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ABSTRACT 
 

The scroll wraps of a scroll compressor play a very important role in the compressor’s efficiency due to their impact 

on leakage and leakage irreversibilities.  In this work, a short summary of the scroll compressor geometry is 

presented.  Using the geometry of the scroll wraps, an optimal scroll wrap geometry is derived for a given set of 

constraints on compressor displacement, scroll wrap thickness and volume ratio.  This optimal scroll wrap geometry 

can be used as a starting point for further optimization in a detailed compressor model that includes the effects of 

mechanical losses. 

 

1. INTRODUCTION 
 

The concept of a scroll compressor has been around for more than one hundred years, having been patented by Leon 

Creux in 1905.  Since then, many academic researchers have studied the scroll compressor and its geometry.  In 

addition, a great deal of scroll compressor optimization has been conducted by industry, some of which has made its 

way into the public domain.  

 

Prior work has focused on the derivation of volumes for the chambers, including work of Morishita (1984), 

Yangisawa (1990), Bush and Beagle (1992), Gravesen (2001), Wang (2005), and Blunier (2009).  None of these 

prior works have accurately modeled the suction chamber geometry, though Bell (2011) provides analytic solutions 

for the scroll chamber geometry. 

 

2. DEFINITION OF GEOMETRIC PARAMETERS 
 

2.1 Scroll Wrap Definitions 
Fundamentally, the scroll compressor geometry is formed of involutes of a circle.  The involute of a circle is the line 

that would be formed if you were to “unwrap” a circle with radius rb.  Figure 1 shows what an involute of a circle 

looks like.  The coordinates of a point on the involute can be given by 
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if the origin is taken to be the center of the base circle.  While the mathematical curve for the involute is defined 

between involute angles of 0 (on the base circle) and e (at the end of the scroll wrap), for the actual scroll wrap, the 

relevant part is for  between s and e .  The part of the involute between 0 and s does not exist because in this 

region the geometry of the scroll wrap is governed by the discharge geometry. 
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The scroll compressor is formed of two scroll wraps, each of which is formed of two scroll involutes.  Typically one 

of the scrolls is fixed while the other orbits around it, creating the compression pockets.  For the fixed scroll wrap, 

the two involutes are unwrapped from the same base circle, but they have different initial angles.  The subscripts 

beginning with i refer to the “inner” involute and those beginning with o refer to the “outer” involute.  The thickness 

of the scroll wrap can be given by 

 0 0( )s b i ot r     (2) 

 

 

 
Figure 1: One Involute 

 
Figure 2: Two involutes forming the fixed scroll 

 
The fixed scroll is then mated with the orbiting scroll, which has the same shape, but is mirrored through the origin 

and shifted by the orbiting radius.  When the two scroll wraps are put together, a set of pockets are formed between 

the scroll wraps, as shown in Figure 3. 

 

 
Figure 3: Pockets over the course of one rotation (θ=0, π/2, π, 3π/2) 

 
The calculation of the volumes of the chambers over the course of a rotation are quite complicated.  Details of these 

calculations are beyond the scope of this paper, but the full derivations are presented in Bell (2011), including the 

most comprehensive treatment of forces, moments and centroids to date.   
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Figure 4: Volumes over one revolution 

 

The displacement of the compressor is given by the size of the pocket that is pinched off after one rotation (c1 plus 

c2 from frame 1 of Figure 3).  The displacement of the compressor is given by  
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and the volume ratio of the compressor is given by: 

 

 0 0

, 0 0

3 2

2 2 3

disp ie i o

ratio

c d os i o

V
V

V

   

   

  
 

   
 (4) 

 

which is the ratio of the displacement ratio of the compressor to the volume of the compression chamber right at the 

point where the compression pocket opens up to the discharge region. Typically the volume ratio is selected as the 

result of an optimization that combines material costs and compressor performance, but for the purposes here, we 

can assume that the volume ratio is known. 

 

2.2 Derived Terms 
If the volume ratio and displacement of the compressor are known, it is then possible to determine the scroll 

compressor geometry in order to match the desired volume ratio and displacement.  A number of different sets of 

constraints on the scroll geometry are possible, but the constraints employed here are that the volume ratio, 

displacement, and the thickness of the scroll wrap are fixed.   

 

The orbiting radius of the orbiting scroll is given by 

 

 o b sr r t   (5) 

 

and if the displacement Vdisp, volume ratio Vratio and thickness of the scroll wraps ts are imposed, then there are three 

equations (2), (3), and (4) and 6 unknowns (ϕie, ϕi0, ϕo0, ϕos, hs,  and rb).  
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Two further constraints are needed on the scroll geometry in order to fix the rest of the scroll geometry.  Either ϕo0 

or ϕi0 is a free variable, the other being fixed by the scroll wrap thickness for a given base circle radius.  Increasing 

the value of ϕi0 just rotates the scroll wrap, so for simplicity, ϕi0 is set to zero.  The value of ϕos is set to 0.3 radians. 

 

Therefore, with the additional constraints imposed here, there remains just one free variable, which can either be 

taken to be the scroll wrap height hs or the base circle radius rb, and here the base circle radius was taken as the free 

variable with the height adjusted to meet the displacement constraint.  A method is presented in the next section to 

optimize the selection of the base circle radius. 

 

With these constraints, it is possible to obtain an analytic solution for the relevant scroll wrap parameters.   The 

outer involute initial angle is then given by 

 

 0 /o s bt r    (6) 

 

and after some algebra and simplification, the height of the scroll wrap is given by  
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and the ending angle of the scroll is given by 
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where both the fixed and orbiting scrolls have the same ending angle.  If another set of constraints is desired, it is 

possible to use a non-linear solver to obtain the scroll wrap geometry. 

 

For the same volume ratio, scroll wrap thickness and displacement, the larger rb is, the smaller hs must be to 

maintain the same displacement, volume ratio and scroll wrap thickness.  This yields a family of solutions from a 

very narrow cylinder to a “pancake” scroll design.  Selected members of this family are shown in Figure 5.  All 

scroll wraps are plotted at the same scale.   

 

 

 

 
Figure 5:  Family of scroll wraps for a volume ratio of 2.7, displacement of 104.8 cm3, and wrap thickness of 4.66 mm 

 

3. DERIVATION OF OPTIMAL BASE CIRCLE RADIUS 
 

As shown in the previous section, for a given volume ratio, displacement, and scroll wrap thickness, a family of 

different scroll wraps can be obtained.  The range of scroll wraps, from a narrow cylinder to a pancake scroll, offer 

different performance due to the variation in the leakage rates.  It is therefore useful to develop a simple model for 

the leakage terms in order get a first guess for the optimal scroll wrap geometry from a leakage standpoint.  In the 
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above analysis, the base circle radius rb was a free variable, but the model presented here can predict the optimal 

base circle radius with reasonable accuracy. 

 

To begin the analysis, it is first assumed that some portion of the scroll wrap does not contribute to radial leakage.  

This can be understood by considering the suction chamber.  Over the course of the first rotation, the outermost 

conjugate point moves 2π radians towards the center of the compressor.  Radial area between the suction chamber 

and the suction area does not contribute to leakage since there is effectively no pressure difference to drive the flow.  

Therefore, an effective ending angle of the scroll wrap is defined by 

 

 *

ie ie     (9) 

 

which removes the contribution of half of the suction chamber since over the course of one rotation, the mean 

conjugate angle that divides the suction chamber and the compression chamber is the inner ending angle minus a 

half rotation or π radians.  The same argument is employed for the inner starting angle in the discharge region.  

Once the discharge region has equalized in pressure the radial leakage area no longer contributes to leakage.  

Therefore in the discharge region, another π radians are removed from the scroll involute, yielding an effective inner 

involute starting angle of  

 

 *

is is     (10) 

 

which removes the contribution from the portion of the rotation where the discharge region is equalized in pressure.  

Thus the total radial leakage area based on the inner involutes of the fixed and orbiting scrolls can be given by 
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which yields 
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because the inner initial angle ϕi0 was fixed at 0 in order to derive the involute parameters. 

 

The effective flank area is determined by the number of flank contact points in existence over the course of a 

rotation.  The mean total number of flank contact points is given by 

 2
2

ie is

flankN
 




  (13) 

and the flank leakage flow area for each contact point can be given by hsδflank, thus the total flank leakage area is 

given by 

 *

flank flank s flankA F h N  (14) 

 

where F is a flow adjustment parameter.  For a given flow area and pressure difference, more flow will go through 

the flank leakage.  This can be understood by considering the hydraulic diameters of the leakage paths.  In the radial 

leakage the hydraulic diameter is always twice the gap width, while for the flank leakage the conformal contact 

results in a hydraulic diameter that increases sharply away from the throat of the leakage path.  The ratio of flank to 

radial frictional leakage mass fluxes is approximated from the mass flow correction terms, and is given by a value 

for F of 3.  This value was slightly tuned in order to better fit the results from the optimization carried out on the 

Liquid-Flooded Ericsson Cycle compressor (Bell, 2011) for a volume ratio of 2.7.  In practice, the value of this ratio 

is dependent on the thickness of the scroll wrap and the system operating parameters, but since the purpose of this 

paper is to derive a guess value for detailed optimization, this value is sufficiently accurate.  Thus the total effective 

leakage is given by 

 

 * * *

total radial flankA A A   (15) 
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and the results for the effective leakage areas as a function of base circle radius for a volume ratio of 2.7 and 

displacement of 104.8 cm
3
 are shown in Figure 6.  The effective radial leakage increases quasi-linearly with the base 

circle radius, while the effective flank leakage decreases with the base circle radius.  Under these constraints the sum 

of the two terms yields a minimum effective leakage area at a base circle radius of 3.91 mm. 

 

 * * *

total radial flankA A A   (16) 

 

 
Figure 6: Effective flank and radial leakage areas for compressor with volume ratio of 2.7,  

displacement of 104.8 cm3, scroll thickness of 4.66 mm 

A numerical minimization routine can be employed to determine the optimal base circle radius that minimizes 
  
A

total

*

over a range of displacement and volume ratios for a fixed scroll wrap width of 4.66 mm.  Both flank and radial 

leakage gap widths are set to 12 µm. The results of this analysis are shown in Figure 7.  The optimal base circle radii 

obtained from the detailed compressor modeling for the Liquid-Flooded Ericsson Cycle and the Liquid-Flooded CO2 

analyses (Bell, 2011) are also overlaid in order to demonstrate the effectiveness of this method for calculating an 

approximate optimal base circle radius.  While both of these sets of optimal geometry are based on a liquid-flooded 

compressor, it is interesting to note that their optimal base circle radii follow closely with the model presented here.  

The Python code required to carry out the optimization is listed as the appendix. 

 

It is straightforward to generate a similar plot for a different scroll wrap thickness.  These results show that for a 

given displacement, as the volume ratio increases, the optimal base circle radius decreases.  Furthermore, for a given 

volume ratio, as the displacement is increased, the optimal base circle radius increases.  This chart can be generally 

employed in the design of scroll wraps, whether for flooded or dry compression applications.  The inclusion of 

geometrically-dependent mechanical losses and scroll wrap manufacturing cost would result in different optimal 

scroll wrap geometry. 
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Figure 7: Optimal base circle radius as a function of displacement  

and volume ratio for a scroll with thickness 4.66 mm 

CONCLUSIONS 
 

A method for the calculation of an optimal base circle radius has been presented that allows for a means of 

predicting with good accuracy the base circle radius of the scroll compressor that will minimize the leakage losses.  

This method can be used as a starting point for further optimization that includes the effects of mechanical losses 

which are also strongly dependent on the scroll wrap geometry. 
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NOMENCLATURE 
Variables 

A m
2
 Area 

F - Flow correction parameter 

hs m Scroll height 

N - Number of 

rb m Base circle radius 

ro m Orbiting Radius 

ts m Scroll thickness 

x m x-Coordinate 

y m y-Coordinate 

ϕ* rad Effective involute angle 

ϕ rad Involute angle 

δ m Gap width 

Vdisp m
3
 Displacement Volume 

Vratio - Volume ratio 
 

Subscripts 

0 Initial 

s Starting 

e Ending 

i0 Inner initial 

is Inner starting 

ie Inner ending 

o0 Outer initial 

os Outer starting 

oe Outer ending 
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APPENDIX 
 

This example is written in Python.  Requires scipy and numpy packages.  When this code is run, it should yield a 

base circle radius of 3.915 mm. 

 
from scipy.optimize import fmin #Multi-dimensional minimization routine 

import numpy as np #Python matrix math package 

from math import pi 

 

def OptimalRb(Vratio,Vdisp,t,phi_os=0.3,F=3): 

    def OBJECTIVE(rb): 

        phi_i0=0.0 

        phi_is=np.pi      

        delta=12e-6 

        phi_o0=phi_i0-t/rb 

        hs=(Vdisp)/(rb**2*2*pi*Vratio*(pi+phi_o0)*(2*phi_os+3*pi-phi_o0)) 

        phi_ie=Vdisp/(4*pi*hs*rb**2*(pi+phi_o0))+(3*pi+phi_o0)/2.0 

        A_radial=2*delta*rb*((phi_ie-np.pi)**2/2-(phi_is+np.pi)**2/2-phi_i0*(phi_ie-phi_is-2*np.pi))*1e6 

        Nfl=(phi_ie-phi_is)/(2*pi) 

        A_flank=2*Nfl*delta*hs*1e6*F 

        return A_flank+A_radial 

    return fmin(OBJECTIVE,0.003,ftol=1e-12) 

     

if __name__=='__main__': 

    rb=OptimalRb(1.8,40e-6,0.00466) 

    print 'Optimal rb is: ' + str(float(rb)*1000) + ' mm' 

 


