NUCLEI Experiment

Measurement and Simulation of the Cross Sections for Nuclide Production in ⁹³Nb and ^{nat}Ni Targets Irradiated with 0.04- to 2.6-GeV Protons

Yu. E. Titarenko^{1)*}, V. F. Batyaev¹⁾, A. Yu. Titarenko¹⁾, M. A. Butko¹⁾,
K. V. Pavlov¹⁾, S. N. Florya¹⁾, R. S. Tikhonov¹⁾, V. M. Zhivun¹⁾, A. V. Ignatyuk²⁾,
S. G. Mashnik³⁾, S. Leray⁴⁾, A. Boudard⁴⁾, J. Cugnon⁵⁾, D. Mancusi⁵⁾, Y. Yariv⁶⁾,
K. Nishihara⁷⁾, N. Matsuda⁷⁾, H. Kumawat⁸⁾, G. Mank⁹⁾, and W. Gudowski¹⁰⁾

Received October 7, 2010

Abstract—The cross sections for nuclide production in thin ⁹³Nb and ^{nat}Ni targets irradiated by 0.04to 2.6-GeV protons have been measured by direct γ spectrometry using two γ spectrometers with the resolutions of 1.8 and 1.7 keV in the ⁶⁰Co 1332-keV γ line. As a result, 1112 yields of radioactive residual nuclei have been obtained. The ²⁷Al(p, x)²²Na reaction has been used as a monitor reaction. The experimental data have been compared with the MCNPX (BERTINI, ISABEL), CEM03.02, INCL4.2, INCL4.5, PHITS, and CASCADE07 calculations.

DOI: 10.1134/S106377881104017X

INTRODUCTION

The aims of this work are to experimentally determine and simulate the independent and cumulative yields of radioactive residual nuclei that are produced in structural materials (⁹³Nb, ^{nat}Ni), used in electronuclear facilities and spallation neutron sources based on a high-current proton accelerator. Interest in these materials is stimulated by the possibility of their use both in accelerator (superconducting magnets) and in reactor (capability to increase the hightemperature strength and heat resistance of steels) technologies. Alloys based on Zr with addition of Nb (N-1.1 and N-2.5 alloys containing 1 and 2.5% Nb) are widely used in the nuclear industry as structural elements of nuclear reactor cores [1].

Traditional type-II superconductors (Nb—Ti and Nb₃Sn alloys) are used in superconducting magnetic systems as composites in the matrix of normal metals to increase their heat and electrical conductivities. Stainless steels and alloys based on Ni and Cr are used as shells of absorbing elements, spring elements of fuel assemblies, and sometimes for spacing lattices of fuel assemblies.

It is expected that the application of these materials in future electronuclear facilities and spallation neutron sources will be quite wide.

At present, EXFOR contains 23 original works with the data on Nb and 84 works with the data on Ni, in which cumulative and independent cross sections for nuclide production in proton-induced reactions samples are presented [2].

IRRADIATION AND MEASUREMENTS

Thin ⁹³Nb and ^{nat}Ni samples in assembly with Al monitors were irradiated by an extracted proton beam

¹⁾Institute for Theoretical and Experimental Physics, ul. Bol'shaya Cheremushkinskaya 25, Moscow, 117218 Russia.

²⁾Institute of Physics and Power Engineering, pl. Bondarenko 1, Obninsk, Kaluga oblast, 249033 Russia.

³⁾Los Alamos National Laboratory, USA.

⁴⁾CEA, Saclay, France.

⁵⁾University of Liege, Belgium.

⁶⁾Soreq NRC, Yavne, Israel.

⁷⁾JAEA, Tokai, Japan.

⁸⁾BARC, Mumbai, India.

⁹⁾IAEA, Vienna, Austria.

¹⁰⁾Royal Institute of Technology, Stockholm, Sweden. *E-mail: Yury.Titarenko@itep.ru

TITARENKO et al.

Table 1. Characteristics of the ^{nat} Ni and ⁹³ Nb samples and of	conditions of their irradiation
nat N1:	9;

		^{nat} Ni			⁹³ Nb								
Proton energy, MeV	Sample mass, mg	Monitor mass, mg	Irradiation time, min	Average proton flux, $p/(\text{cm}^2 \text{ s})$ $\times 10^{-10}$	Proton energy, MeV	Sample mass, mg	Monitor mass, mg	Irradiation time, min	Average proton flux, $p/(\text{cm}^2 \text{ s})$ $\times 10^{-10}$				
2605 ± 8	205.9	58.9	27	6.45 ± 0.56	2605 ± 8	189.2	59.2	27.42	6.96 ± 0.61				
1598 ± 4	205.4	59.3	29.25	5.30 ± 0.44	1599 ± 4	189.5	59.0	31.37	6.00 ± 0.50				
1199 ± 3	205.4	59.0	55	3.39 ± 0.27	1199 ± 3	190.1	59.0	55	3.66 ± 0.29				
799 ± 2	205.4	58.9	30	3.06 ± 0.26	799 ± 2	189.3	59.0	30	3.09 ± 0.27				
599 ± 2	206.7	58.8	24	7.19 ± 0.68	600 ± 2	189.5	58.4	24	8.17 ± 0.75				
399 ± 2	206.8	58.2	22	4.01 ± 0.38	400 ± 2	189.9	58.3	22	4.26 ± 0.40				
249 ± 1	206.5	49.1	22	7.10 ± 0.55	249 ± 1	189	49.0	22	7.58 ± 0.57				
148 ± 1	206.6	24.7	24	5.31 ± 0.45	149 ± 1	190.9	48.0	24	5.67 ± 0.45				
97 ± 1	203.5	48.5	33.5	4.36 ± 0.32	99 ± 1	189.7	49.7	33.5	4.67 ± 0.35				
66 ± 1	205.6	49.8	67.5	1.85 ± 0.14	68 ± 1	186.9	48.3	67.5	1.97 ± 0.15				
43 ± 1	205.7	48.0	25	4.43 ± 0.32	46 ± 1	189.4	48.3	25	4.86 ± 0.34				

of the ITEP U-10 synchrotron [3, 4]. The samples were manufactured by cutting from a metallic foil. The total levels of chemical impurities in Ni, Nb, and Al samples were no more than 0.013, 0.026, and 0.05%, respectively.

The proton fluence is determined using the ${}^{27}\text{Al}(p,x){}^{22}\text{Na}$ monitor reaction whose excitation function is well known [3]. The characteristics of

the $^{\rm nat}{\rm Ni}$ and $^{93}{\rm Nb}$ samples and the conditions of irradiation are presented in Table 1.

After each irradiation, the samples and monitors were delivered to a laboratory, were repacked in a glove box, and were transferred to a room where the γ spectra of the samples and monitors were measured by preliminarily calibrated HPGe detectors [3].

			Production cross section, mb										
Nuclide	Туре	$T_{1/2}$	$E_{n} = 43$	66	97	148	249	399	599	799	1199	1599	2605
		-/-	MeV	MeV	MeV	MeV	MeV	MeV	MeV	MeV	MeV	MeV	MeV
⁶¹ C11	i	3.333 h	1.92	0.91	0.486	0.338	0.251	_	_				_
	-		(0.24)	(0.15)	(0.082)	(0.060)	(0.047)						
⁶⁰ C11	i	23.7 min	5.25	2.24	1.45	0.814	0.474	0.340	0.309	0.252	0.296	0.211	0.197
ou	-		(0.42)	(0.19)	(0.13)	(0.079)	(0.042)	(0.036)	(0.041)	(0.031)	(0.032)	(0.025)	(0.033)
⁵⁷ Ni	C	35.60 h	91.4	72.0	57.8	47.3	32.3	32.1	29.9	25.0	26.5	21.2	19.0
1 11	C	00.00 11	(9.4)	(8.5)	(5.8)	(5.3)	(3.2)	(3.9)	(3.4)	(2.7)	(2.6)	(24)	(2,3)
⁵⁶ Ni	C	6 075 day	(0.1)	(0.0)	5.98	4 62	3.16	2.85	257	2.1	(2.0)	1.64	(2.0)
1 1 1	C	0.070 day	(1.00)	(0.60)	(0.51)	(0.42)	(0.97)	(0.20)	(0.96)	(0.19)	(0.18)	(0.15)	(0.14)
62mCo	i(m)	13.01 min	(1.00)	(0.00)	(0.01)	(0.42)	(0.27)	(0.20)	(0.20)	(0.10)	0.106	0.070	(0.14)
0	1(111)	10.01 11111								(0.032)	(0.003)	(0.013)	(0.073)
60 C o	$i(m \perp a)$	5.9714 yr	1.00	1.64	1.67	1.68	2.03	1.03	2.03	(0.013)	(0.023)	(0.013)	(0.027)
CO	I(m+g)	5.2714 yi	(0.90)	(0.91)	(0.90)	(0.18)	(0.92)	(0.24)	(0.96)	(0.10)	(0.92)	1.79	(0.14)
580 -	:(70.96 day	(0.20)	(0.21)	0.20)	(0.10)	(0.23)	(0.34)	(0.20)	(0.19)	(0.22)	(0.17)	(0.14)
C0	(m+g)	70.80 day	(0.4)	32.9	20.9	21.1	10.9	1/.1	(1.0)	10.9	10.4	13.0	(1.0)
570		071 74 1	(0.4)	(2.8)	(2.5)	(2.0)	(1.0)	(1.7)	(1.9)	(1.5)	(1.7)	(1.3)	(1.2)
0.C0	1	271.74 day	09.7	30.0	(0.1)	43.0	30.0	37.9	40.0	45.2	30.7	34.0	- 30 (11)
57.0		071 74 1	(9.1)	(0.3)	(0.4)	(4.2)	(3.8)	(4.3)	(4.8)	(4.4)	(4.9)	(8.9)	(11)
01 C0	с	271.74 day	213	172	132	100.9	(2.8	(7.5)	78.5 (7.0)	(1.3)	(6.4)	56.8	50.3
56.0		77 000 1	(17)	(14)	(11)	(9.0)	(6.1)	(7.6)	(7.8)	(6.4)	(6.4)	(5.1)	(4.6)
00C0	1	77.233 day	208	93.9	76.9	57.8	40.8	38.8	37.5	32.3	32.0	25.7	21.9
56.0		77 000 1	(17)	(7.9)	(6.9)	(5.3)	(3.5)	(3.9)	(3.8)	(2.9)	(3.5)	(2.4)	(2.2)
00C0	с	77.233 day	223	105.0	82.9	62.8	43.5	41.5	39.3	33.1	33.3	27.5	24.2
55.0		17 50 1	(18)	(8.0)	(7.0)	(5.7)	(3.6)	(4.2)	(3.9)	(3.0)	(2.8)	(2.5)	(2.2)
²² C0	с	17.53 h	11.80	34.3	26.9	20.5	15.3	13.9	13.4	10.4	10.41	8.59	7.47
50 0		44.470.1	(1.00)	(2.9)	(2.4)	(1.9)	(1.3)	(1.4)	(1.5)	(1.0)	(0.90)	(0.79)	(0.71)
⁵⁵ Fe	с	44.472 day	0.082	0.155	0.183	0.210	0.267	0.309	0.374	0.342	0.372	0.298	0.252
52 0	di.	0 51	(0.048)	(0.037)	(0.020)	(0.033)	(0.038)	(0.047)	(0.050)	(0.038)	(0.034)	(0.030)	(0.026)
⁵⁵ Fe	C*	8.51 min	17.1	8.24	12.8	10.8	9.2	10.1	9.6	8.06	7.75	5.35	3.44
52 -			(1.8)	(0.96)	(1.4)	(1.4)	(1.0)	(1.3)	(1.3)	(0.98)	(0.98)	(0.66)	(0.42)
⁵² Fe	с	8.275 h	0.020	2.75	2.13	2.16	1.90	1.96	2.01	1.50	1.46	1.17	0.86
56.34			(0.004)	(0.24)	(0.19)	(0.21)	(0.17)	(0.20)	(0.27)	(0.14)	(0.13)	(0.21)	(0.11)
⁵⁶ Mn	с	2.5789 h	0.025	0.249	0.570	0.615	0.606	0.776	0.924	0.856	0.901	0.748	0.601
5425			(0.006)	(0.023)	(0.051)	(0.059)	(0.053)	(0.080)	(0.095)	(0.080)	(0.080)	(0.070)	(0.058)
⁵⁴ Mn	i	312.11 day	—	22.3	23.6	21.2	17.1	18.7	18.8	16.1	15.8	12.4	10.39
50				(1.8)	(2.0)	(1.9)	(1.4)	(1.9)	(1.9)	(1.4)	(1.3)	(1.1)	(0.90)
^{52m} Mn	i(m)	21.1 min	0.321	11.16	10.0	10.4	9.47	10.4	10.0	8.80	7.94	6.68	5.19
50			(0.028)	(0.93)	(1.4)	(1.3)	(0.86)	(1.1)	(1.0)	(0.91)	(0.83)	(0.62)	(0.54)
^{52m} Mn	с	21.1 min	0.347	14.0	12.5	12.8	11.3	12.3	12.3	10.27	9.60	8.08	6.31
			(0.030)	(1.3)	(1.4)	(1.5)	(1.0)	(1.3)	(1.3	(1.00)	(0.95)	(0.74)	(0.64)
⁵² Mn	с	5.591 day	0.631	20.9	18.2	19.5	16.8	18.4	18.2	15.3	14.6	11.3	9.11
			(0.051)	(1.7)	(1.6)	(1.8)	(1.4)	(1.9)	(1.8)	(1.4)	(1.3)	(1.0)	(0.86)
⁵¹ Cr	с	27.7025 day	0.985	—	31.5	38.0	36.7	44.2	45.8	38.7	36.4	26.8	21.7
			(0.097)		(2.7)	(3.5)	(3.1)	(4.4)	(4.5)	(3.5)	(3.1)	(2.4)	(2.0)
⁴⁹ Cr	с	42.3 min	0.018	2.99	3.68	7.15	8.08	10.8	11.9	10.50	9.72	7.09	5.38
			(0.013)	(0.29)	(0.34)	(0.74)	(0.75)	(1.2)	(1.3)	(1.00)	(0.92)	(0.91)	(0.73)
⁴⁸ Cr	с	21.56 h	—	0.036	0.483	0.898	1.19	1.75	2.08	1.81	1.80	1.32	1.070
10				(0.004)	(0.042)	(0.083)	(0.10)	(0.18)	(0.21)	(0.17)	(0.16)	(0.12)	(0.100)
^{48}V	с	15.9735 day	—	0.592	4.69	10.7	14.7	22.3	26.4	23.5	22.5	18.0	14.3
				(0.048)	(0.40)	(1.0)	(1.2)	(2.2)	(2.6)	(2.1)	(1.9)	(1.6)	(1.3)
⁴⁸ Sc	i	43.67 h	—	—	—	—	0.055	0.114	0.221	0.183	0.281	0.241	0.238
							(0.007)	(0.015)	(0.024)	(0.045)	(0.043)	(0.025)	(0.037)

Table 2. Experimental cross sections for radioactive-nuclide production in the ${}^{nat}Ni(p, x)$ reactions induced by 0.04- to 2.6-GeV protons

Table 2. (Contd.)

			Production cross section, mb										
Nuclide	Туре	$T_{1/2}$	$E_p = 43$	66	97	148	249	399	599	799	1199	1599	2605
47.0		0.0400.1	MeV	MeV	MeV	MeV	MeV	MeV	MeV	MeV	MeV	MeV	MeV
⁴⁷ Sc	с	3.3492 day	_	-	_	_	0.524 (0.045)	1.01 (0.10)	1.53 (0.15)	1.56 (0.14)	1.76 (0.15)	1.23 (0.11)	(0.090)
⁴⁶ Sc	i(m+g)	83.79 day	_	—	0.091 (0.011)	0.771 (0.092)	$ \begin{array}{c} 1.82 \\ (0.15) \end{array} $	3.99 (0.40)	5.74 (0.58)	5.82 (0.54)	6.10 (0.53)	4.95 (0.46)	4.00 (0.38)
^{44m} Sc	i(m)	58.61 h	_	_	$\begin{array}{c} 0.219 \\ (0.019) \end{array}$	$\begin{array}{c} 0.868 \\ (0.079) \end{array}$	$2.25 \\ (0.19)$	$5.28 \\ (0.53)$	8.33 (0.83)		9.43 (0.81)	7.08 (0.63)	5.65 (0.52)
⁴⁴ Sc	i	3.97 h	_	—	$\begin{array}{c} 0.295 \\ (0.042) \end{array}$	1.040 (0.100)	$2.49 \\ (0.21)$	$5.54 \\ (0.56)$	8.65 (0.90)	8.73 (0.80)	$9.23 \\ (0.83)$	8.01 (0.81)	6.5 (1.0)
⁴⁴ Sc	i(m+g)	3.97 h	_	—	$\begin{array}{c} 0.539 \\ (0.058) \end{array}$	$ \begin{array}{r} 1.90 \\ (0.19) \end{array} $	$4.69 \\ (0.39)$	$ \begin{array}{c} 10.7 \\ (1.1) \end{array} $	$ \begin{array}{c} 16.9 \\ (1.7) \end{array} $	17.1 (1.5)	18.4 (1.6)	15.3 (1.4)	$ \begin{array}{c} 12.5 \\ (1.1) \end{array} $
⁴³ Sc	с	3.891 h	_	-	_	$\begin{array}{c} 0.581 \\ (0.058) \end{array}$	$ \begin{array}{c} 1.64 \\ (0.15) \end{array} $	$ \begin{array}{c} 4.00 \\ (0.42) \end{array} $	6.70 (0.70)	$\begin{array}{c} 7.09 \\ (0.68) \end{array}$	7.61 (0.69)	$5.87 \\ (0.56)$	$ \begin{array}{c} 4.66 \\ (0.45) \end{array} $
⁴⁷ Ca	с	4.536 day	_	-	_	—	$\begin{array}{c} 0.015 \\ (0.004) \end{array}$	-	-	_	_	$\begin{array}{c} 0.023 \\ (0.005) \end{array}$	$\begin{array}{c} 0.021 \\ (0.005) \end{array}$
⁴³ K	с	22.3 h	_	-	_	—	$\begin{array}{c} 0.059 \\ (0.005) \end{array}$	$\begin{array}{c} 0.230 \\ (0.024) \end{array}$	$\begin{array}{c} 0.491 \\ (0.049) \end{array}$	$\begin{array}{c} 0.563 \\ (0.051) \end{array}$	$\begin{array}{c} 0.755 \\ (0.064) \end{array}$	$\begin{array}{c} 0.651 \\ (0.058) \end{array}$	$\begin{array}{c} 0.541 \\ (0.050) \end{array}$
⁴² K	i	12.360 h	_	_	_	_	$\begin{array}{c} 0.299 \\ (0.031) \end{array}$	$ \begin{array}{c} 1.05 \\ (0.11) \end{array} $	$2.14 \\ (0.21)$	$2.47 \\ (0.22)$	$3.10 \\ (0.27)$	$2.78 \\ (0.25)$	$2.40 \\ (0.23)$
³⁸ K	i	7.636 min	_	_	_	—	$\begin{array}{c} 0.071 \\ (0.020) \end{array}$	$\begin{array}{c} 0.359 \\ (0.056) \end{array}$	$\begin{array}{c} 0.771 \\ (0.095) \end{array}$	$ \begin{array}{c} 1.05 \\ (0.12) \end{array} $	$ \begin{array}{r} 1.39 \\ (0.16) \end{array} $	$ \begin{array}{c} 1.24 \\ (0.14) \end{array} $	$ \begin{array}{c} 0.85 \\ (0.10) \end{array} $
⁴¹ Ar	с	109.34 min	—	—	_	_	_	$ \begin{array}{c} 0.094 \\ (0.011) \end{array} $	$\begin{array}{c} 0.219 \\ (0.023) \end{array}$	$\begin{array}{c} 0.311 \\ (0.029) \end{array}$	$\begin{array}{c} 0.433 \\ (0.039) \end{array}$	$\begin{array}{c} 0.411 \\ (0.037) \end{array}$	$\begin{pmatrix} 0.324 \\ (0.030) \end{pmatrix}$
³⁹ Cl	с	55.6 min	_	—	_	_	_	-	$ \begin{array}{c} 0.129 \\ (0.020) \end{array} $	$\begin{array}{c} 0.192 \\ (0.027) \end{array}$	$\begin{array}{c} 0.277 \\ (0.026) \end{array}$	$\begin{array}{c} 0.281 \\ (0.028) \end{array}$	$\begin{pmatrix} 0.234 \\ (0.024) \end{pmatrix}$
³⁸ Cl	i(m+g)	37.24 min	_	—	_	_	_	-	-	_	_	$ \begin{array}{c} 1.25 \\ (0.12) \end{array} $	$\begin{array}{c} 0.972 \\ (0.099) \end{array}$
³⁸ Cl	с	37.24 min	_	—	_	_	$\begin{array}{c} 0.026 \\ (0.014) \end{array}$	$\begin{array}{c} 0.214 \\ (0.025) \end{array}$	$\begin{array}{c} 0.572 \\ (0.059) \end{array}$	$\begin{array}{c} 0.812 \\ (0.074) \end{array}$	$ \begin{array}{r} 1.18 \\ (0.10) \end{array} $	$ \begin{array}{c} 1.29 \\ (0.12) \end{array} $	$ \begin{array}{r} 1.050 \\ (0.100) \end{array} $
34m Cl	i(m)	32.00 min	_	—	_	_	$\begin{array}{c} 0.032 \\ (0.009) \end{array}$	$\begin{array}{c} 0.214 \\ (0.035) \end{array}$	$\begin{array}{c} 0.545 \\ (0.056) \end{array}$	$\begin{array}{c} 0.804 \\ (0.074) \end{array}$	$ \begin{array}{c} 1.27 \\ (0.11) \end{array} $	$ \begin{array}{c} 1.15 \\ (0.14) \end{array} $	$ \begin{array}{c} 1.06 \\ (0.13) \end{array} $
³⁸ S	с	170.3 min	_	—	_	_	_	-	_	_	_	$\begin{array}{c} 0.021 \\ (0.009) \end{array}$	$\begin{array}{c} 0.034 \\ (0.007) \end{array}$
²⁹ Al	с	6.56 min	—	—	_	_	_	-	-	$\begin{array}{c} 0.654 \\ (0.075) \end{array}$	$ \begin{array}{r} 1.35 \\ (0.16) \end{array} $	$ \begin{array}{c} 1.57 \\ (0.17) \end{array} $	$ \begin{array}{c} 1.37 \\ (0.14) \end{array} $
²⁸ Mg	с	20.915 h	—	_	_	_	_	_	$ \begin{array}{c} 0.043 \\ (0.016) \end{array} $	$\begin{array}{c} 0.065 \\ (0.007) \end{array}$	$\begin{array}{c} 0.163 \\ (0.015) \end{array}$	$ \begin{array}{c} 0.190 \\ (0.017) \end{array} $	$\begin{pmatrix} 0.232\\ (0.022) \end{pmatrix}$
²⁷ Mg	с	9.458 min	_	_	_	—	_	_	$ \begin{array}{c} 0.164 \\ (0.025) \end{array} $	$\begin{array}{c} 0.337 \\ (0.036) \end{array}$	$\begin{array}{c} 0.696 \\ (0.067) \end{array}$	$ \begin{array}{c} 0.899 \\ (0.086) \end{array} $	$ \begin{array}{c} 0.884 \\ (0.085) \end{array} $
²⁴ Na	с	14.9590 h	_	_	_	_	_	_	-	$ \begin{array}{c} 1.020 \\ (0.090) \end{array} $	$\begin{array}{c} 2.14 \\ (0.18) \end{array}$	$2.61 \\ (0.23)$	3.08 (0.28)
²² Na	с	2.6019 yr	_	_	_	_	_	_	$ \begin{array}{c} 0.462 \\ (0.086) \end{array} $	0.86 (0.10)	$ \begin{array}{c} 1.74 \\ (0.15) \end{array} $	2.31 (0.21)	2.86 (0.26)
⁷ Be	i	53.29 day	_	_	_	_	0.71 (0.11)	$ \begin{array}{c} 1.54 \\ (0.20) \end{array} $	2.89 (0.32)	3.96 (0.38)	6.94 (0.59)	7.60 (0.68)	9.25 (0.86)

			Production cross section, mb										
Nuclide	Туре	$T_{1/2}$	$E_p = 46$	68	99	149	249	400	600	799	1199	1599	2605
			MeV	MeV	MeV	MeV	MeV	MeV	MeV	MeV	MeV	MeV	MeV
^{93m} Mo	i(m)	6.85 h	1.37 (0.13)	$\begin{array}{c} 0.845 \\ (0.095) \end{array}$	$\begin{array}{c} 0.651 \\ (0.069) \end{array}$	$\begin{array}{c} 0.392 \\ (0.043) \end{array}$	$\begin{array}{c} 0.270 \\ (0.049) \end{array}$	$\begin{array}{c} 0.222 \\ (0.066) \end{array}$	$\begin{array}{c} 0.236 \\ (0.059) \end{array}$	$\begin{array}{c} 0.228 \\ (0.073) \end{array}$	$\begin{array}{c} 0.209 \\ (0.033) \end{array}$	0.216 (0.028)	0.196 (0.030)
⁹¹ Mo	i(m+g)	15.49 min	94 (22)	_	_	_	_	_	_	_	_	_	_
⁹⁰ Mo	i	5.56 h		25.7 (2.4)	$ \begin{array}{c} 12.1 \\ (1.3) \end{array} $	$ \begin{array}{c} 6.07 \\ (0.60) \end{array} $	3.30 (0.32)	$\begin{array}{c} 2.10 \\ (0.24) \end{array}$	$ \begin{array}{c} 1.36 \\ (0.36) \end{array} $	$\begin{array}{c} 0.94 \\ (0.10) \end{array}$	(0.808) (0.099)	$\begin{pmatrix} 0.663 \\ (0.095) \end{pmatrix}$	$\begin{array}{c} 0.555 \\ (0.076) \end{array}$
$^{92m}\mathrm{Nb}$	i(m)	10.15 day	$54.8 \\ (4.4)$	44.0 (4.1)	$33.9 \\ (2.9)$	25.0 (2.1)	$ \begin{array}{r} 18.9 \\ (1.5) \end{array} $	$ \begin{array}{c} 19.9 \\ (2.0) \end{array} $	$20.3 \\ (2.0)$	$ \begin{array}{c} 18.6 \\ (1.7) \end{array} $	$ \begin{array}{c} 19.8 \\ (1.7) \end{array} $	$ \begin{array}{c} 19.1 \\ (1.7) \end{array} $	$17.8 \\ (1.7)$
$^{91m}\mathrm{Nb}$	с	60.86 day	$34.9 \\ (3.2)$	22.0 (2.0)	$ \begin{array}{c} 17.6 \\ (1.7) \end{array} $	$ \begin{array}{c} 11.6 \\ (1.2) \end{array} $	$\begin{array}{c} 7.63 \\ (0.83) \end{array}$	8.0 (1.3)	7.5 (1.1)	5.3 (1.1)	5.1 (1.2)	5.5 (1.3)	$5.44 \\ (0.66)$
⁹⁰ Nb	i(m+g)	14.60 h	$302 \\ (25)$	$ \begin{array}{c} 179 \\ (17) \end{array} $	$ \begin{array}{c} 108 \\ (11) \end{array} $	$71.4 \\ (6.4)$	44.1 (4.5)	$36.7 \\ (3.7)$	$30.9 \\ (3.7)$	24.4 (2.4)	$21.8 \\ (2.1)$	$20.2 \\ (1.9)$	$ \begin{array}{c} 18.3 \\ (1.8) \end{array} $
⁹⁰ Nb	с	14.60 h	$364 \\ (29)$	200 (17)	$ \begin{array}{c} 123 \\ (11) \end{array} $	$\begin{array}{c} 79.2 \\ (6.9) \end{array}$	$48.9 \\ (4.3)$	$39.8 \\ (4.0)$	$33.2 \\ (3.4)$	26.7 (2.5)	24.5 (2.2)	22.5 (2.1)	20.0 (1.9)
^{89m} Nb	i(m)	66 min	$\begin{array}{c} 0.39 \\ (0.18) \end{array}$	$ \begin{array}{c} 18.0 \\ (1.7) \end{array} $	$\underset{(0.92)}{9.27}$	$\underset{(0.66)}{\overset{6.41}{\scriptstyle (0.66)}}$	$\underset{(0.49)}{\overset{4.41}{}}$	$3.78 \\ (0.49)$	$3.09 \\ (0.39)$	$\begin{pmatrix} 1.88\\ (0.37) \end{pmatrix}$	$\underset{(0.29)}{\overset{2.38}{(0.29)}}$	$\underset{(0.22)}{\overset{1.94}{}}$	$\underset{(0.16)}{\overset{1.47}{}}$
⁸⁹ Nb	с	2.03 h	_	$ \begin{array}{c} 176 \\ (21) \end{array} $	87 (11)	$54.9 \\ (6.7)$	$27.9 \\ (3.4)$	$24.9 \\ (3.4)$	20.6 (2.8)	$ \begin{array}{c} 14.6 \\ (2.0) \end{array} $	$ \begin{array}{c} 12.9 \\ (1.7) \end{array} $	$ \begin{array}{c} 11.9 \\ (1.6) \end{array} $	9.5 (1.3)
⁸⁸ Nb	с*	14.5 min	_	$\underset{(0.38)}{\overset{4.13}{}}$	$21.0 \\ (2.0)$	$ \begin{array}{c} 12.4 \\ (1.2) \end{array} $	$(0.71)^{7.52}$	$(0.65)^{5.52}$	$\underset{(0.45)}{\overset{4.28}{}}$	$\overset{3.29}{(0.33)}$	$\underset{(0.29)}{\overset{2.76}{(0.29)}}$	$\underset{(0.27)}{\overset{2.27}{(0.27)}}$	$\binom{2.07}{(0.20)}$
⁸⁹ Zr	с	78.41 h	$ \begin{array}{r} 12.40 \\ (1.00) \end{array} $	$268 \\ (23)$	$ \begin{array}{c} 164 \\ (14) \end{array} $	$^{117.0}_{(10.0)}$		$72.7 \\ (7.2)$		$50.8 \\ (4.7)$	$\begin{array}{c} 47.1 \\ (4.1) \end{array}$	$ \begin{array}{c} 42.7 \\ (3.9) \end{array} $	$37.3 \\ (3.5)$
⁸⁸ Zr	с	83.4 day		$ \begin{array}{c} 44.7 \\ (3.8) \end{array} $	$ \begin{array}{c} 125 \\ (11) \end{array} $	90.4 (7.7)	$ \begin{array}{c} 64.2 \\ (5.2) \end{array} $	$57.6 \\ (5.6)$	$47.4 \\ (4.6)$	$37.3 \\ (3.4)$	$33.3 \\ (2.9)$	29.6 (2.7)	25.1 (2.3)
⁸⁷ Zr	с	1.68 h	$7.76 \\ (0.77)$	26.9 (2.2)	$73.6 \\ (6.3)$	56.6 (4.8)	$ \begin{array}{c} 43.0 \\ (3.5) \end{array} $	$ \begin{array}{c} 40.3 \\ (4.0) \end{array} $	$31.5 \\ (3.0)$	26.6 (2.4)	20.7 (1.8)	$17.6 \\ (1.6)$	$ \begin{array}{c} 14.8 \\ (1.4) \end{array} $
⁸⁶ Zr	с	16.5 h	4.0 (1.0)	$ \begin{array}{c} 13.8 \\ (1.3) \end{array} $	7.6 (1.4)	22.4 (2.0)	$ \begin{array}{c} 17.8 \\ (1.5) \end{array} $	$ \begin{array}{c} 16.0 \\ (1.6) \end{array} $	$ \begin{array}{c} 10.9 \\ (1.4) \end{array} $	$ \begin{array}{c} 10.2 \\ (1.0) \end{array} $	$\underset{(0.71)}{6.93}$	$\underset{(0.70)}{7.31}$	$5.80 \\ (0.55)$
⁸⁵ Zr	с	7.86 min	—	—	$2.94 \\ (0.36)$	—	$5.76 \\ (0.56)$	$(0.81)^{7.58}$	$(0.82)^{7.86}$	$\begin{array}{c} 7.09 \\ (0.73) \end{array}$	$5.31 \\ (0.73)$	—	—
^{90m} Y	i(<i>m</i>)	3.19 h	—	$\begin{pmatrix} 0.553 \\ (0.093) \end{pmatrix}$	$\begin{array}{c} 0.635 \\ (0.071) \end{array}$	$\begin{pmatrix} 0.865 \\ (0.092) \end{pmatrix}$	$\begin{pmatrix} 0.90 \\ (0.11) \end{pmatrix}$	$\underset{(0.16)}{1.43}$	$ \begin{array}{c} 1.81 \\ (0.20) \end{array} $	$ \begin{array}{c} 1.73 \\ (0.23) \end{array} $	$ \begin{array}{c} 1.86 \\ (0.17) \end{array} $	$ \begin{array}{c} 1.66 \\ (0.16) \end{array} $	$ \begin{array}{c} 1.45 \\ (0.15) \end{array} $
⁸⁸ Y	i	106.65 day	$ \begin{array}{c} 13.4 \\ (1.2) \end{array} $	$(0.70)^{7.77}$	$ \begin{array}{r} 18.1 \\ (1.6) \end{array} $	$ \begin{array}{c} 17.5 \\ (1.5) \end{array} $	$ \begin{array}{c} 16.0 \\ (1.3) \end{array} $	$ \begin{array}{c} 18.2 \\ (1.9) \end{array} $	$17.8 \\ (1.8)$	$ \begin{array}{c} 15.7 \\ (1.5) \end{array} $	$ \begin{array}{c} 15.4 \\ (1.4) \end{array} $	$ \begin{array}{c} 14.1 \\ (1.3) \end{array} $	$ \begin{array}{c} 12.1 \\ (1.2) \end{array} $
⁸⁸ Y	с	106.65 day	74.6 (6.2)	$53.3 \\ (4.6)$	$ \begin{array}{c} 145 \\ (13) \end{array} $	$ \begin{array}{c} 110.0 \\ (10.0) \end{array} $	$81.3 \\ (6.9)$	76.6 (7.6)	$ \begin{array}{c} 66.8 \\ (6.7) \end{array} $	$53.6 \\ (5.1)$	$49.0 \\ (4.5)$	$ \begin{array}{c} 44.0 \\ (4.1) \end{array} $	$37.6 \\ (3.6)$
⁸⁷ <i>m</i> Y	i(m)	13.37 h	$ \begin{array}{c} 6.56 \\ (0.70) \end{array} $	$20.3 \\ (2.5)$	$22.3 \\ (3.4)$	$27.2 \\ (2.5)$	$24.3 \\ (2.5)$	$24.6 \\ (2.9)$	$23.2 \\ (2.4)$	$ \begin{array}{c} 18.0 \\ (1.8) \end{array} $	$ \begin{array}{c} 18.1 \\ (1.7) \end{array} $	$ \begin{array}{c} 16.6 \\ (1.5) \end{array} $	$ \begin{array}{c} 13.8 \\ (1.4) \end{array} $
⁸⁷ <i>m</i> Y	с	13.37 h	$ \begin{array}{c} 14.3 \\ (1.1) \end{array} $	46.7 (4.0)	$94.7 \\ (8.4)$	83.6 (7.2)	$ \begin{array}{c} 66.9 \\ (5.6) \end{array} $		54.6 (5.3)	$44.5 \\ (4.1)$	38.6 (3.4)	34.1 (3.1)	$28.5 \\ (2.7)$
⁸⁷ Y	с	79.8 h	$ \begin{array}{c} 19.1 \\ (1.5) \end{array} $	59.7 (5.1)	$97.1 \\ (8.4)$	$107.0 \\ (9.0)$			$70.8 \\ (6.9)$	$57.4 \\ (5.3)$	$50.9 \\ (4.4)$	$ \begin{array}{c} 44.9 \\ (4.1) \end{array} $	$37.8 \\ (3.5)$
^{86m} Y	i(m)	48 min	_	$ \begin{array}{c} 17.3 \\ (1.6) \end{array} $	$ \begin{array}{c} 17.0 \\ (1.6) \end{array} $	$23.6 \\ (2.1)$	$ \begin{array}{c} 19.0 \\ (1.9) \end{array} $	$21.9 \\ (2.2)$	$ \begin{array}{c} 19.6 \\ (2.0) \end{array} $	—	$ \begin{array}{c} 13.8 \\ (1.2) \end{array} $	$ \begin{array}{c} 11.8 \\ (1.1) \end{array} $	$ \begin{array}{c} 10.02 \\ (0.99) \end{array} $
⁸⁶ Y	i(m+g)	14.74 h	$(51)^{22}$	32.7 (3.0)	30.4 (2.9)	$ \begin{array}{c} 41.0 \\ (3.7) \end{array} $	$36.0 \\ (3.1)$	$39.5 \\ (4.0)$	$34.4 \\ (3.4)$	$27.7 \\ (2.6)$	$25.0 \\ (2.2)$	$ \begin{array}{c} 18.2 \\ (2.0) \end{array} $	$ \begin{array}{c} 17.6 \\ (1.7) \end{array} $
⁸⁶ Y	с	14.74 h	(25) (27)	$ \begin{array}{c} 46.0 \\ (4.2) \end{array} $	$44.9 \\ (4.0)$		$54.0 \\ (4.6)$	$56.3 \\ (5.7)$	$47.4 \\ (4.7)$	$38.0 \\ (3.6)$	$33.2 \\ (2.9)$	$27.9 \\ (2.6)$	$23.3 \\ (2.2)$
85m Y	с	4.86 h	_	$(0.39)^{1.94}$	$ \begin{array}{c} 17.7 \\ (1.9) \end{array} $	20.6 (2.0)	$ \begin{array}{c} 18.9 \\ (2.1) \end{array} $	$21.3 \\ (2.3)$	$ \begin{array}{c} 17.4 \\ (2.3) \end{array} $	$ \begin{array}{c} 14.7 \\ (1.9) \end{array} $	$ \begin{array}{c} 11.9 \\ (1.4) \end{array} $	$\underset{(0.96)}{9.29}$	$\underset{(0.85)}{7.81}$
85 Y	с	2.68 h	_	-	7.53 (0.68)	9.1 (1.0)		$8.9 \\ (1.1)$	7.42 (0.95)	$ \begin{array}{c} 6.15 \\ (0.66) \end{array} $	$5.43 \\ (0.55)$	$ \begin{array}{c} 4.35 \\ (0.43) \end{array} $	3.73 (0.39)

Table 3. Experimental cross sections for radioactive-nuclide production in the ${}^{93}Nb(p, x)$ reactions induced by 0.04- to 2.6-GeV protons

Table 3. (Contd.)

			Production cross section, mb										
Nuclide	Туре	$T_{1/2}$	$E_p = 46$	68	99	149	249	400	600	799	1199	1599	2605
0.4			MeV	MeV	MeV	MeV	MeV	MeV	MeV	MeV	MeV	MeV	MeV
⁸⁴ Y	с	39.5 min	_	—	9.64 (0.85)	(1.2)	14.6 (1.3)	16.3 (1.7)	14.4 (1.5)	(1.1)	9.13 (0.83)	7.68 (0.73)	6.21 (0.62)
^{85m} Sr	i(m)	67.63 min	_	_	1.19 (0.13)	1.51 (0.28)	$ \begin{array}{c} 1.46 \\ (0.13) \end{array} $	$ \begin{array}{c} 1.84 \\ (0.20) \end{array} $	2.08 (0.30)	$(0.20)^{1.82}$	1.61 (0.16)	$ \begin{array}{c} 1.46 \\ (0.15) \end{array} $	1.22 (0.14)
^{85m} Sr	с	67.63 min	-	$\begin{pmatrix} 0.144\\ (0.087) \end{pmatrix}$		10.0 (1.0)	$9.90 \\ (0.86)$	10.9 (1.2)	9.6 (1.1)	$(0.80)^{7.92}$	6.93 (0.70)	5.76 (0.61)	4.89 (0.58)
⁸⁵ Sr	с	64.84 day	_	_	_	_	_	_	_	47.6 (4.9)	40.8 (3.9)	33.8 (3.4)	29.5 (3.0)
⁸³ Sr	с	32.41 h	_	2.4 (2.4)	3.74 (0.89)	22.2 (3.6)	28.6 (4.6)	37.6 (6.8)	31.9 (5.9)	26.1 (4.9)	25.3 (4.6)	21.8 (4.0)	17.1 (3.3)
⁸² Sr	с	25.55 day	_	_	2.30 (0.20)	10.10 (0.90)	15.7 (1.3)	21.9 (2.2)	21.7 (2.1)	17.8 (1.6)	14.9 (1.3)	12.5 (1.1)	9.77 (0.91)
⁸¹ Sr	с	22.3 min	_	_	0.44 (0.14)	2.27 (0.30)	4.18 (0.59)	7.23 (0.87)	7.47 (0.90)	6.75 (0.83)	4.94 (0.83)	3.83 (0.55)	3.29 (0.50)
⁸⁰ Sr	с	106.3 min	—	—	_	_	_	_	_	2.06 (0.78)	1.37 (0.34)	1.33 (0.30)	1.10 (0.20)
⁸⁶ Rb	i(m+g)	18.631 day	-	_	—	—	$ \begin{array}{c} 0.24 \\ (0.12) \end{array} $	$\begin{pmatrix} 0.36\\ (0.29) \end{pmatrix}$	$\begin{pmatrix} 0.30\\ (0.37) \end{pmatrix}$	$\begin{array}{c} 0.58 \\ (0.55) \end{array}$	$\begin{pmatrix} 0.535\\ (0.087) \end{pmatrix}$	$\begin{array}{c} 0.561 \\ (0.095) \end{array}$	$\begin{pmatrix} 0.524\\ (0.071) \end{pmatrix}$
$^{84m}\mathrm{Rb}$	i(m)	20.26 min	_	_	$\begin{array}{c} 0.71 \\ (0.33) \end{array}$	$ \begin{array}{r} 1.63 \\ (0.16) \end{array} $	2.05 (0.20)	3.07 (0.33)	$3.34 \\ (0.37)$	$3.15 \\ (0.31)$	$2.95 \\ (0.30)$	$\binom{2.42}{(0.24)}$	$ \begin{array}{c} 1.98 \\ (0.21) \end{array} $
⁸⁴ Rb	i(m+g)	32.77 day	-	$\begin{pmatrix} 0.554 \\ (0.049) \end{pmatrix}$	$ \begin{array}{c} 1.060 \\ (0.100) \end{array} $	2.38 (0.21)	3.38 (0.30)	4.98 (0.50)	$5.56 \\ (0.58)$	$5.00 \\ (0.51)$	$4.75 \\ (0.45)$	$\binom{4.22}{(0.39)}$	$3.51 \\ (0.34)$
⁸³ Rb	с	86.2 day	-	2.45 (0.23)	7.16 (0.71)	31.5 (3.0)	41.8 (3.8)	54.9 (5.8)	54.0 (5.6)	44.7 (4.5)	39.1 (3.7)	$33.4 \\ (3.3)$	26.1 (2.7)
$^{82m}\mathrm{Rb}$	i(m)	6.472 h	-	_	$3.39 \\ (0.35)$	7.51 (0.66)	11.4 (1.0)	17.6 (1.8)	$ \begin{array}{c} 18.8 \\ (1.9) \end{array} $	16.2 (1.5)	$ \begin{array}{c} 14.1 \\ (1.2) \end{array} $	$ \begin{array}{c} 12.3 \\ (1.1) \end{array} $	9.82 (0.94)
⁸¹ Rb	с	4.576 h	-	$\begin{array}{c} 0.69 \\ (0.18) \end{array}$	3.4 (1.3)	$ \begin{array}{c} 11.5 \\ (1.3) \end{array} $	22.3 (2.0)	36.9 (3.7)	39.1 (3.9)	$32.5 \\ (3.3)$	$27.6 \\ (2.5)$	24.0 (2.3)	$ \begin{array}{c} 18.4 \\ (1.9) \end{array} $
⁷⁹ Rb	с	22.9 min	_	_	—	$ \begin{array}{c} 1.46 \\ (0.18) \end{array} $	3.89 (0.36)		$ \begin{array}{c} 10.1 \\ (1.1) \end{array} $				5.02 (0.59)
⁷⁹ Kr	с	35.04 h	-	-	—	$4.56 \\ (0.96)$	11.9 (1.1)	25.3 (2.6)	31.8 (3.3)	27.0 (2.7)	$25.2 \\ (2.3)$	22.0 (2.1)	$ \begin{array}{c} 16.9 \\ (1.7) \end{array} $
⁷⁷ Kr	с	74.4 min	—	—	—	$\begin{array}{c} 0.313 \\ (0.047) \end{array}$	3.07 (0.31)		$ \begin{array}{c} 12.2 \\ (1.3) \end{array} $	$ \begin{array}{c} 12.1 \\ (1.1) \end{array} $	$ \begin{array}{c} 11.2 \\ (1.0) \end{array} $	8.81 (0.79)	$ \begin{array}{c} 6.65 \\ (0.62) \end{array} $
⁷⁶ Kr	с	14.8 h	—	—	—	$\begin{array}{c} 0.06 \\ (0.61) \end{array}$	$\begin{array}{c} 0.71 \\ (0.12) \end{array}$	2.07 (0.31)	$ \begin{array}{c} 1.59 \\ (0.36) \end{array} $	$\substack{3.45\\(0.48}$	$3.55 \\ (0.46)$	$\binom{2.89}{(0.31)}$	$\binom{2.22}{(0.23)}$
⁸² Br	i(m+g)	35.30 h	-	—	$\begin{array}{c} 0.70 \\ (0.18) \end{array}$	$\begin{pmatrix} 0.43 \\ (0.22) \end{pmatrix}$	$\begin{pmatrix} 0.42 \\ (0.41) \end{pmatrix}$	$\begin{array}{c} 0.60 \\ (0.19) \end{array}$	$ \begin{array}{c} 0.8 \\ (1.2) \end{array} $	$\begin{pmatrix} 0.48 \\ (0.55) \end{pmatrix}$	$\begin{array}{c} 0.35 \\ (0.33) \end{array}$	$\begin{array}{c} 0.35 \\ (0.11) \end{array}$	$\begin{pmatrix} 0.14 \\ (0.35) \end{pmatrix}$
⁷⁷ Br	i(m+g)	57.036 h	-	—	—	—	_	_	_	$\overset{6.2}{(8.6)}$	$ \begin{array}{c} 12.8 \\ (7.2) \end{array} $	$9.7 \\ (4.6)$	$ \begin{array}{c} 10.4 \\ (3.2) \end{array} $
⁷⁷ Br	с	57.036 h	-	—	—	$\begin{array}{c} 0.610 \\ (0.094) \end{array}$	$ \begin{array}{c} 6.52 \\ (0.55) \end{array} $	$ \begin{array}{c} 18.1 \\ (1.8) \end{array} $	26.8 (2.7)	$25.9 \\ (2.4)$	$23.8 \\ (2.2)$	$20.5 \\ (1.9)$	$ \begin{array}{c} 15.7 \\ (1.5) \end{array} $
⁷⁶ Br	i(m+g)	16.2 h	_	_	_	$ \begin{array}{c} 0.5 \\ (1.1) \end{array} $	$ \begin{array}{c} 3.17 \\ (0.38) \end{array} $	$ \begin{array}{c} 10.9 \\ (1.4) \end{array} $	17.0 (2.0)	$ \begin{array}{c} 17.1 \\ (2.0) \end{array} $	$ \begin{array}{c} 16.3 \\ (1.6) \end{array} $	$ \begin{array}{c} 13.8 \\ (1.3) \end{array} $	$ \begin{array}{c} 10.50 \\ (1.00) \end{array} $
⁷⁶ Br	с	16.2 h	—	—	—	$\begin{array}{c} 0.59 \\ (0.43) \end{array}$	$3.95 \\ (0.57)$	$ \begin{array}{c} 13.4 \\ (1.8) \end{array} $	$21.3 \\ (2.3)$	20.1 (2.1)	$ \begin{array}{c} 19.9 \\ (2.0) \end{array} $	$ \begin{array}{c} 16.8 \\ (1.7) \end{array} $	$ \begin{array}{c} 12.5 \\ (1.3) \end{array} $
⁷⁵ Br	с	96.7 min	—	_	—	$\begin{pmatrix} 0.59 \\ (0.40) \end{pmatrix}$	$ \begin{array}{c} 1.9 \\ (1.1) \end{array} $	$ \begin{array}{c} 8.1 \\ (3.4) \end{array} $	$ \begin{array}{c} 11.4 \\ (2.9) \end{array} $	$ \begin{array}{c} 13.8 \\ (3.2) \end{array} $	$ \begin{array}{c} 12.8 \\ (2.8) \end{array} $	$ \begin{array}{c} 10.7 \\ (2.4) \end{array} $	8.0 (1.8)
^{74m} Br	i(m)	46 min	_	_	—	—	$ \begin{array}{c} 1.48 \\ (0.62) \end{array} $	$\begin{pmatrix} 2.11 \\ (0.92) \end{pmatrix}$	$3.62 \\ (0.69)$	$(0.67)^{3.74}$	$3.72 \\ (0.53)$	$3.51 \\ (0.53)$	$\binom{2.18}{(0.74)}$
⁷⁴ Br	с	25.4 min	—	_	—	_	-	$\begin{array}{c} 2.40 \\ (0.99) \end{array}$	$ \begin{array}{c} 1.4 \\ (1.1) \end{array} $	$\begin{array}{c} 4.7 \\ (2.2) \end{array}$	$ \begin{array}{c} 4.9 \\ (2.6) \end{array} $	3.1 (1.7)	$2.0 \\ (1.9)$
⁷⁵ Se	с	119.779 day	—	—	—	$\begin{pmatrix} 0.416\\ (0.045) \end{pmatrix}$	$ \begin{array}{c} 4.03 \\ (0.42) \end{array} $	$ \begin{array}{c} 15.5 \\ (1.7) \end{array} $	$27.3 \\ (3.1)$	$29.2 \\ (3.3)$	$28.5 \\ (2.9)$	$24.9 \\ (2.6)$	$ \begin{array}{c} 19.1 \\ (2.1) \end{array} $

PHYSICS OF ATOMIC NUCLEI Vol. 74 No. 4 2011

Table 3. (Contd.)

			Production cross section, mb										
Nuclide	Туре	$T_{1/2}$	$E_n = 46$	68	99	149	249	400	600	799	1199	1599	2605
		,	MeV	MeV	MeV	MeV	MeV	MeV	MeV	MeV	MeV	MeV	MeV
^{73m} Se	с	39.8 min	—		—	—	—	(3.7)	7.4	6.8	5.4	6.06	4.53
⁷³ Se	i(m+g)	7.15 h	_	_	_	_	_	(1.2) 2.39 (0.68)	(1.5) 5.37 (0.89)	(1.4) 7.35 (0.96)	(1.7) 9.3 (1.2)	(0.90) 7.12 (0.76)	(0.81) 5.52 (0.65)
⁷³ Se	с	7.15 h	—	—	—	_	$\begin{array}{c} 0.989\\ (0.092) \end{array}$	5.10 (0.51)	10.7	12.3 (1.2)	13.2 (1.2)	11.5	8.85 (0.84)
⁷² Se	с	8.40 day	—	—	—	_	0.242 (0.023)	1.91 (0.19)	4.35 (0.42)	5.36 (0.53)	6.05 (0.54)	5.30 (0.49)	4.02 (0.38)
⁷⁴ As	i	17.77 day	—	—	—	$\begin{array}{c} 0.048\\ (0.012) \end{array}$	0.427 (0.041)	2.11 (0.61)	4.1 (1.0)	4.60 (0.87)	5.10 (0.92)	4.71 (0.87)	3.66 (0.64)
^{72}As	i	26.0 h	—	—	—		1.94 (0.18)	5.91 (0.74)	13.1 (1.5)	13.9 (1.4)	16.2 (1.6)	15.8 (1.6)	11.7 (1.3)
^{72}As	с	26.0 h	—	—	—	—	2.27 (0.45)	8.0 (1.0)	17.9 (2.0)	19.9 (1.9)	22.5 (2.2)	21.4 (2.1)	15.7 (1.7)
$^{71}\mathrm{As}$	с	65.28 h	_	—	_	-	$\begin{array}{c} 0.548 \\ (0.089) \end{array}$	4.10 (0.46)	9.9 (1.1)	12.9 (1.2)	$15.2 \\ (1.4)$	$ \begin{array}{c} 13.9 \\ (1.4) \end{array} $	10.6 (1.1)
⁷⁰ As	с*	52.6 min	_	—	—	_	_	$\begin{pmatrix} 1.22\\ (0.22) \end{pmatrix}$	3.84 (0.43)	4.69 (0.51)	$6.26 \\ (0.65)$	$5.99 \\ (0.63)$	4.27 (0.47)
⁶⁹ Ge	с	39.05 h	—	—	—	—	$\begin{pmatrix} 0.141 \\ (0.022) \end{pmatrix}$	$\binom{2.22}{(0.36)}$	$ \begin{array}{c} 6.70 \\ (0.99) \end{array} $	$9.0 \\ (1.3)$	$ \begin{array}{c} 11.9 \\ (1.3) \end{array} $	$ \begin{array}{c} 11.1 \\ (1.4) \end{array} $	9.3 (1.0)
⁶⁷ Ge	с	18.9 min	—	—	—	_	_	—	$\begin{array}{c} 0.85 \\ (0.11) \end{array}$	$(0.17)^{1.47}$	$ \begin{array}{c} 1.93 \\ (0.25) \end{array} $	$\binom{2.07}{(0.25)}$	$ \begin{array}{c} 1.66 \\ (0.20) \end{array} $
⁶⁷ Ga	с	3.2612 day	—	—	—	_	$\begin{pmatrix} 0.11\\ (0.11) \end{pmatrix}$	$ \begin{array}{c} 1.71 \\ (0.18) \end{array} $	$ \begin{array}{c} 6.65 \\ (0.67) \end{array} $	$ \begin{array}{c} 10.5 \\ (1.1) \end{array} $	$ \begin{array}{c} 15.6 \\ (1.4) \end{array} $	$ \begin{array}{c} 15.5 \\ (1.4) \end{array} $	$ \begin{array}{c} 12.5 \\ (1.2) \end{array} $
⁶⁶ Ga	c*	9.49 h	—	—	—	—	—	$\begin{pmatrix} 0.93 \\ (0.24) \end{pmatrix}$	$3.53 \\ (0.76)$	$5.50 \\ (0.64)$	8.76 (0.91)	$\substack{9.08\\(0.85)}$	$(0.84)^{7.12}$
⁶⁵ Ga	с	15.2 min	—	—	_	—	—	—	$\begin{pmatrix} 0.74 \\ (0.26) \end{pmatrix}$	$(0.43)^{1.62}$	$\binom{2.49}{(0.65)}$	$\binom{2.58}{(0.52)}$	$\binom{2.28}{(0.54)}$
⁶⁵ Zn	с	244.26 day	—	—	—	—	$\begin{array}{c} 0.100 \\ (0.018) \end{array}$	$ \begin{array}{c} 1.23 \\ (0.13) \end{array} $	$5.36 \\ (0.52)$	$9.45 \\ (0.88)$	$ \begin{array}{c} 15.6 \\ (1.4) \end{array} $	$ \begin{array}{c} 16.3 \\ (1.5) \end{array} $	$ \begin{array}{c} 13.7 \\ (1.3) \end{array} $
⁶² Zn	с	9.186 h	—	—	_	—	—	—	—	—	$\begin{array}{c} 0.30 \\ (0.13) \end{array}$	$\begin{pmatrix} 0.83 \\ (0.22) \end{pmatrix}$	$\begin{array}{c} 0.71 \\ (0.14) \end{array}$
⁶⁷ Cu	с	61.83 h	—	—	_	—	—	—	—	—	—	—	$\begin{array}{c} 0.30 \\ (0.17) \end{array}$
⁶¹ Cu	с	3.333 h	—	—	—	—	—	$\begin{pmatrix} 0.49 \\ (0.42) \end{pmatrix}$	—	$\binom{2.26}{(0.54)}$	$\binom{2.31}{(0.57)}$	$(0.86)^{3.37}$	$3.43 \\ (0.56)$
⁶⁰ Cu	с	23.7 min	—	—	_	—	—	—	—	$\begin{pmatrix} 0.43 \\ (0.17) \end{pmatrix}$	$\begin{array}{c} 0.77 \\ (0.14) \end{array}$	$\underset{(0.11)}{\overset{0.86}{}}$	$\binom{0.69}{(0.14)}$
⁵⁷ Ni	с	35.60 h	—	—	_	—	—	—	—	—	$\underset{(0.015)}{\overset{0.118}{}}$	$\underset{(0.019)}{\overset{0.182}{}}$	$\begin{pmatrix} 0.177 \\ (0.020) \end{pmatrix}$
^{62m} C0	i(m)	13.91 min	—	—	_	—	—	—	—	—	$\begin{pmatrix} 0.31 \\ (0.21) \end{pmatrix}$	$\underset{(0.086)}{0.198}$	$\begin{pmatrix} 0.262 \\ (0.053) \end{pmatrix}$
⁶⁰ Co	i(m+g)	5.2714 yr	_	—	_	_	_	—	_	$\begin{pmatrix} 0.69 \\ (0.20) \end{pmatrix}$	$\binom{2.56}{(0.33)}$	$\underset{(0.40)}{3.10}$	$\binom{2.97}{(0.36)}$
⁵⁸ Co	i(m+g)	70.86 day	_	—	_	_	_	$\underset{(0.014)}{0.128}$	$\begin{pmatrix} 1.12\\ (0.11) \end{pmatrix}$	$\binom{2.75}{(0.25)}$	$ \begin{array}{c} 6.89 \\ (0.59) \end{array} $	$(0.80)^{8.85}$	$\binom{8.79}{(0.85)}$
⁵⁷ Co	с	271.74 day	_	_	-	_	_	_	$\underset{(0.086)}{\overset{0.704}{\scriptstyle (0.086)}}$	$\underset{(0.18)}{1.94}$	5.34 (0.54)	$(0.70)^{7.20}$	$(0.71)^{7.38}$
⁵⁶ Co	с	77.233 day	_	_	-	—	_	_	$\begin{pmatrix} 0.21\\ (0.11) \end{pmatrix}$	$\begin{pmatrix} 0.55 \\ (0.12) \end{pmatrix}$	$ \begin{array}{c} 1.47 \\ (0.17) \end{array} $	$\underset{(0.21)}{2.07}$	$\binom{2.20}{(0.24)}$
⁵⁵ Co	с	17.53 h	_	_	_	—	_	—	_	—	-	$\begin{pmatrix} 0.284 \\ (0.076) \end{pmatrix}$	$\begin{pmatrix} 0.55\\ (0.37) \end{pmatrix}$
⁵⁹ Fe	с	44.472 day	_	_	_	—	_	—	$\begin{pmatrix} 0.114 \\ (0.020) \end{pmatrix}$	$\begin{array}{c} 0.233 \\ (0.028) \end{array}$	$\begin{array}{c} 0.551 \\ (0.054) \end{array}$	$\begin{pmatrix} 0.723\\ (0.069) \end{pmatrix}$	$\begin{array}{c} 0.717\\ (0.082) \end{array}$

Table 3. (Contd.)

			Production cross section, mb										
Nuclide	Туре	$T_{1/2}$	$E_p = 46$	68	99	149	249	400	600	799	1199	1599	2605
52-2			MeV	MeV	MeV	MeV	MeV	MeV	MeV	MeV	MeV	MeV	MeV
⁵⁵ Fe	c*	8.51 min	—	_	_	—	_	_	_	_	_	$\begin{pmatrix} 0.21\\ (0.12) \end{pmatrix}$	$\begin{pmatrix} 0.47 \\ (0.21) \end{pmatrix}$
⁵⁶ Mn	с	2.5789 h	—	—	—	—	—	—	—	$\begin{pmatrix} 0.327 \\ (0.059) \end{pmatrix}$	$ \begin{array}{c} 1.00 \\ (0.14) \end{array} $	$(0.19)^{1.31}$	(0.14)
⁵⁴ Mn	i	312.11 day	—	—	—	—	_	—	$\begin{array}{c} 0.41 \\ (0.13) \end{array}$	$\begin{pmatrix} 1.23\\ (0.17) \end{pmatrix}$	$3.96 \\ (0.35)$	$5.96 \\ (0.54)$	$ \begin{array}{c} 6.91 \\ (0.65) \end{array} $
^{52m}Mn	с	21.1 min	—	—	_	—	_	—	—	$\begin{pmatrix} 0.229\\ (0.096) \end{pmatrix}$	$\begin{pmatrix} 0.191 \\ (0.067) \end{pmatrix}$	$\begin{pmatrix} 0.446 \\ (0.076) \end{pmatrix}$	$\begin{pmatrix} 0.494 \\ (0.082) \end{pmatrix}$
^{52}Mn	с	5.591 day	—	—	_	—	_	—	$\begin{pmatrix} 0.114 \\ (0.012) \end{pmatrix}$	$\begin{array}{c} 0.356\\ (0.100) \end{array}$	1.29 (0.11)	2.07 (0.19)	2.61 (0.25)
⁵¹ Cr	с	27.7025 day	—	—	_	—	_	—	—	$ \begin{array}{c} 0.88 \\ (0.10) \end{array} $	3.48 (0.31)	$5.91 \\ (0.55)$	$(0.70)^{7.42}$
⁴⁹ Cr	с	42.3 min	_	_	_	_	_	_	—	_	_	$\begin{pmatrix} 0.472 \\ (0.082) \end{pmatrix}$	$\begin{pmatrix} 0.761 \\ (0.084) \end{pmatrix}$
⁴⁸ Cr	с	21.56 h	_	_	_	_	_	_	—	_	_	$\begin{pmatrix} 0.066\\ (0.066) \end{pmatrix}$	$\begin{array}{c} 0.085 \\ (0.013) \end{array}$
$^{48}\mathrm{V}$	с	15.9735 day	_	_	_	_	_	_	$\begin{pmatrix} 0.090\\ (0.009) \end{pmatrix}$	$\begin{pmatrix} 0.309\\ (0.050) \end{pmatrix}$	1.28 (0.11)	2.28 (0.21)	3.36 (0.31)
⁴⁸ Sc	i	43.67 h	—	—	—	—	_	—	_	$\begin{pmatrix} 0.048\\ (0.025) \end{pmatrix}$	$\begin{pmatrix} 0.174 \\ (0.029) \end{pmatrix}$	$\begin{pmatrix} 0.282\\ (0.034) \end{pmatrix}$	$\begin{pmatrix} 0.474 \\ (0.063) \end{pmatrix}$
⁴⁷ Sc	i	3.3492 day	_	_	_	_	_	_	—	_	$\begin{pmatrix} 0.553 \\ (0.049) \end{pmatrix}$	$ \begin{array}{c} 0.98 \\ (0.10) \end{array} $	$ \begin{array}{c} 1.50 \\ (0.14) \end{array} $
⁴⁷ Sc	с	3.3492 day	—	—	_	—	_	—	$\begin{pmatrix} 0.058 \\ (0.008) \end{pmatrix}$	$\begin{array}{c} 0.167 \\ (0.018) \end{array}$	$\begin{pmatrix} 0.567 \\ (0.050) \end{pmatrix}$	(0.100)	$ \begin{array}{c} 1.57 \\ (0.15) \end{array} $
⁴⁶ Sc	i(m+g)	83.79 day	—	—	_	—	_	—	$\begin{pmatrix} 0.093 \\ (0.011) \end{pmatrix}$	$\begin{pmatrix} 0.33\\ (0.10) \end{pmatrix}$	$ \begin{array}{c} 1.09 \\ (0.12) \end{array} $	(0.19)	3.10 (0.31)
^{44m} Sc	i(m)	58.61 h	—	—	_	—	_	—	$\begin{pmatrix} 0.147 \\ (0.025) \end{pmatrix}$	$\begin{array}{c} 0.27\\ (0.12) \end{array}$	$\begin{pmatrix} 0.72\\ (0.36) \end{pmatrix}$	$ \begin{array}{c} 1.26 \\ (0.13) \end{array} $	$\binom{2.10}{(0.20)}$
⁴⁴ Sc	i	3.97 h	_	_	_	_	_	_	_	_	_	$\begin{array}{c} 0.709\\ (0.072) \end{array}$	$(0.12)^{1.30}$
⁴⁴ Sc	i(m+g)	3.97 h	_	—	_	_	—	_	—	$\begin{array}{c} 0.118 \\ (0.044) \end{array}$	$\begin{pmatrix} 0.362 \\ (0.039) \end{pmatrix}$	1.89 (0.17)	3.31 (0.31)
⁴³ Sc	с	3.891 h	—	—	_	—	—	—	—	_	0.60 (0.13)	0.76 (0.15)	1.01 (0.13)
⁴⁷ Ca	с	4.536 day	_	—	_	_	—	_	—	—	$ \begin{array}{c} 0.022 \\ (0.008) \end{array} $	$\begin{pmatrix} 0.044\\ (0.020) \end{pmatrix}$	$ \begin{array}{c} 0.063 \\ (0.008) \end{array} $
43 K	с	22.3 h	_	_	_	_	_	_	—	-	$\begin{pmatrix} 0.278 \\ (0.032) \end{pmatrix}$	$\begin{pmatrix} 0.526 \\ (0.059) \end{pmatrix}$	$\begin{pmatrix} 0.774\\ (0.078) \end{pmatrix}$
42 K	i	12.360 h	—	—	_	—	_	—	—	_	_	0.97 (0.13)	$ \begin{array}{c} 1.66 \\ (0.17) \end{array} $
⁴¹ Ar	с	109.34 min	_	_	_	_	_	_	—	_	_	$\begin{array}{c} 0.294 \\ (0.037) \end{array}$	$\begin{array}{c} 0.488\\ (0.059) \end{array}$
³⁹ Cl	с	55.6 min	—	—	_	—	_	—	—	_	_	$\begin{pmatrix} 0.215\\ (0.071) \end{pmatrix}$	$\begin{array}{c} 0.286 \\ (0.047) \end{array}$
³⁸ Cl	с	37.24 min	_	_	_	_	_	_	—	_	$\begin{pmatrix} 0.302 \\ (0.073) \end{pmatrix}$	$\begin{pmatrix} 0.521\\ (0.077) \end{pmatrix}$	$\begin{pmatrix} 0.866\\ (0.098) \end{pmatrix}$
²⁹ Al	с	6.56 min	—	—	_	—	_	—	—	_	_	$\begin{pmatrix} 0.393 \\ (0.079) \end{pmatrix}$	$(0.21)^{1.49}$
^{28}Mg	с	20.915 h	_	_	_	_	_	_	—	_	_	0.180 (0.065)	$\begin{array}{c} 0.365 \\ (0.050) \end{array}$
^{27}Mg	с	9.458 min	_	_	_	_	_	_	_	—	_	0.286 (0.100)	0.61 (0.10)
²⁴ Na	с	14.9590 h	_	_	_	_	_	_	$\begin{pmatrix} 0.144 \\ (0.033) \end{pmatrix}$	$\begin{pmatrix} 0.179\\ (0.027) \end{pmatrix}$	$\begin{pmatrix} 0.560 \\ (0.051) \end{pmatrix}$	$\begin{pmatrix} 0.992 \\ (0.092) \end{pmatrix}$	2.07 (0.20)
²² Na	с	2.6019 yr	_	_	_	_	_	_		_	$\begin{pmatrix} 0.324\\ (0.050) \end{pmatrix}$	$\begin{pmatrix} 0.364 \\ (0.076) \end{pmatrix}$	$\begin{pmatrix} 0.963 \\ (0.097) \end{pmatrix}$
⁷ Be	i	53.29 day	_	_	—	_	$\begin{pmatrix} 0.430 \\ (0.043) \end{pmatrix}$	$\begin{pmatrix} 0.84 \\ (0.16) \end{pmatrix}$	$\begin{pmatrix} 1.41 \\ (0.15) \end{pmatrix}$	$\begin{pmatrix} 2.13 \\ (0.22) \end{pmatrix}$	4.06 (0.36)	$(0.53)^{5.73}$	$\binom{8.31}{(0.78)}$

PHYSICS OF ATOMIC NUCLEI Vol. 74 No. 4 2011

Model	Sample					Protor	ı energy	, MeV				
Model BERTINI ISABEL CEM03.02 INCL4.2 INCL4.5 PHITS	Sample	40	70	100	150	250	400	600	800	1200	1600	2600
BERTINI	Ni	3.36	2.65	3.48	2.53	1.95	1.71	2.86	2.29	2.90	2.25	2.24
	Nb	2.28	2.42	1.68	3.47	2.58	2.17	3.06	1.66	1.78	2.24	2.05
ISABEL	Ni	5.45	3.64	4.14	2.70	2.21	2.19	3.62	4.15	2.90	2.25	2.24
	Nb	3.00	2.78	1.80	3.62	2.76	2.64	4.65	3.77	1.78	2.24	2.05
CEM03.02	Ni	2.26	2.56	2.37	1.63	1.75	1.67	1.69	1.70	1.89	1.86	2.40
	Nb	3.36	2.59	2.08	2.84	2.26	1.94	2.09	1.94	2.67	2.30	1.92
INCL4.2	Ni	2.01	2.08	1.97	2.52	3.44	4.11	2.28	3.41	3.01	3.48	2.92
	Nb	2.94	2.02	2.12	3.99	3.27	3.26	3.31	4.90	4.63	4.40	3.19
INCL4.5	Ni	2.66	1.62	1.59	1.46	1.90	1.57	1.56	1.59	1.54	1.64	1.85
	Nb	13.78	2.05	3.45	1.98	1.55	1.65	1.63	1.56	1.59	1.55	1.58
PHITS	Ni	3.68	2.95	4.11	3.16	2.45	2.05	2.12	1.96	1.67	1.74	1.76
	Nb	3.38	3.12	2.76	4.35	3.21	2.29	2.37	1.74	2.61	2.01	1.66
CASCADE07	Ni	5.19	3.45	3.47	3.20	2.75	2.77	2.65	2.60	4.37	4.13	3.83
	Nb	9.97	4.73	4.33	3.37	2.65	2.61	2.87	2.37	2.73	3.69	3.01

Table 4. Standard deviations $\langle F \rangle$ for ^{nat}Nb and ⁹³Ni

Fig. 1. Example of the γ spectrum of ⁹³Nb no. 05 for $E_p = 2.6$ GeV 1.61 h after irradiation; the measurement duration was 900 s.

PHYSICS OF ATOMIC NUCLEI Vol. 74 No. 4 2011

Fig. 2. Example of the γ spectrum of ^{nat}Ni no. 05 for $E_p = 2.6$ GeV 1.47 h after irradiation; the measurement duration was 900 s.

Fig. 3. Distribution of the uncertainties in reaction rates and cross sections for ⁹³Nb.

Examples of the measured γ spectra are shown in Figs. 1 and 2. The procedure of their processing and calculation of the cross sections is identical to that described in [4].

RESULTS AND THEORETICAL PREDICTIONS

The cross sections for radioactive-nuclide production in the ${}^{93}\text{Nb}(p,x)$ - and ${}^{nat}\text{Ni}(p,x)$ reactions induced by 0.04–2.6-GeV protons are presented in Tables 2 and 3. The numbers of the measured cross sections $\sigma^{ind}(i)$ and $\sigma^{cum}(c)$ for radioactive-nuclide production in ^{nat}Ni and ⁹³Nb irradiated by protons are 388 (i = 85, i(m + g) = 42, i(m) = 31, and $c + c^* = 230$) and 724 (i = 58, i(m + g) = 85, i(m) = 106, and $c + c^* = 475$), respectively. Using these data, we obtained 108 and 47 excitation functions for ⁹³Nb and ^{nat}Ni, respectively; among them, 24 and 9 excitation functions, respectively, were measured for the first time.

Fig. 4. As in Fig. 3, but for ^{nat}Ni.

Fig. 5. Calculated and experimental cross sections for the ^{nat}Ni(p, x) reactions. The experimental data were taken from (\bullet) our present study, (\bullet) [14], and (\star) [15]. Lines 1, 2, 3, 4, 5, 6, and 7 represent the BERTINI, INCL4.5, CEM03.02, ISABEL, INCL4.2, PHITS, and CASCADE07 calculations, respectively.

Fig. 6. As in Fig. 5, but for 93 Ni(p, x). The experimental data were taken from (•) our present study, (•) [14, 16–18].

Fig. 7. Deviation coefficients $\langle F \rangle$ for ⁹³Nb characterizing the predictive powers of the codes.

Fig. 8. As in Fig. 7, but for ^{nat}Ni(p, x).

The average accuracy of the determination of the cross sections for radioactive-nuclide production in ⁹³Nb and ^{nat}Ni is 15.2 and 11.4%, respectively. The distributions of the uncertainties of the reaction rates and cross sections are presented in Figs. 3 and 4.

The resulting excitation functions were compared with the respective functions calculated using the BERTINI, ISABEL, CEM03.02, INCL4.2, INCL4.5, CASCADE07, and PHITS codes [5–11]. The formulas for a convolution of the calculated independent yields into cumulative ones were given in [12, 13]. Examples of the calculated and experimental excitation functions are shown in Figs. 5 and 6.

The predictive powers of the codes can be estimated in terms of the deviation coefficients $\langle F \rangle$ defined as [3, 4, 12, 19]

$$F = 10^{\sqrt{\left\langle \left(\log\frac{\sigma_{\exp}}{\sigma_{calc}}\right)^2\right\rangle}},$$
 (1)

where σ_{exp} are the experimental independent or cumulative cross sections and σ_{calc} are the calculated cross sections obtained on the basis of various models.

The predictive powers of the codes are summarized in Table 4 and in Figs. 7 and 8.

CONCLUSIONS

The $\langle F \rangle$ deviation coefficients being considered range from 1.2 to 13.8 for various models. These values correspond to the deviation of the calculations from the experimental data from 20 to 1280%. Such deviations exceed significantly a required accuracy of

PHYSICS OF ATOMIC NUCLEI Vol. 74 No. 4 2011

30% even for the most accurate code. The discrepancies are particularly large at low energies.

Thus, all intranuclear cascade codes should be further developed. The experimental data obtained in this work can be used both to improve theoretical models and to refine the corresponding designs of electronuclear facilities and spallation neutron sources.

ACKNOWLEDGMENTS

This work was supported by the International Science and Technology Center, project no. 3266, and by the State Nuclear Energy Corporation Rosatom.

REFERENCES

- 1. V. A. Markelov et al., RF Patent No. 2298042 (2007).
- 2. Experimental Nuclear Reaction Data (EXFOR) database; http://www-nds.iaea.org/exfor/exfor.htm
- 3. Yu. E. Titarenko, S. P. Borovlev, M. A. Butko, et al., Yad. Fiz. **74**, 531 (2011, in press).
- 4. Yu. E. Titarenko, V. F. Batyaev, A. Yu. Titarenko, et al., Yad. Fiz. **74**, 548 (2011, in press).
- 5. J. C. Hendricks et al., Report LA-UR-05-2675, LANL (2005); http://mcnp.lanl..gov/
- S. G. Mashnik and A. J. Sierk, J. Nucl. Sci. Technol. Suppl. 2, 720 (2002).
- A. Boudard, J. Cugnon, S. Leray, and C. Volant, Phys. Rev. C 66, 044615 (2002).
- J. Cugnon, A. Boudard, S. Leray, et al., ISBN 978-92-0-150410-4, SM/SR-02 (2010).
- 9. A. R. Junghans et al., Nucl. Phys. A 629, 635 (1998).
- H. Iwase et al., J. Nucl. Sci. Technol. 39, 1142 (2002); http://phits.jaea.go.jp/OvPhysicalModelsJQMD. html

- 11. H. Kumawat et al., Nucl. Instrum. Methods Phys. Res. B **266**, 604 (2008).
- 12. Yu. E. Titarenko, V. F. Batyaev, V. M. Zhivun, et al., INDC(CCP)-0447, IAEA (Oct. 2009); http://wwwnds.iaea.org/reports-new/indc-reports/indc-ccp/
- 13. Yu. E. Titarenko, V. F. Batyaev, A. Yu. Titarenko, et al., Phys. Rev. C **78**, 034615 (2008).
- 14. R. Michel et al., Nucl. Instrum. Methods Phys. Res. B **129**, 153 (1997); EXFOR, #O0276.
- 15. Experimental Nuclear Reaction Data (EXFOR) Database; #A0491003, #O0098007.

- 16. R. Michel et al., Nucl. Instrum. Methods Phys. Res. B **103**, 183 (1995); EXFOR, #O0277177.
- 17. R. Michel et al., Analyst 114, 287 (1989); EXFOR, #00078025.
- R. Michel, R. Stueck, and F. Peiffer, *Proton-Induced Reaction on Ti, V, Mn, Fe, Co, and Ni Ions*; R. Stueck, PhD Thesis (1983); EXFOR, #A0100007, #A0100008.
- Yu. E. Titarenko, V. F. Batyaev, E. I. Karpikhin, et al., http://www-nds.iaea.org/reports/indc-ccp-434.pdf. *Translated by R. Tyapaev*