ŵ−k + Ke

[
r̂−k

wk − ŵ−k

]
(5.13)

Pw,k = (I−KeGe)P−w,k (5.14)

The update rules specified by relations (5.13) and (5.14) respect the intentions mentioned
in the beginning of this section for which both diagnosis tools must be only slightly
tuned. Indeed, the structure of the Kalman filter is not strongly modified since it only
involves a modification of the matrix sizes. Of course, such a procedure is quite artificial
since the fictive measurements wk are treated symmetrically to the measurements yk.
The information brought by the measurements yk is balanced with the fictive ones only
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through the covariance matrix Qk. However, our early experiments have shown that using
the matrix Qk determined by relation (5.6) involves a health parameter estimation that
is mainly driven by the BBN results: if the BBN fails to diagnose the fault, the Kalman
filter also fails.

In order to avoid the Kalman filter to be mainly driven by the BBN results, a factor
κ−1 multiplying the covariance S−w,kQk is used to balance the influence of the “fictive”

measurements. This ensures that κ−1S−w,kQk � P−w,k and avoids the health parameter
estimation to be driven mainly by the constraints and not by the available data yk.
Unfortunately, the above formulation for the health parameter estimation does not allow
the factor κ to be properly determined in order to balance wk with yk.

5.3.4 A more appropriate formulation

To determine more appropriately the factor κ, the health parameter estimation can be
re-formulated. Indeed, the update rule specified by relations (5.13) and (5.14) corresponds
to the sequential minimization of the following objective function:

Jmap(wk) =

[
r̂k|w

wk −wk

]T [
S−y,kRy,k 0

0 κ−1S−w,kQk

]−1 [
r̂k|w

wk −wk

]
+ (wk − ŵ−k )T (P−w,k)

−1(wk − ŵ−k ) (5.15)

Developing the above objective function for a linear system model leads to:

Jmap(wk) = (̂rhlk − Gk(wk −whl))T (S−r,kRr,k)
−1(̂rhlk − Gk(wk −whl))

+ (wk −wk)
Tκ(S−w,kQk)

−1(wk −wk)

+ (wk − ŵ−k )T (P−w,k)
−1(wk − ŵ−k ) (5.16)

whose minimization can be done by solving
∂Jmap

∂wk

= 0:

∂Jmap

∂wk

= (P−w,k)
−1(wk − ŵ−k )− κ(S−w,kQk)

−1(wk −wk)

− GT
k (S−r,kRr,k)

−1(̂rhlk − Gk(wk −whl)) = 0 (5.17)

which yields, after some algebraic steps to:

⇒
[
(P−w,k)

−1 + κ(S−w,kQk)
−1 + GT

k (S−r,kRr,k)
−1Gk

]
(wk − ŵ−k )

= GT
k (S−r,kRr,k)

−1r̂−k + κ(S−w,kQk)
−1(wk − ŵ−k ) (5.18)

For ease of notation, the following matrix is defined:

Pcw,k =
[
(P−w,k)

−1 + κ(S−w,kQk)
−1]−1 (5.19)
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which allows the update rule for the health parameter estimation to be stated as:

ŵk = ŵ−k + Kr̂−k + K′(wk − ŵ−k ) (5.20)

where K and K′ are the two Kalman gains defined by:{
K =

[
(Pcw,k)

−1 + GT
k (S−r,kRr,k)

−1Gk

]−1
GT
k (S−r,kRr,k)

−1

K′ =
[
(Pcw,k)

−1 + GT
k (S−r,kRr,k)

−1Gk

]−1
κ(S−w,kQk)

−1 (5.21)

The application of the matrix inversion lemma (4.24) to K and K′ leads to

K = P−w,kG
T (GP−w,kG

T + SrRr)
−1 (5.22)

K′ =
[
Pcw,k − Pcw,kG

T (GPcw,kG
T + S−r,kRr,k)

−1GPcw,k
]
κ(S−w,kQk)

−1

=
[
I− Pcw,kG

T (GPcw,kG
T + S−r,kRr,k)

−1G
]
Pcw,kκ(S−w,kQk)

−1

= (I−KG)Pcw,kκ(S−w,kQk)
−1 (5.23)

The update procedure resulting from the application of the formula (5.20) is summarized
schematically in figure 5.4. In addition to a less demanding computational burden which
no longer requires the inversion of an (m+p)×(m+p) matrix, the latter update procedure
takes into account the different nature of the two measurement sets yk and wk.

engine performance
model

yk

  K

health parameter
transition model

vkuk

Bayesian Belief
Nework

  K'unit delay
wk

yk
-

rk-
wk

wk-1 wk
-

Figure 5.4: Block diagram of the combined diagnosis tool.

The matrix Pcw,k can be thought of replacing the prior covariance matrix P−w,k. Indeed

Pcw,k takes the matrix κ−1S−w,kQk into account as if it was an a prior belief on the health
parameters. Hence, if the matrix inversion lemma (4.24) is applied to relation (5.19), it
yields

Pcw,k = P−w,k − P−w,k(P
−
w,k + κ−1S−w,kQk)

−1P−w,k

= Pw,k−1︸ ︷︷ ︸
1

−P−w,k(P
−
w,k + κ−1S−w,kQk)

−1P−w,k︸ ︷︷ ︸
2

+Rw,k︸︷︷︸
3

(5.24)
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which expresses the matrix Pcw,k more appropriately. Indeed, the second term of (5.24)
represents the amount of information subtracted from Pw,k−1 due to the “fictive” mea-
surements and the third term represents the relaxation coming from the process noise and
which allows more adaptability. Those two terms may be balanced through the factor κ
in order to weight the influence of wk into the identification algorithm. κ may be assessed
through the equation mentioned below which ensures that, at each iteration, the prior
knowledge (term 2) is a fraction γ of the process noise (term 3). Values between 0.1 and
0.01 for γ give good results.

trace(P−w,k(P
−
w,k + κ−1S−w,kQk)

−1P−w,k) = γ|trace(Rw,k)|

⇒ κ ' γ
|trace(Rw,k)|

|trace(P−w,k(S
−
w,kQk)−1P

−
w,k)|

(5.25)

Therefore, when the Kalman filter is able to perfectly match the data, the process noise
matrix Rw,k is 0 and the factor κ−1 tends to 0 which involves K′ = 0 such that the
update rule (5.20) degenerates into the generic update rule. Hence, the BBN results are
only used when a fault occurs and proportionally to the magnitude of the fault. Loosely
speaking, we can say that, through relation (5.25), the Kalman filter asks to the BBN the
information only when it is necessary.

To complete the health parameter update rule, the covariance update is also adapted
by substituting the health parameter update rule specified by relation (5.20) into the
covariance update rule (5.14) and it holds:

Pw,k = (I−KeGe)P−w,k

=

(
I− [KK′]

[
Gk

I

])
P−w,k

= P−w,k −KGkP
−
w,k︸ ︷︷ ︸

2

−K′P−w,k︸ ︷︷ ︸
3

(5.26)

The covariance update rule is the image of the health parameter update rule. The second
term represents the amount of information extracted from the data and the third term is
the contribution from the “fictive” measurements.

In the application detailed in the next section, a nonlinear system is used. The extension
of the detailed combination procedure to a nonlinear model is done through a model
linearization around the most recent estimate. The algorithm used in the next section,
and detailed in algorithm 7, is very close to the extended Kalman filter of algorithm 5. The
UKF framework has not been considered herein since it does not bring any improvement
in the case of the health parameter estimation.
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Algorithm 7 Combination of the Kalman filter to the BBN for health parameter esti-
mation
Require: ŵ0 = whl and Pw,0 = Q0

1: for k = 1 to n do
2: ŵ−k = ŵk−1

3: r̂−k = yk − G(uk, vk, ŵ
−
k )

4: Compute S−y,k and S−w,k respectively through relations (4.42) and (5.11)

5: Compute Gk through relation (4.58)

6: Compute Rw,k through algorithm 3

7: P−w,k = Pw,k−1 + Rw,k
8: Compute κ through relation (5.25)

9: Pcw,k = P−w,k − P−w,k
(
P−w,k + κS−w,kQk

)−1
P−w,k

10: K = Pcw,kG
T
k

[
GkPcw,kG

T
k + S−r,kRr,k

]−1
11: K′ = (I−KGk)Pcw,kκ(S−w,kQk)

−1

12: ŵk = ŵ−k + Kr̂−k + K′(wk − ŵ−k )

13: Pw,k = (I−KGk −K′)P−w,k
14: end for

5.4 Application to on-board monitoring

The estimation of the health parameters through the procedure detailed in algorithm 7
follows exactly the same procedure as the one described before in section 4.6. It consists of
the 15 fault cases from table 4.1 appearing during a cruise flight. The 11 health parameters
have to be estimated through a set of 7 measurements detailed in table 2.9. This allows
some comparisons between the combined algorithm and the stand alone Kalman filter to
be drawn. Three situations are chosen to be presented in details :

1. a fault on the high pressure compressor (fault case ’c’) which is solved by the Kalman
filter but not by the BBN,

2. an lpt flow capacity fault (case ’k’) which is not solved by the Kalman filter but is
solved by the BBN,

3. an lpt fault involving two health parameters where none of the algorithms finds the
solution.

5.4.1 Hpc fault - case ’c’

This case is dedicated to illustrate the stability of the combination between the BBN and
the Kalman filter. Both algorithms have been separately run on the same data set.
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Figure 5.5 shows results of the diagnostic using the Kalman filter alone. It compares actual
values of the health parameter related to the high pressure compressor (dotted lines) to
identified values. Identified values are close to actual ones showing that the identification
is effective. No spreading of the fault is observed on the high pressure turbine (not shown
in the figure) nor on the fan and the low pressure compressor.
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Figure 5.5: Identification results of the Kalman filter alone for the hpc fault case ’c’.
Dotted lines refer to actual values

Figure 5.6 shows similar results given by the BBN. Values in the ordinate of this graph
are the corresponding mean computed by relation (5.4). As long as the fault is of small
magnitude (namely for about 4000s), the BBN produces a wrong diagnosis of an lpc fault
(SE2). Only for the last period of the interval, when the deviation magnitude becomes
larger, the correct component is indicated.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−1.5

−1

−0.5

0

0.5

%
 o

f d
ev

ia
tio

n 
fro

m
no

m
in

al
 v

al
ue

   
   

time (s)

SW12R
SE12
SW2R
SE2
SW26R
SE26

SE26 SW26R 

Figure 5.6: Identification results of the BBN alone for hpc fault case ’c’. Dotted lines
refer to actual values

Results of the combined method are summarized in figure 5.7 showing that the fault is still
correctly located by the Kalman filter. This demonstrates that the combined algorithm is
not simply a weighted mean of Kalman filter and BBN results. It seems that the Kalman
filter estimation is robust enough not to be perturbed by a wrong BBN information.
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Figure 5.7: Identification results of the combination method for hpc fault case ’c’. Dotted
lines refer to actual values

5.4.2 Lpt faults - cases ’k’ and ’l’

Test case ’k’ involves only one health parameter: the flow capacity of the low pressure
turbine (SW49R). This case is solved by the BBN but not by the Kalman filter. This
situation is summarized in figure 5.8(a) that shows results for the turbine and the nozzle
using the Kalman filter alone.

Identified health parameters SW49R, SE49 as well as SE41 are detected faulty far from
the actual values (dotted lines). Conversely the BBN is able to locate the fault. The figure
5.8(b) indicates that the parameter SW49R is low: mean values of SW49R are around
-1% which is close to the actual value. All other parameters are assigned to their nominal
value indicating that the isolation is correct even though it is not accurately assessed.

The results in figure 5.8(c) highlight the benefit of the combination also for the BBN.
Identified values related to SW49R are close to the actual one while the one related to
SE41 and SE49 remain close to nominal values. In this case the Kalman filter is driven
by the BBN to the correct solution.

As an other illustration, figure 5.9(a) shows the results of the test case ’l’ where both
SW49R and SE49 are involved in the component fault. Values derived by the Kalman
filter alone for SW49R and SE49 remain far from actual ones and the difference is spread on
the other parameters (SW41R and SE41). The fault is correctly located but its magnitude
is not accurately determined. The combined algorithm identification is far more accurate
(fig. 5.9(b)). The fault is not only located correctly but also accurately assessed.

5.4.3 Lpt fault - case ’j’

Because no inter-turbine measurement is available the case ’j’ is by far the most difficult
one. This case in not solved by the BBN nor the Kalman filter. This is represented in
figure 5.10(a) where values of SW49R, SE49 and SE41 identified by the Kalman filter
remain far from actual values. As a consequence, both low and high pressure turbines are
detected faulty. The same kind of results are obtained using the BBN (fig. 5.10(b)) where
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(a) Kalman filter alone
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(b) BBN alone
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(c) Combined method

Figure 5.8: Identification results for lpt fault case ’k’. Dotted lines refer to actual values

SW49R and SW41R are classified faulty while the fault related to SE49 is not detected.

While identified values of SW49R and SE49 are closer to the actual ones, the fault remains
poorly located even though the Kalman filter and the BBN are combined (figure 5.10(c)).
SE41 is below -0.3% and the high pressure turbine looks also defective. This behavior is
not surprising since no-one of the constituent methods provides information that could
be used to lead the combined method to the correct decision.

5.4.4 Diagnostic Effectiveness Overview

In order to illustrate the capabilities of the method, application results related to a number
of different fault cases are shown. Table 5.1 gives an overall picture of the results of the
constituent methods working alone and the combination of the Kalman filter with the
BBN. This table shows the maximum absolute values of biases defined by relation (4.70)
achieved by the combined method after 4900 measurement samples have been observed
which represents an image of its asymptotic efficiency. The main conclusion of these
results is that the combination especially improves results of the Kalman filter in test
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(a) Kalman filter alone
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(b) Combination of Kalman filter to BBN

Figure 5.9: Identification results of Kalman filter and combined method for lpt fault case
’l’. Dotted lines refer to actual values.

KF BBN Combination of both

a X X 0.05% on SW49R X
b X X 0.10% on SE12 X
c X - 0.12% on SW26R X
d X X 0.06% on SE2 X
e X X 0.04% on SW49R X
f X X 0.02% on SE42 X
g X X 0.11% on SE49 X
h X X 0.14% on SW49R X
i X X 0.25% on SW49R X
j - - 0.58% on SW49R -
k - X 0.04% on SW49R X
l - X 0.12% on SW49R X

m X X 0.05% on SE41 X
n X X 0.03% on SE49 X

Table 5.1: Summary of diagnosis success given by the Kalman filter alone, BBN alone and
combination of the Kalman filter with BBN a priori for the complete set of component
faults detailed in table 4.1.

cases ’j’, ’k’ and ’l’ related to the low pressure turbine. The combination is able to solve
all the test cases except the case ’j’ which is still difficult to identify with this set of 7
measurements.
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(a) Kalman filter alone
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(b) BBN alone
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(c) Combined method

Figure 5.10: Identification results for lpt fault case ’j’. Dotted lines refer to actual values

5.4.5 Discussion

With the set of 7 available measurements, those results are the most meaningful that can
be obtained with the combined algorithm. In order to obtain a better localization of the
fault, an additional knowledge must be made available. In the preceding chapter, two
additional measurements are considered: p026 and p049. While this solution is ideal because
it provides the best results, those two measurements may not be available. In a test bench
configuration it may happen that some other measurements are available (i.e. vibrations,
some measurements about the lubrication system, . . . ) but are unlikely to be predicted
based on the health parameters since they do not appear in the model. This underlines
the weakness of the Kalman filter for which a model has to be available. Moreover, this
model being based on a gas path analysis, any qualitative knowledge is very difficult to
include into the identification procedure.

The combined method proposed in this section allows the inclusion of additional infor-
mation from sources other than modeled measurements. It can thus produce results that
would have been possible for the Kalman filter only with additional gas path measure-
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ments. This point is demonstrated by considering again case ‘j’ but assuming now that
some additional information exists, as for example historical records and related statistics.
The following test case assumes that such an additional knowledge favors a fault on the
low pressure turbine. The BBN is modified by tuning the a priori knowledge about the
health parameters (see [Romessis and Mathioudakis, 2004] for the detailed procedure) to
make a fault on the low pressure turbine more likely to occur.

Results using this “modified” BBN are shown in figure 5.11(a). A fault on SE49 is now
detected in addition to the one related to SW49R. Results of the combined algorithm
(lower graph in figure 5.11(a)) are far better: SW49R as well as SE49 converge to their
actual value while SE41 is closer to its true value. Finally (after 2500s) the detection
is effective and the health parameters are more accurately assessed. The diagnosis is
effective and allows a more reliable decision.
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(b) Combined method

Figure 5.11: Identification results for lpt fault case ’j’ with a BBN whose prior information
has been modified. Dotted lines refer to actual values
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Chapter 6

Diagnosis from unsteady data

In the previous chapters, the diagnosis problem has been considered only
for steady-state conditions. This chapter is intended to introduce a pos-
sible framework to cope with unsteady-state conditions. It makes use
of the state space formulation of the dynamical system model detailed
in chapter 2. This leads us to the dual estimation problem where both
the health parameters and the state variables must be simultaneously
estimated from the same sequence of noisy measurements.
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6.1 Generalities

6.1.1 Dynamic system model

The diagnosis problem addressed in the preceding chapters relies on a measurement pre-
diction of the form:

yk = G(uk, vk,wk) + εk (6.1)

where εk represents the random measurement errors. However, in the case of unsteady-
state conditions the measurement prediction equation takes the form:

yk = G(xk,uk, vk,wk) + εk (6.2)

and the measurements also depend on the current state variables xk. The current state
variables can be predicted based on the previous state variables through the dynamic
model of the turbine engine already introduced in chapter 2. The state prediction equation
takes the functional form:

xk = F(xk−1,uk, vk,wk) (6.3)

Like the measurement prediction equation (6.2), the state prediction equation does not
give us access to the actual value of the state variables xk. With the state-space representa-
tion determined by relations (6.3) and (6.2), it is common to split the model inaccuracies
by the introduction of an additional noise term νk and the state-space representation
becomes:

xk = F(xk−1,uk, vk,wk) + νk (6.4)

yk = G(xk,uk, vk,wk) + εk (6.5)

where νk is called the process noise and results from the realization of a white and
Gaussian random variable with zero mean and covariance matrix defined by:

E(νk) = 0 (6.6)

E(νkν
T
j ) =

{
Rx,k for j = k

0 for j 6= k
(6.7)

νk is also assumed independent of the measurement noise εk. If the state variables are
directly measurable, the derivation of an estimate x̂k is straightforward and the health
parameter estimation problem can be solved by using the estimation methods from chapter
4. However, as already stressed in chapter 2, state variables in turbine engines consist
of rotational spool speeds but also of metal temperatures intended to model the internal
heat soakages taking place mainly in hot sections of a turbine engine (e.g. the combustion
chamber, the high pressure turbine, the high pressure compressor).

If the rotational spool speeds are accurately measured, the metal temperatures are not
measurable and the state variables xk are considered as unobserved inputs. This requires
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that both the state variables and the health parameters are simultaneously estimated
from the same sequence of noisy measurements yk. This is known as the dual estimation
problem.

6.1.2 Known health parameters

In order to simplify the estimation problem, it is first assumed that estimates of the
health parameters ŵk are available for each time step. Therefore, it is possible to generate
measurement estimates which are a function of only the state variables. Such estimates
are denoted by ŷk|x and are obtained through:

ŷk|x = G(xk,uk, vk, ŵk) (6.8)

This simplification allows us to treat the sequential state variable estimation alone, the
dual estimation problem being considered further in section 6.4.

6.1.3 Linear system models

An other simplification consists in neglecting the nonlinear character of the system model
defined by relations (6.2) and (6.3) and to first state the state variable estimation prob-
lem in the case of linear system models. The problem of nonlinear models is addressed
afterwards in section 6.3. The linearized state-space formulation obtained by a first-order
Taylor series expansion around a reference value xref takes the form:

xk = Ak(xk−1 − xref) + x̂refk + νk (6.9)

yk = Hk(xk − xref) + ŷrefk + εk (6.10)

where the two matrices Ak and Hk are defined as:

Ak =
∂F(xk−1,uk, vk,wk)

∂xk−1

∣∣∣∣
uk; vk=vk;wk=ŵk ; xk−1=xref

(6.11)

Hk =
∂G(xk,uk, vk,wk)

∂xk

∣∣∣∣
uk; vk=vk;wk=ŵk ; xk=xref

(6.12)

and the two reference values x̂refk and ŷrefk are

x̂refk = F(xref,uk, vk, ŵk) (6.13)

ŷrefk = G(xref,uk, vk, ŵk) (6.14)
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6.2 Sequential state variable estimation

The problem consisting of the estimation of the state variables xk of a discrete-time con-
trolled process that is governed by the linear stochastic difference equation (6.9) through
some measurements described by equation (6.10) is the basic purpose of the Kalman filter
already used for the health parameter estimation. Similarly to the health parameter esti-
mation (see section 4.2), the derivation of the Kalman filter for sequential state variable
estimation is done through a maximum a posteriori perspective which requires Gaussian
statistics for both the process noise νk and the measurement noise εk. This approach
possesses the advantage that it treats the state variable estimation symmetrically to the
health parameter estimation. Furthermore, it allows the dual estimation to be stated in
a straightforward way, which is an other advantage.

6.2.1 Maximum a posteriori approach

The Bayesian perspective to sequential state variable estimation relies on the assump-
tion that the state variables result from the realization of a random process. Therefore,
applying the Bayes’ rule for the time step k results in:

p(xk| { y }k1) =
p(yk| xk, { y }k−11 ) · p(xk| { y }k−11 )

p(yk| { y }k−11 )
(6.15)

where p(xk| { y }k1) is the posterior pdf which represents the probability density of the state
variables xk once the measurements { y }k1 are observed. Since the measurement noise εk is
still white and Gaussian, the measurement yk is not statistically dependent on past data
(i.e. { y }k−11 ) and p(yk| xk, { y }k−11 ) can be simplified in p(yk| xk). Therefore, it holds:

p(xk| { y }k1) =
p(yk| xk) · p(xk| { y }k−11 )

p(yk| { y }k−11 )
(6.16)

Therefore, the sequential state variable estimation is not conceptually different from the
sequential health parameter estimation and has the basic structure:

posterior =
likelihood · prior

evidence
(6.17)

where the likelihood is the probability density function p(yk| xk) representing the corre-
lation between the state variables xk and the measurements yk. The prior is p(xk| { y }k−11 )
which “stores” the information accumulated from past data. The denominator p(yk| { y }k−11 )
is a normalizing factor whose value is independent from xk.

Similarly to the health parameters, a map estimate for the state variables can be derived
from relation (6.16) by solving the following maximization problem:

x̂k = arg max
xk

{
p(xk| { y }k1)

}
= arg max

xk

{
p(yk| xk) · p(xk| { y }k−11 )

}
(6.18)
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The resolution of relation (6.18) through an analytic relation requires that suitable pdf’s
are specified for both the measurement likelihood and the prior. Similarly to the health
parameters, a data generation model which describes the probability density of the mea-
surements yk to be observed as a function of the state variables xk must be derived. By
using the system model (6.10), a measurement estimate denoted ŷk|x may be obtained
through:

ŷk|x = Hk(xk − xref) + ŷrefk (6.19)

Therefore, the residual r̂k|x is defined by:

r̂k|x = yk − ŷk|x = yk −Hk(xk − xref)− ŷrefk
= r̂refk −Hk(xk − xref) (6.20)

where r̂refk = yk − ŷrefk . A data generation model can be obtained by associating a pdf
to the residual r̂k|x. By a procedure similar to the one obtained in section 2.4.3 for the
residual r̂k|w, the measurement likelihood may be written as:

p(yk| xk) =
1√

(2π)m |Rr,k|
exp

[
−1

2
(̂rrefk −Hk(xk − xref))TR−1r,k (̂r

ref
k −Hk(xk − xref))

]
(6.21)

where the covariance matrix Rr,k is obtained through (2.55). The measurement likelihood
represents the probability of occurrence of the measurements yk as a deterministic function
of the state variables xk. Concerning the prior p(xk| { y }k−11 ), a Gaussian pdf is again
chosen (see the discussion in section 3.3.2) which takes the form:

p(xk| { y }k−11 ) =
1√

(2π)s
∣∣P−x,k∣∣exp

[
−1

2
(xk − x̂−k )T (P−x,k)

−1(xk − x̂−k )

]
(6.22)

where s stands for the dimension of the vector xk. The prior mean x̂−k and covariance P−x,k
are defined respectively by:

x̂−k = E(xk| { y }k−11 ) =

∫ ∞
−∞

xk p(xk| { y }k−11 ) dxk (6.23)

P−x,k = E
(
(xk − x̂−k )(xk − x̂−k )T | { y }k−11

)
(6.24)

For the health parameters, the prior estimates are derived from the artificial state-space
formulation (4.10) intended to relate the current value wk to the preceding one wk−1. Such
an approach results from the assumption that the health parameters may vary “relatively
slowly” compared to the state variables. In the case of the state variables xk, the situation
is more favorable since the latter already possess a state-space formulation based on a
physical model and which relates the current state-variables xk to their previous value
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xk−1 through well established physical laws. Hence, if the state-space formulation for the
state variables is introduced, it holds:

xk = Ak(xk−1 − xref) + x̂refk + νk (6.25)

which allows the determination of the prior state variable value at the current time step k
from its value at the previous time step k−1. Indeed, if the previous estimate for xk−1 is de-
noted x̂k−1 = E(xk−1|{ y }k−11 ) with covariance Px,k−1 = E

(
(xk−1 − x̂k−1)(xk−1 − x̂k−1)T |{ y }k−11

)
then:

x̂−k = E(xk|{ y }k−11 ) = E(Ak(xk−1 − xref) + x̂refk + νk|{ y }k−11 )

= AkE(xk−1|{ y }k−11 )− Akx
ref
k + x̂refk + E(νk|{ y }k−11 )

= Ak(x̂k−1 − xref) + x̂refk (6.26)

P−x,k = AkE
(
(xk−1 − x̂k−1)(xk−1 − x̂k−1)

T |{ y }k−11

)
AT
k + E(νkν

T
k |{ y }k−11 )

= AkPx,k−1A
T
k + Rx,k (6.27)

The matrix product AkPx,k−1AT
k is the uncertainty with respect to the preceding estimate

x̂k−1 projected through the state prediction equation in the direction spanned by the
transition matrix Ak. The process noise covariance Rx,k is also added to take the accuracy
of the model into account. Inversely to the health parameters where the determination
of the process noise Rw,k is very important, the choice of Rx,k does not require a careful
monitoring and a constant diagonal matrix usually turns out as a good choice. The benefic
role of Rx,k is also underlined further in section 6.2.2. The prior covariance matrix thus
represents the confidence in the current prior x̂−k .

Provided that suitable priors x̂−k and P−x,k are available, the map approach to sequential
state variable estimation stated by relation (6.18) can be transformed into a minimization
problem by:

x̂k = arg min
xk

{
−ln p(yk| xk)− ln p(xk| { y }k−11 )

}
= arg min

xk
{Jmap(xk)} (6.28)

Substituting (6.21) and (6.22) into the previous expression leads to the following objective
function:

Jmap(xk) = cst +
1

2
(̂rrefk −Hk(xk − xref))TR−1r,k (̂r

ref
k −Hk(xk − xref))

+
1

2
(xk − x̂−k )T (P−x,k)

−1(xk − x̂−k ) (6.29)

whose minimization can be done by resolving the following equation:

∂Jmap(xk)

∂xk
= (P−x,k)

−1(xk − x̂−k )−HT
kR
−1
r,k (̂r

ref
k −Hk(xk − xref)) = 0 (6.30)
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The state variable estimate update rule can be derived by introducing the prior measure-
ment estimate and residual defined below:

ŷ−k = Hk(x̂
−
k − xref) + x̂refk ⇒ r̂−k = yk − ŷ−k = yk −Hk(x̂

−
k − xref)− x̂refk

= r̂refk −Hk(x̂
−
k − xref) (6.31)

and it holds:

∂Jmap(xk)

∂xk
= (P−x,k)

−1(xk − x̂−k )−HT
kR
−1
r,k (̂r

−
k −Hk(xk − x̂−k )) = 0

⇒
[
(P−x,k)

−1 + HT
kR
−1
r,kH

T
k

]
(xk − x̂−k ) = HT

kR
−1
r,k r̂
−
k

⇒ xk = x̂−k +
[
(P−x,k)

−1 + HT
kR
−1
r,kHk

]−1
HT
kR
−1
r,k r̂
−
k (6.32)

which leaves the estimated state variable update rule:

x̂k = x̂−k + Kr̂−k (6.33)

where K is the Kalman gain defined as:

K =
[
(P−x,k)

−1 + HT
kR
−1
r,kHk

]−1
HT
kR
−1
r,k (6.34)

The application of the matrix inversion lemma (4.24) to the preceding relation gives the
more usual formulation of the Kalman gain which involves only the inversion of a m×m
matrix where m is the number of measurements:

K = P−x,kH
T
k

(
HkP

−
x,kH

T
k + Rr,k

)−1
(6.35)

The previous relations express the estimated state variable update rule in its most general
form. The m × m matrix HkP

−
x,kH

T
k is the projection of the prior uncertainty onto the

measurement space. This matrix allows the comparison of the prior uncertainties to the
measurement uncertainties Rr,k. The state variable estimation procedure is summarized
in figure 6.1. The previous estimate x̂k−1 is used by the state prediction equation (6.9) to
predict the prior value for the state variables. These prior value x̂−k is used, in turn, by the
measurement prediction equation (6.10) to predict the prior value for the measurements,
denoted ŷ−k , whose comparison with the raw measurements yk gives the prior residuals
r̂−k . Finally, the prior value x̂−k is updated based on the prior residuals r̂−k through the
Kalman gain K defined in relation (6.35).

Since the statistics are Gaussian, the map estimate is equivalent to the expected value
[Nelson, 2000]:

x̂k = E(xk|{ y }k1) = arg max
xk

{
p(xk| { y }k1)

}
(6.36)

and the covariance update rule can be determined based on its definition:

Px,k = E
[
(xk − x̂k)(xk − x̂k)

T |{ y }k1
]

(6.37)
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Figure 6.1: Block diagram of the linear Kalman filter for dynamic state estimation.

The previous expression can be developed by replacing x̂k by its expression from (6.33)
and by noting that

r̂−k = r̂refk −Hk(x̂
−
k − xref) = r̂k|x + Hk(xk − x̂−k ) (6.38)

and also that the measurement noise εk is independent of the state variables:

E
[
(xk − x̂−k )̂rTk|x|{ y }k1

]
= E

[̂
rk|x(xk − x̂−k )T |{ y }k1

]
= 0 (6.39)

Therefore, after some algebraic steps similar to (4.35), it yields:

Px,k = E[(xk − x̂k)(xk − x̂k)
T |{ y }k1]

= P−x,k −K(HkPx,kH
T
k + Rr,k)K

T

= (I−KHk)P
−
x,k (6.40)

The complete procedure followed for the state variable estimation is extracted from
[Haykin, 2001] and is described in algorithm 8. Lines 2 to 4 constitute the prediction
part of the process while lines 5 to 9 are the correction part. The procedure is very simi-
lar to the one derived for the health parameters. The difference resides in the presence of
the state prediction equation which involves different relations for the determination of
the prior mean x̂−k and covariance matrix P−x,k.

6.2.2 Divergence phenomenon

The algorithm depicted in the preceding section is also subject to instabilities due to
the difference between two matrices in the covariance update (6.40). To overcome these
instabilities, the square root filtering making use of the Cholesky factorization already
detailed in section 4.2.5 can be used.
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Algorithm 8 Linear Kalman filter algorithm for state variable estimation

Require: x̂0 and Px,0

1: for k = 1 to n do
2: x̂−k = Ak(x̂k−1 − xref) + x̂refk
3: ŷ−k = Hk(x̂

−
k − xref) + ŷrefk

4: P−x,k = AkPx,k−1AT
k + Rx,k

5: r̂−k = yk − ŷ−k

6: K = P−x,kH
T
k

(
HkP

−
x,kH

T
k + Rr,k

)−1
7: x̂k = x̂−k + Kr̂−k
8: Px,k = (I−KHk)P

−
x,k

9: end for

The process noise Rx,k can also help to obtain a more stable estimation and the use of
diagonal matrix Rx,k is often advised to improve the numerical stability of the Kalman
filter. For a complete discussion of square-root filtering in the presence of a process noise
Rx,k see [Puskorius and Feldkamp, 2001].

6.2.3 Making the Kalman filter robust

In order to make the Kalman filter detailed in algorithm 8 robust against sensor faults and
outliers, the δ-contaminated function can be used. Its introduction into the estimation
algorithm is done similarly to the health parameters by defining a diagonal weighting
matrix S−r,k whose diagonal terms are defined by:

s−i =
r̂−k (i)

ψh(̂r
−
k (i))

= max

{
1,

r̂−k (i)

∆σr,k(i)

}
(6.41)

where r̂−k is defined in (6.31). The complete state variable estimation is detailed in algo-
rithm 9.

6.3 Extensions to nonlinear systems

In the preceding section, the Kalman filter takes advantage of the fact that the system
model is linear. Similarly to the health parameter estimation, extensions of the linear
Kalman filter exist. In the present section, only two such extensions are considered: the
extended Kalman filter (EKF) and the unscented Kalman filter (UKF). For the reasons
already mentioned in section 4.5, the particle filter is not considered.
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Algorithm 9 Robustized linear Kalman filter algorithm for state variable estimation

Require: x̂0 and Px,0

1: for k = 1 to n do
2: x̂−k = Ak(x̂k−1 − xref) + x̂refk
3: ŷ−k = Hk(x̂

−
k − xref) + ŷrefk

4: P−x,k = AkPx,k−1AT
k + Rx,k

5: r̂−k = yk − ŷ−k
6: Compute S−r,k through relation (6.41)

7: K = P−x,kH
T
k

(
HkP

−
x,kH

T
k + S−r,kRr,k

)−1
8: x̂k = x̂−k + Kr̂−k
9: Px,k = (I−KHk)P

−
x,k

10: end for

6.3.1 Extended Kalman filter

The extended Kalman filter extends the linear Kalman filter through linearizations of the
system model around the most recent state variable estimate, namely:

Ak =
∂F(xk−1,uk, vk,wk)

∂xk−1

∣∣∣∣
uk; vk=vk;wk=ŵk xk−1=x̂k−1

(6.42)

Hk =
∂G(xk,uk, vk,wk)

∂xk

∣∣∣∣
uk; vk=vk;wk=ŵk xk=x̂−k

(6.43)

With these two linearizations the Kalman filter, introduced for a linear system model, can
be extended through the procedure detailed in algorithm 10 inspired from [Haykin, 2001].

Algorithm 10 Extended Kalman filter algorithm for state variable estimation

Require: x̂0 and Px,0

1: for k = 1 to n do
2: x̂−k = F(x̂k−1,uk, vk, ŵk)

3: Compute Ak through relation (6.42)
4: P−x,k = AkPx,k−1AT

k + Rx,k

5: r̂−k = yk − G(x̂−k ,uk, vk, ŵk)

6: Compute S−r,k through relation (6.41)

7: Compute Hk through relation (6.43)

8: K = P−x,kH
T
k

(
HkP

−
x,kH

T
k + S−r,kRr,k

)−1
9: x̂k = x̂−k + Kr̂−k

10: Px,k = (I−KHk)P
−
x,k

11: end for



6.4. THE DUAL ESTIMATION PROBLEM 143

6.3.2 Unscented Kalman filter

The unscented transformation detailed in algorithm 6 to achieve the health parameter
estimation is also applicable to the state variable estimation. More specifically, the proce-
dure detailed in [Wan and van der Merwe, 2001] has been adapted to the present situation
as described in algorithm 11. It gives an overall picture of the estimation process but the
interested reader is referred to [Wan and van der Merwe, 2001] for other algorithms such
as the square-root implementation of the unscented Kalman filter.

Algorithm 11 Unscented Kalman filter algorithm for state variable estimation

Require: x̂0 and Px,0

1: for k = 1 to n do
2: Xk−1 =

[
x̂k−1 x̂k−1 + γ

√
Px,k−1 x̂k−1 − γ

√
Px,k−1

]
3: X ∗i,k = F(Xi,k−1,uk, vk, ŵk) for all 0 ≤ i ≤ 2p

4: x̂−k =

2p∑
i=0

τ
(m)
i X ∗i,k and P−x,k =

2p∑
i=0

τ
(c)
i (X ∗i,k − x̂−k )(X ∗i,k − x̂−k )T + Rx,k

5: Xk =
[
x̂−k x̂−k + γ

√
P−x,k x̂−k − γ

√
P−x,k

]
6: Yi,k = G(Xi,k,uk, vk, ŵk) for all 0 ≤ i ≤ 2p

7: ŷ−k =

2p∑
i=0

τ
(m)
i Yi,k and r̂−k = yk − ŷ−k

8: Compute S−r,k through relation (6.41)

9: Pyxy,k =

2p∑
i=0

τ
(c)
i (Yi,k − ŷ−k )(Yi,k − ŷ−k )T

10: Pxy,k =

2p∑
i=0

τ
(c)
i (Xi,k − x̂−k )(Yi,k − ŷ−k )T

11: K = Pxy,k(Pyxy,k + S−r,kRr,k)
−1

12: x̂k = x̂−k + Kr̂−k
13: Px,k = P−x,k −K(Pyxy,k + S−r,kRr,k)K

T

14: end for

6.4 The dual estimation problem

The health parameter estimation procedures described in chapters 4 and 5 can be extended
to unsteady estimation provided that an estimation x̂k of the state variables is available.
In the Bayesian view it means assessing the conditional probability p(wk| { y }k1, x̂k). In-
versely, in the present chapter the state variable estimation relies on the assumption that
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a suitable estimation of the health parameters wk is available. Hence, the estimated
conditional probability distribution is p(xk| { y }k1, ŵk).

The dual estimation occurs when both the state variables and the health parameters must
be simultaneously estimated from the observed noisy signals yk. From a Bayesian per-
spective, the dual estimation problem consists in estimating the joint probability density
function:

p(xk,wk| { y }k1) (6.44)

Example applications in other fields than turbine engine diagnostic include adaptive non-
linear control, speech or image enhancement, financial time series,. . . A general theo-
retical presentation of dual estimation techniques based on the Kalman filter can be
found in [Nelson, 2000]. An expectation-maximization technique is also presented in
[Roweis and Ghahramani, 2001] and, in [Wan and van der Merwe, 2001], the dual esti-
mation is applied within an UKF framework. This document is focused on mainly two
techniques respectively called joint estimation and marginal estimation, representing two
opposite approaches to sequential dual estimation.

6.4.1 Joint estimation

The purpose of the joint estimation Kalman filter is the estimation of the joint proba-
bility distributions of relation (6.44). Accordingly, the state variables xk and the health
parameters wk are concatenated into a single joint state vector [xTkw

T
k ]T . The estimation

is done sequentially by writing the joint state-space formulation:[
xk
wk

]
=

[
F(xk−1,uk, vk,wk)

wk−1

]
+

[
νk
ωk

]
(6.45)

yk = G(xk,uk, vk,wk) + εk (6.46)

Joint estimation treats state variables and health parameters completely symmetrically
and can be considered as iteratively solving :

(x̂k, ŵk) = arg max
xk,wk

{
p(xk,wk| { y }k1)

}
= arg max

xk,wk

{
p(yk| xk,wk) · p(xk,wk| { y }k−11 )

}
(6.47)

The update procedure is depicted in figure 6.2 which is quite similar to the one related to
the state variable estimation. Since the health parameters and the state variables interact,
even for linear dynamical systems, this approach results in nonlinear dynamics over the
augmented state variables [xTkw

T
k ]T . This approach has the advantage that it can model

uncertainties in the health parameters and the correlations between health parameters and
state variables. Although the joint estimation has some very appealing properties, this
approach is known to suffer from instability problems [Roweis and Ghahramani, 2001].
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Figure 6.2: Block diagram of the joint estimation Kalman filter where the joint prediction
model is the relation (6.45) and the engine performance model is the relation (6.46)
.

6.4.2 Marginal estimation

A reasonable alternative to the joint estimation consists in separating this estimation in
two steps by considering:

p(xk,wk| { y }k1) = p(xk|wk, { y }k1) · p(wk| { y }k1) (6.48)

The health parameters are found by maximizing the second factor on the right hand side
of the preceding relation [Nelson, 2000]:

ŵk = arg max
wk

{
p(wk| { y }k1)

}
(6.49)

and the state variables are found by maximizing the first factor:

x̂k = arg max
xk

{
p(xk|wk, { y }k1)

}
(6.50)

The qualifier “marginal” comes from the fact that the probability density p(wk| { y }k1) is
the marginal probability density function where the state variables are “integrated out”
from the joint probability density function:

p(wk| { y }k1) =

∫ +∞

−∞
p(xk,wk| { y }k1) dxk (6.51)

The motivation for marginal estimation rather than joint estimation comes from the con-
sideration that the marginal probability is the relevant quantity to maximize rather than
the joint density. Moreover, marginal estimation methods exhibit better convergence ca-
pabilities than the joint estimation methods [Wan and van der Merwe, 2001, Nelson, 2000].
The resulting procedure is depicted in figure 6.3.
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Figure 6.3: Block diagram of the marginal Kalman filter

The marginal estimation is characterized by two Kalman filters running concurrently: the
previous estimate x̂k−1 is used to update the health parameters ŵk−1 which are used, in
turn, to generate new estimates for the current state variables x̂k. Doing so, the joint
estimation procedure is split up into a marginal health parameter estimation and an
implicit state variable estimation.

Sequential health parameter estimation

The estimation of the health parameters is achieved by maximizing p(wk| { y }k1). This can
be mainly done through the estimation procedures already detailed in chapter 4 and 5.
However, these algorithms need to be slightly modified to take the dynamic modeling and
the marginal estimation into account. Firstly, the system model yk = G(uk, vk,wk) + εk
must be replaced by an aggregated model gathering the state prediction equation (6.3)
and the measurement prediction equation (6.2).

xk = F(xk−1,uk, vk,wk)
yk = G(xk,uk, vk,wk)

}
⇒ yk =M(xk−1,uk, vk,wk) (6.52)

Doing so, the measurements yk can be predicted based on the preceding state variable
estimate x̂k−1. Additionally, the fault influence matrix may be redefined as:

Mk =
∂M(xk−1,uk, vk,wk)

∂wk

∣∣∣∣
uk; vk=vk;wk=ŵ−

k ; xk−1=x̂k−1

(6.53)

Consequently, the measurement noise covariance matrix Rr,k is superseded by Rmarg
r,k in

order to embed the contribution due to the covariance of the previous estimated state
variables Px,k [Nelson, 2000]. For example, if the EKF framework is selected:

Rmarg
r,k = Rr,k + FkPx,k−1F

T
k (6.54)
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where the matrix Fk is the influence matrix defined by

Fk =
∂M(xk−1,uk, vk,wk)

∂xk−1

∣∣∣∣
uk; vk=vk;wk=ŵ−

k xk−1=x̂k−1

(6.55)

In the case of nonlinear system models, the computation of the matrix Rmarg
r,k would require

the computation of the matrix Fk at each iteration. However, the matrix Rmarg
r,k can be

assessed by
Rmarg
r,k ' Rr,k + Hk−1P

−
x,k−1H

T
k−1 (6.56)

where the product Hk−1P
−
x,k−1H

T
k−1 can easily be obtained from the state variable estima-

tion at the previous time step.

For example, the adaptation of algorithm 5 to an unsteady estimation is detailed in
algorithm 12. This algorithm is strongly inspired from the marginal health parameter
estimation procedure detailed in [Nelson, 2000].

Algorithm 12 Extended Kalman filter algorithm for marginal health parameter estima-
tion.
Require: ŵ0 = whl and Pw,0 = Q0

1: for k = 1 to n do
2: ŵ−k = ŵk−1

3: r̂−k = yk −M(x̂k−1,uk, vk, ŵ
−
k )

4: Rmarg
r,k = Rr,k + Hk−1P

−
x,k−1H

T
k−1

5: Compute S−r,k through relation (6.41)

6: Compute Mk through relation (6.53)

7: Compute Rw,k through relation (4.47) or algorithm 3

8: P−w,k = Pw,k−1 + Rw,k

9: K = P−w,kM
T
k

(
MkP

−
w,kM

T
k + S−r,kR

marg
r,k

)−1
10: ŵk = ŵ−k + Kr̂−k
11: Pw,k = (I−KMk)P

−
w,k

12: end for

Alternatively, the marginal health parameter estimation can be done within the UKF
framework by transforming the algorithm 6 into algorithm 13. In any case, the computa-
tional burden is only slightly modified.

State variable estimation

The state variable estimation is done by maximizing p(xk|wk, { y }k1) with respect to xk
by substituting the current estimates ŵk for wk. Since this assumption has already been
made for algorithm 8, 10 and 11 they can all be used unchanged. The state variable
estimate x̂k will tend to improve as the estimated health parameters ŵk converge toward
their actual values.
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Algorithm 13 Unscented Kalman filter algorithm for marginal health parameter esti-
mation.
Require: ŵ0 = whl and Pw,0 = Q0

1: for k = 1 to n do
2: ŵ−k = ŵk−1

3: r̂−k = yk −M(x̂k−1,uk, vk, ŵ
−
k )

4: Compute S−r,k through relation (6.41)

5: Compute Rw,k through relation (4.47) or algorithm 3

6: P−w,k = Pw,k−1 + Rw,k

7: Wk−1 =
[
ŵ−k ŵ−k + γ

√
P−w,k ŵ−k − γ

√
P−w,k

]
8: Yi,k =M(x̂k−1,uk, vk,Wi,k−1) for all 0 ≤ i ≤ 2p

9: ŷ−k =

2p∑
i=0

τ
(m)
i Yi,k

10: r̂−k = yk − ŷ−k
11: Rmarg

y,k = Rr,k + Pyxy,k−1 with Pyxy,k−1 obtained form algorithm 11, line 9.

12: Py,k =

2p∑
i=0

τ
(c)
i (Yi,k − ŷ−k )(Yi,k − ŷ−k )T

13: Pwy,k =

2p∑
i=0

τ
(c)
i (Wi,k−1 − ŵ−k )(Yi,k − ŷ−k )T

14: K = Pwy,k(Py,k + S−r,kRr,k)
−1

15: ŵk = ŵ−k + Kr̂−k
16: Pw,k = P−w,k −K(Py,k + S−r,kR

marg
r,k )KT

17: end for

6.5 Diagnosis at test bench

6.5.1 Context

Conversely to the tests carried out previously in chapters 4 and 5 where the on-board
performance monitoring was considered, the tests carried out in this chapter are repre-
sentative of an engine going through a test bench for maintenance. The engine undergoes
a complete test procedure consisting in fast accelerations and decelerations for the assess-
ment of the dynamic performances of the engine or for trim balance purposes. Steady-state
performance assessment methods can be used but yet requires the engine to be run at
several levels representative of different operational regimes (ground idle, approach idle,
cruise, maximum climb thrust, take off).

Such a test schedule is exhibited in figure 6.4 in terms of state variables. Even though the
rotational spool speeds appear constant when the fuel flow is maintained for approximately
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4 minutes (130s ≤ t ≤ 360s), all the transient effects have not damped out since T b4
continues to rise. In practical applications where several operational regimes must be
tested, the user must wait at least 5 to 10 minutes to ensure that steady-state conditions
are met before performing any reliable performance assessment and the resulting test
duration can easily reach several hours.
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Figure 6.4: Transient sequence of test.

Therefore, a method that would be able to take advantage of the dynamic sequences, that
have to be performed anyway, would be of great interest since the user would be provided
with the diagnosis results much faster than if he was using steady-state diagnosis tools. It
is thus proposed to test the marginal estimation method detailed in the previous section
on the diagnosis and sensor fault isolation problem in a test bench configuration.

The test bench configuration provides the estimation method with more sensors than the
on-board configuration. Typically, 12 to 14 sensors may be available which allows us to
use simpler estimation methods than in chapter 4 and 5 where only 7 or 9 measurements
were available. Additionally, a smaller set of 6 health parameters is also selected: these are
the five efficiency factors SE12, SE2, SE26, SE41 and SE49 together with the nozzle area
A8IMP. By restricting the number of health parameters, the health parameter estimation
is characterized by a high analytical redundancy which is expected to allow a more effective
sensor fault isolation.

6.5.2 Estimation method

It is proposed herein to apply the marginal estimation of the health parameters and the
state variables to the specific situation depicted in figure 6.4 in order to assess the time
saving that could be expected. The results detailed further are obtained through the
marginal estimation procedure depicted in figure 6.3 where two Kalman filters are run
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concurrently to estimate both types of variables. Both the state variables and the health
parameters are estimated through an unscented Kalman filter using respectively algorithm
11 and 13.

Due to the test duration, the fault magnitude is unlikely to undergo important drifts
during the test. Furthermore, as the engine is installed inside a test cell, accidental
events are unlikely to occur. Therefore, the adaptive health parameter estimation can be
disabled by setting the process noise Rw,k to a small diagonal value intended to improve
the convergence abilities. This comes down to estimate Rw,k through formula (4.47) rather
than algorithm 3.

Similarly to the steady state estimation, the measured external disturbances vk are filtered
during transients in order to improve the marginal health parameter estimation (i.e. in
order to make Rr,k as close as possible to Ry,k). As it is not the main purpose of this
section, this issue is not detailed here and the interested reader is referred to appendix
B.3 for a more complete description as well as some additional comments.

6.5.3 Component fault detection

In the first test, a high pressure turbine degradation has been simulated by a 2% drop of
its efficiency (SE41=0.98). Since the engine undergoes a maintenance test, it is suspected
to be degraded. The resulting prior knowledge about the fault is expressed by initial
health parameter values set to 0.99 with a standard deviation of 1% (Pw,0 = 0.012I).
Figure 6.5 summarizes the health parameter estimation for the 6 health parameters with
respect to time. For simplicity reasons, the estimated values related to each data samples
are not all represented.
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Figure 6.5: Health parameter estimation resulting from the application of the dual
marginal Kalman filter for a hpt fault (SE41=0.98). Actual values are represented by
dotted lines.
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Results summarized in figure 6.5 represent a successful diagnosis since the fault is isolated
and accurately assessed: estimated health parameters coincide with their actual values.
The diagnosis report is obtained after only 5 minutes (3500 data samples). Such a test
case underlines the economy in time and fuel consumption that can be expected from
processing unsteady data rather than steady-state data. Furthermore, the on-line data
processing provides the diagnosis in real-time so that a decision can be made during the
test.
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Figure 6.6: Errors on estimated state variables resulting from the application of the dual
marginal Kalman filter for a hpt fault (SE41=0.98).

As stated before, the estimation of state variables tend to improve as the health parameters
get closer to their true values. This is represented in figure 6.6 where the errors of the
estimated state variables decrease as the health parameters converge towards their actual
values. After 5 minutes, the dual Kalman filter achieves a very good state tracking and
the bias between estimated and actual values remains within acceptable bounds.

6.5.4 Sensor fault detection

It is proposed now to test the capability of the δ-contaminated distribution to detect
sensor faults and outliers when used in a marginal Kalman filter. To do so, sensor faults
are simulated and fed into the dual estimation algorithm. In this test, no component fault
has been simulated meaning that actual health parameters values are set to their nominal
values. The behavior of a Kalman filter based on the Gaussian pdf and facing a constant
bias on the measurement of the low pressure spool speed (Nlp + 50rpm) is shown in figure
6.7.

The divergence of the estimated combustor casing temperature (T b4 ) and also of the low
pressure spool speed (Nlp) shows the main drawback of the gaussian noise assumption
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Figure 6.7: Errors on estimated state variables using the Gaussian pdf.

: the estimated variables are attracted by the outliers because the estimation procedure
is too sensitive. Even if an important redundancy is provided, the effect of outliers
on the parameter estimation is very similar to the one encountered for the steady-state
estimation discussed before. The divergence of T b4 is explained by its low observability
which is due to the lack of a feedback measurement in the combustion chamber involving
a loose correlation with the other available measurements.

Conversely to the Gaussian filter, the robust filter based on the δ-contaminated pdf does
not show such a sensitivity to outliers, and this, even in the case of multiple sensor faults.
An example of this efficiency is summarized in figure 6.8 which represents the errors
related to the estimated state variables for a simultaneous sensor fault concerning:

• a constant bias of +50 RPM on Nlp,

• a drifting bias of +20K on T13 occurring in 400 seconds,

• a drifting fault of -500N on FGN occurring in 400 seconds.

The use of the δ-contaminated distribution keeps the estimated state variables close to
their actual values. Of course, the estimation procedure is not made completely insensitive
to sensor faults but rather less sensitive. This can be noticed by comparing the mean error
level of about 25K in figure 6.8 to the 10K achieved in figure 6.6. The δ-contaminated
function has some interesting features because it provides a reliable criterion for sensor
fault detection and isolation. This is represented in figure 6.9 where observed residuals
are plotted for the three faulty sensors.

The estimated residuals r̂k compare well to the effective biases rk = yk −G(xk,uk, vk,wk)
where yk stands for the actual value of the measurement. Both faults on T 0

13 and Nlp are
accurately assessed but not the fault on the thrust measurement (FGN) which is detected
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Figure 6.8: Errors on estimated state variables using the robust filter with 3 sensor faults

only when the bias reaches -400N. These results indicate that the robust form of the
Kalman filter based on the δ-contaminated function is efficient when a high redundancy
in terms of fault indicators is provided. The present results are also better than those
obtained when the process noise covariance Rw,k is updated at each iteration. This is one
more clue which indicates that the process noise update procedure defined in algorithm
3 may be responsible of the observed robustness breakdown.
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Figure 6.9: Comparison of actual and estimated biases for sensor fault isolation.
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6.5.5 Endurance test

In this application, the engine is supposed to be installed at test bench for an endurance
test. Practically, the engine is run several hundreds of hours to simulate an engine in
operation where, consequently, a component fault may evolve in time during the test.
This situation is maybe more representative of performance monitoring since the model
has to adapt itself to this varying fault. The adaptivity is introduced by the forgetting
factor λrls defined in relation (4.47) which determines the width of a clipping window over
the data. λrls is chosen in accordance to the time behavior of the component fault.

As this application is closer to an engine in operation, the test bench measurement set
is abandonned for the extensive one where the thrust and the total air mass flow rate
measurements are discarded. The test consists in a drifting component fault simulated
by a erosion of the fan efficiency. The fault reaches its maximum magnitude in half an
hour (due to CPU time limitations) which results in λrls = 0.99991. A sensor fault on T 0

13

(+15K) is also added to check the robustness of the dual estimation algorithm. Results
concerning the health parameter identification are summarized in figure 6.10.
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Figure 6.10: Engine performance monitoring with a drifting component fault on the fan
(SE12) and a sensor fault on T 0

13 (+15K). Actual values are represented by dotted lines.

Identified values of SE12 (triangles) compare well to their actual values (dotted lines)
while the remainder are close to nominal values. This results in an effective fault tracking
in terms of both detection and isolation. The good convergence can also be noticed
by looking at the state variable estimation represented in figure 6.11 where errors on
estimated state variables remain within acceptable bounds (25K for T b4 ).

The sensor fault detection and isolation, summarized in figure 6.12, is also efficient and
highlights the ability of the developed algorithm to achieve performance monitoring and
sensor fault detection simultaneously, provided that a sufficient redundancy is available

1The choice of λrls is more thoroughly described in [Nelson, 2000]
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Figure 6.11: Errors on estimated state variables with a drifting component fault on the
fan (SE12) and a sensor fault on T 0

13 (+15K).

i.e. ν = m − p ≥ 3 or 4. However, more adaptivity means that less measurements are
used and that the measurement redundancy is lowered. It must be emphasized that the
more the model is adaptive the less it is able to cope with sensor faults. This results in a
trade off between adaptivity and robustness.
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Figure 6.12: Sensor fault isolation results obtained by comparing the actual sensor fault
to the detected one

6.5.6 Discussion

The presented results related to the marginal health parameter estimation must be con-
sidered as a feasibility study intended to highlight some of the benefits of the marginal
estimation procedure in a specific test bench application. They may, consequently, turn
out to be insufficient to completely describe the strengths and weaknesses of the marginal
estimation procedure. This is mainly due to the very important computational burden
which corresponds to the application of the unscented dual Kalman filter. Indeed, the
nonlinear model must be run 2(p+ q+ 1) times2 per measurement sample. In the present

2p and q are respectively the number of health parameters and state variables
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application where the data acquisition rate is 10Hz, this results in 380 runs per second
so that real-time performances were far to be obtained. Running the dual estimation
procedure on an extensive set of component and sensor faults was out of reach for the
Pentium 3 processor available at the time those results were obtained.



Chapter 7

Conclusions

The health parameter estimation procedures developed in chapters 4,
5 and 6 have been applied to some specific diagnosis test cases on a
turbofan layout. Based on the obtained results some advantages and
drawbacks of the present approach are underlined. To conclude, some
directions in future research are also drawn.
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7.1 Conclusions

The purpose of the present PhD thesis was the development of a diagnosis tool intended
to perform the on-board monitoring task. By on-board monitoring, it is meant the early
detection and isolation of a specific component degradation based on the instrumenta-
tion already available on-board. The diagnosis problem is addressed in terms of gas path
analysis which is intended to quantify some health parameters based on gas path mea-
surements. This comes down to fit an observer model, parameterized through the set of
health parameters, to the actual health condition of the engine.

In the framework of condition based maintenance, the knowledge of the actual condition
of the engine allows a more accurate and more reliable forecast of the maintenance actions.
This enables an improved engine availability and lower maintenance costs. Furthermore,
the GPA approach results in a model which represents faithfully the actual (degraded)
behavior. This feature can be used to assess the improvements brought by a specific
maintenance action (repair, clean or replace) in terms of performances (i.e. thrust and
specific fuel consumption). which improves the maintenance costs and engine availability.
Doing so, an airline company can balance operating costs and maintenance costs.

Apart from the diagnosis framework, the availability of an accurate engine model adapted
to the actual condition of the engine can be used to setup an adaptive control pro-
cedure taking into account the actual health condition of the engine [Borguet, 2004,
Brunell et al., 2004]. This aspect is more discussed later in section 7.2.3.

7.1.1 The signal to noise ratio

The Kalman filter framework, used herein to solve the on-line estimation problem of the
health parameters possesses some very appealing properties:

• it benefits from a significant literature and has some extensions to nonlinear system
models,

• it is relatively simple to implement and brings a computationally attractive solution
to the sequential health parameter estimation,

• it brings a rather elegant solution to the processing of noisy data.

As shown in the application, the effect of the faults on the available measurements in
turbine engine diagnosis has a relatively low magnitude with respect to the level of noise.
This involves the processing of large amount of data (several thousands of samples) in or-
der to properly separate the faults of interest. Indeed, as demonstrated in the application,
the health parameter estimation is able to detect very low level of faults provided that the
number of data samples is sufficient. Hence, the asymptotic diagnosis results are made
insensitive to the level of noise in the measurements. Yet, the noise level acts as a damping
factor which reduces the bandwith of the health parameter estimation procedure.
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7.1.2 Fault isolation

Apart from the level of measurement noise, the turbine engine diagnosis is also character-
ized by small measurement sets: typically at least 10 health parameters must be estimated
through 7 measurements. Conjugated to the measurement noise, the lack of a complete
instrumentation prevents us from reaching an efficient fault isolation. This effect has been
shown in figure 4.5 where a fault involving only the high pressure compressor is spread,
by the diagnosis tool, onto several components. Such non separability effects tend to
generate false alarms and wrong detections which decrease the reliability of the decision
making.

In order to achieve a better fault isolation, a procedure based on a more advanced estima-
tion of the process noise covariance matrix Rw,k is used. Basically, this matrix is able to
release or constraint the value of the health parameters. The determination of Rw,k is able
to indicate the component (or the group of components) where the fault is more likely to
occur. As a second step, the magnitude of the fault is assessed through the determination
of the health parameters. Hence, the health estimation involves less parameters and the
results are far more accurate.

When the previous fault isolation technique achieves the fault isolation by selecting a
subset of the health parameters where the fault is expected to occur, an other technique
has been used which improves the solution by favoring some regions where the fault is
more likely to lie. The preferred regions are indicated by a classification algorithm. While
relatively simple, this combination has shown good benefits in terms of fault isolation and
assessment. These results highlight the advantage of combining several diagnosis tools
rather than trying to solve the problem with an individual technique.

7.1.3 The sensor faults

The assumption which consists in modeling the measurement noise by a Gaussian pdf,
while purposeful in many applications, gives rise to instabilities when the Kalman filter is
facing non-Gaussian noise such as sensor biases or impulsive noise. To tackle those insta-
bilities, a robust form of the Kalman filter based on the δ-contaminated pdf is proposed
and tested. In the presented applications, it demonstrates excellent abilities against the
impulsive noise so that the health report provided to the user is still reliable. Furthermore,
the robust Kalman filter does not penalize significantly the computational effort.

The rejection of sensor biases achieved by the δ-contaminated function is somewhat un-
satisfactory since it is not sufficient to protect the estimation procedure against sensor
faults unless an important redundancy is provided (above 5 to 6), which restricts its range
of application to the measurement validation at test benches. This loss of robustness is
suspected to be due to the process noise estimation which exhibits some instabilities in
the presence of outliers and strongly reduces the isolation capacity of the robust filter.

Nevertheless, even if it is not sufficient to guarantee a complete protection against sensor
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faults, the δ-contaminated function appears as a better candidate than the Gaussian pdf
in practical applications since it achieves an improved stability and better diagnosis results
in all the considered situations.

7.1.4 Unsteady data

The processing of unsteady data, for which transient effects due to mechanical inertia
and internal heat soakages have not damped out, is not mandatory in all turbine engine
applications but can constitute a very useful tool in some particular cases such as, for
example, in test benches by shortening the test duration.

The procedure developed for unsteady data, based on two Kalman filters running con-
currently, simultaneously estimates the state variables and the health parameters. In
addition to provide accurate health parameter estimates, the marginal estimation proce-
dure is relatively modular and its implementation does not result in a too complex algo-
rithm. Moreover, two different estimation methods may be used to estimate the health
parameters and the state variables. For example, the health parameter estimation is not
characterized by important nonlinearities and can be estimated within the EKF frame-
work while the state variables may turn out to require a more advanced estimation like
the UKF. The marginal estimation framework appears to be a suitable framework since
the structure of each individual estimation may be tuned to fit the specific application.

7.2 Directions

From the results obtained in chapters 4, 5 and 6, three future directions can be drawn,
each of which addressing a specific application: the improvement of the process noise
estimation in the presence of sensor biases, the introduction of more a priori knowledge
and the extension of the unsteady health parameter estimation to on-board monitoring.
These 3 aspects are detailed hereafter.

7.2.1 Improved robustness

A mandatory step toward a better sensor fault isolation consists in improving the se-
quential estimation of the process noise Rw,k. This estimation shows a lack of stability
when sensor biases are added, and introduces a loss of stability in the health parameter
estimation. The best lead consists in a more robust estimation of the observed covariance
of the residuals r̂−k . This would decrease the sensitivity of the process noise estimation to
sensor biases and would allow a much better sensor fault isolation.

On the other hand, it appears clearly that the solution to the problem of sensor faults will
not be brought by the δ-contaminated function alone. An other aspect of interest would
be to supply the estimation procedure with a fault logic aimed at removing at the earliest
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possible stage large sensor biases in order to guarantee a more reliable health parameter
estimation.

7.2.2 Including more a priori knowledge

The information about engine health is formulated differently for an engine manufacturer,
an airline company or a third party company involved in the maintenance of turbine
engines. Engine manufacturers usually have at their disposal engine performance models
parameterized by health parameters but such tools are usually not made available to
airline companies. Conversely, the experience concerning the way an engine deteriorates
during operation is more the concern of airline companies. Moreover, test benches possess
additional instrumentation such as accelerometers, pyrometers, endoscopes, additional
gas path temperatures and pressures,. . . which provide a more detailed information about
engine faults. However, this detailed information is unlikely to appear in the engine
performance model. Because they come from different sources, those different knowledges
are not formulated in a unified way and cannot be easily compared nor combined.

The introduction of a priori knowledge through a classification method or another external
expert system is an increasingly important field of research in turbine engine diagnosis
since it provides a means of including information from different sources into the same
diagnosis tool. The present approach is only a first trial and consequently, more researches
are necessary in order to include knowledge from several sources.

7.2.3 Adaptive control of turbine engines

The performance monitoring from unsteady data does not constitute a key feature in the
diagnosis of turbine engine for commercial aircraft propulsion since most of the time is
spent in steady-state. However, in the frame of adaptive control, such a feature would
enhance the capability of on-board controllers by taking into account the actual engine
health into the control loop.

Indeed the control systems of current jet engines are based on simplified models linearized
in the vicinity of particular operating points (takeoff, climb, cruise, idle). They also rely on
intermediate variables, easily measurable (rotational speeds, pressure ratios), but which
are only more or less faithful images of the more fundamental, but yet non measurable,
variables such as the thrust, the maximum temperature or the surge margin of the com-
pressor. These linearized systems are robust but not very flexible, and it is very difficult
to incorporate the health parameters representing degradations or disorders of the engine.

It would be interesting to develop diagnosis methods based on adaptive models in order
to benefit from the transients and to provide a sufficiently precise estimate of the non
measurable fundamental variables used for control. Furthermore, these adaptive models
can be used to carry out actions of control, which hold account of the modified or degraded
state of the engine, based on these non measurable variables of control.
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The extension of the marginal estimation method to low redundancies encountered on-
board requires the sequential update of the process noise covariance in order to ensure a
stable health parameter estimation. Even though there is no obstacle from a formal nor
a theoretical point of view for such an extension, the feasibility of this procedure is still
to be made [Borguet et al., 2005].



Appendix A

The Gaussian pdf

The purpose of this appendix is to give a short description of the Gaussian probability
density function. The text is extracted from [Bishop, 1995] but the interested reader is
referred to [Papoulis, 1998] for a more thorough description.

A.1 Definition

The Gaussian probability density function, for the case of a single random variable x, can
be written in the form:

p(x) =
1√

2πσ2
x

exp

[
−(x− x̂)2

2σ2
x

]
(A.1)

where x̂ and σ2
x are the mean and the variance respectively. The parameter σx (which is

the square root of the variance) is called the standard deviation. The coefficient in front
of the exponential in relation (A.1) ensures that

∫ +∞
−∞ p(x) dx = 1.

In the case of a d-dimensional random variable x, the general multivariate Gaussian pdf
can be written:

p(x) =
1√

(2π)d |Σ|
exp

[
−1

2
(x− x̂)TΣ−1(x− x̂)

]
(A.2)

where x̂ is now a d-dimensional column vector, Σ a d×d covariance matrix, and |Σ| is the
determinant of Σ. The probability density function p(x) is governed by the mean value x̂
and the covariance matrix Σ defined by:

x̂ = E[x] (A.3)

Σ = E[(x− x̂)(x− x̂)T ] (A.4)
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where the symbol E(·) refers to the expected value (see [Papoulis, 1998] for its definition).
From (A.4) it is seen that Σ is a symmetric, positive definite matrix, and therefore has
d(d+ 1)/2 independent components. There are also d independent elements in x̂, and so
the density function is completely specified by d(d+ 3)/2 parameters.

The surface of constant probability density are hyperellipsoids on which the distance
(x − x̂)TΣ−1(x − x̂) is constant, as shown for the case of two dimensions in figure A.2.
The principal directions of the hyperellipsoids are given by the eigenvectors of Σ which
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Figure A.1: Two dimensional Gaussian probability density function controlled by a diag-
onal covariance matrix sigma.

satisfy:

Σui = λiui (A.5)

and the corresponding eigenvalues λi give the variances along the respective principal
directions. It is sometimes convenient to consider a simplified form of Gaussian distribu-
tion (fig. A.1) in which the covariance matrix is diagonal which reduces the number of
independent parameters in the distribution to 2d :

Σ =


σ2
1 0 · · · 0

0 σ2
2 0

...
. . .

0 0 σ2
d

 (A.6)
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A.2 Properties

The Gaussian distribution has a number of important properties which make it a common
choice for use in parameter estimation methods [Bishop, 1995].

1. It has relatively simple analytical properties allowing many useful results to be
obtained explicitly.

2. The central limit theorem states that, under rather general circumstances, the
mean of n independent random variables tends to be Gaussian (i.e. following a
Gaussian probability density function), in the limit as n tends to infinity. A common
application is to the sum of a set of variables drawn independently from the same
distribution. In practice, convergence tends to be very rapid, so that for values
as small as 10 the approximation to a Gaussian distribution can be very good. It
might be hoped that measurements of naturally occurring phenomena have several
components, leading to a distribution which is close to Gaussian.

3. Under any non-singular linear transformation of the coordinate system, a Gaussian
distribution remains Gaussian, but with different mean and covariance parameters.

4. The marginal probabilities of a Gaussian probability, obtained by integrating out
some of the variables, are themselves Gaussian. Similarly, the conditional probabil-
ities obtained by setting some variables to fixed values, are also Gaussian.

5. There exists a linear transformation which diagonalizes the covariance matrix. This
leads to a new coordinate system, based on the eigenvectors of Σ, in which the
variables are statistically independent (Principal Component Analysis, see fig. A.2).
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Figure A.2: Principal directions of a covariance matrix.
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Appendix B

Filtering the external disturbances

This appendix describes the estimation procedure used in the application test case to filter
the measured external disturbances vk. Basically, it means that the simulation model of
the turbine engine is fed with an estimated value v̂k rather than directly by the raw
measurements vk.

B.1 Estimating the external disturbances

In the case of turbine engines, measurable external disturbances of interest are the inlet
static pressure and temperature p0 and T0 together with the flight velocity V0. It is often
considered, in turbine engine diagnosis, that these 3 variables are sufficient to accurately
simulate the measurements yk. As p0, T0 and V0 are not directly measurable, the OBIDI-
COTE model, used herein as an application test case, provides a set of alternative inputs,
namely the inlet total pressure and temperature p01 and T 0

1 and the static inlet pressure
p0. This set of measurable variables is sufficient to reproduce the set of generic external
disturbances.

Filtering the external disturbances comes down to determine the mean value v̂k of the
external disturbances given a sequence of measurements { v }k1. The mean and covariance
of the external disturbances are defined as:

v̂k = E(vk) (B.1)

Pv,k = E((vk − v̂k)(vk − v̂k)
T ) (B.2)

Therefore, substituting the measurements vk by v̂k slightly modifies the definition of the
noise covariance matrix Rr,k mentioned in (2.55) since the measurement noise covariance
Rv,k must be replaced by the covariance Pv,k and it yields:

Rr,k = Ry,k + CkPv,kC
T
k (B.3)
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To determine a suitable estimation of the external disturbances v̂k, several solutions are
possible. In the present appendix, two of them are detailed.

B.2 Running mean

An approach often selected consists in gathering several measurement samples vk to de-
crease the covariance matrix Pv,k. In a batch framework, this comes down to estimate the
external disturbances by:

v̂k = E(vk|{ v }n1 ) =
1

n

n∑
k=1

vk (B.4)

Provided that the measurement covariance matrix Rv,k is constant, the covariance matrix
Pv,k is:

Pv,k =
1

n
Rv,k (B.5)

which effectively decrease the measurement covariance Rr,k defined in (B.3). In a sequen-
tial framework, the running mean may be used which estimates the external disturbances
as:

v̂k =
n− 1

n
v̂k−1 +

1

n
vk (B.6)

where n represents the number of data samples taken into account by the estimate v̂k. if
n = 1, the previous formula degenerate into v̂k = vk and, if n increases, the covariance
Pv,k decreases and so does the noise covariance matrix Rr,k.

B.3 Using an extended set of measurements

In the preceding section, only the measurements vk are used to estimate the external
disturbances. Therefore, if a sensor fault occurs the estimation v̂k as well as the resulting
diagnosis will be biased. To overcome this problem, a joint measurement set [vTk y

T
k ]T may

be used to estimate the external disturbances. In the case of a steady-state model, the
joint measurement prediction equation takes the form:

vk = vk + ζk (B.7)

yk = G(uk, vk, ŵk) + εk (B.8)

The noise covariance matrix related to this joint measurement set, denoted Rey,k, is:

Rey,k =

[
Rv,k 0

0 Ry,k

]
(B.9)
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A recursive estimation procedure can be built by introducing a state-space representation
for the external disturbances like:

vk = vk−1 + µk (B.10)

where µk is a process noise similar to the process noise ωk defined for the health param-
eters. If µk is generated by a white and Gaussian random variable with zero mean and
covariance matrix Rµ,k, the external disturbances can be estimated through a Kalman
filter whose structure is very similar to the one detailed in algorithm 2.

The estimation procedure used in the presented steady-state application is detailed in
algorithm 14 within an extended Kalman filter framework. The extension of algorithm 14
to unsteady state estimation by replacing the steady state model G(·) by the aggregated
model M(·) defined in relation (6.52) is relatively straightforward.

Algorithm 14 Extended Kalman filter algorithm for external disturbance estimation.

Require: v̂0, Pv,0

1: for k = 1 to n do
2: v̂−k = v̂k−1
3: P−v,k = Pv,k−1 + Rµ,k

4: r̂−k =

[
vk − v̂−k

yk − G(uk, v̂
−
k , ŵ

−
k )

]
5: Compute Se−r,k for the joint measurements similarly to relation (4.42)

6: Ek =
∂G(uk, vk,wk)

∂vk

∣∣∣∣
uk ; vk=v̂−k ;wk=ŵ−

k

⇒ E∗k =

[
I
Ek

]
7: K = P−v,kE

∗T
k

(
E∗kP

−
v,kE

∗T
k + Se−r,kR

e
r,k

)−1
8: v̂k = v̂−k + Kr̂−k
9: Pv,k = (I−KE∗k)P

−
v,k

10: end for

The estimation described in algorithm 14 is intended to decrease the uncertainty related
to the external disturbances and to protect the health parameter estimation from sensor
faults on the measurements vk. In the applications detailed in chapter 4, 5 and 6, the
resulting filtering brings the matrix Rr,k closer to the noise covariance Ry,k (typically
Rr,k ' 1.01Ry,k) and filters the impulsive noise.

However, the use of algorithm 14 significantly increases the computational burden of
the whole estimation procedure. Furthermore, the filtering procedure takes advantage of
the fact that in all the presented applications external disturbances are constants, which
corresponds to the assumed state-space representation where vk = vk−1+µk. In the case of
complete flight sequences, the external disturbances are varying rapidly during the climb
or the approach for landing and the estimated external disturbances v̂k turn out to be
biased due to the lack of adaptivity of the filter. This results in biases in identified health
parameters worse than those obtained without any filtering of the external disturbances
(namely for v̂k = vk).
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For these reasons, the external disturbance filtering presented herein is not much of a
solution and more studies are needed to properly process those variables. One possible
lead would consist of the introduction of an aircraft model into the external disturbance
state-space representation. Hence, the altitude and flight Mach number could be predicted
more accurately to help the tracking abilities of the filter. Nevertheless, such a model is
not available to us and this solution has not been tested.
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