

Earth and Life Institute - Agronomy Ecophysiology and Crop Breeding

New insights on the role of radial root conductivity on the overall water uptake dynamics

Guillaume Lobet, Valentin Couvreur, Mathieu Javaux and Xavier Draye

Water fluxes in the plant

Water fluxes in the plant

Relative ranges of conductivities

Relative ranges of conductivities

Hydraulics and architecture

Influence of the soil conductivity

Can we extend these concepts to study the plant behaviour?

Conceptual framework

Real situation

Objectives

Can we extend these concepts to study the plant behaviour?

Objectives

Can we extend these concepts to study the plant behaviour?

Experimental platform

Experimental platform

Uptake overview

Water uptake follows a downward dynamics during a water deficit episode

Local uptake analysis

Root data

Local analysis

Kr influences local uptake rates

Uptake rate influences water depletion

Water depletion influences dynamics

Influence uptake dynamics

Introduction

King et al. 2003, Ann Bot 91 (3)

Richards et al., 1989, Aust J Agr Res 40

Practical implications at the plant scale

Perspectives

Influence uptake dynamics

Change soil properties

Change root characteristics

Change root architecture

King et al. 2003, Ann Bot 91 (3) Bernier et al. 2009, Field Crops Res 110

Change Kr and Kx

Practical implications at the plant scale

Perspectives

Influence uptake dynamics

Change soft properties

King et al. 2003, Ann Bot 91 (3)

Perspectives

Influence uptake dynamics

Change soll properties

Introduction

Change root characteristics

King et al. 2003, Ann Bot 91 (3)

Influence uptake dynamics

Change soll properties

Change root characteristics

Change root architecture

King et al. 2003, Ann Bot 91 (3) Bernier et al. 2009, Field Crops Res 110

Change Kr and Kx

Influence uptake dynamics

Change soll properties

Change root characteristics

Change root architecture

King et al. 2003, Ann Bot 91 (3) Bernier et al. 2009, Field Crops Res 110

Change Kr and Kx

Influence uptake dynamics

Change soll properties

Change root characteristics

Change root architecture

King et al. 2003, Ann Bot 91 (3) Bernier et al. 2009, Field Crops Res 110

Change Kr and Kx

Richards et al., 1989, Aust J Agr Res 40

Computer modeling can be used to design water extraction strategies and ideotypes

Modelling as an ideotype design tool

Modelling as an ideotype design tool

Modelling as an ideotype design tool

Take home message

Uptake pattern matters

Need to integrate root system architecture and hydraulic properties (root and soil)

Importance of multi-scale and space-time dynamics

Experimental and modeling tools are available

Acknowledgments

Collaborations

Université catholique de Louvain

Prof. François Chaumont Vincent Larondelle Nicolas Lieutenant

INRA Avignon

Loïc Pagès

University of Lancaster

Ian Dodd

Funding

Rank Price Fund

F.N.R.S. - F.R.I.A.

Université catholique de Louvain

Walloon region

P.A.I.

Influence of the soil conductivity

SAME:

Root architecture
Root hydraulic properties
Transpiration

DIFFERENT: Soil type

Uptake distribution

Uptake overview

Water uptake follows a downward dynamics

% of roots in depleted areas increases with time

Uptake overview

Water uptake follows a downward dynamics

% of roots in depleted areas increases with time

Why does "radialness" matters?

Flux (m³.m⁻².s⁻¹)

Ks (m^3m^{-3})

High influence of the uptake rate

Soil conductivity (Ks)

Soil type Water content (θ)

Root radial conductivity (Kr)

Root type
Root segment age
Environment

Root axial conductivity (Kx)

Soil conductivity (Ks)

Soil type Water content (θ)

Root radial conductivity (Kr)

Root type
Root segment age
Environment

Root axial conductivity (Kx)

Soil conductivity (Ks)

Soil type Water content (θ)

Root radial conductivity (Kr)

Root type
Root segment age
Environment

Root axial conductivity (Kx)

Soil conductivity (Ks)

Soil type Water content (θ)

Root radial conductivity (Kr)

Root type
Root segment age
Environment

Root axial conductivity (Kx)

Integration at the root system level

$$\Sigma K = \Sigma I/K_x + \Sigma I/K_r + \Sigma I/K_s$$

Water preferably takes the path of maximum conductance (for a given $\Delta \psi$)

The **lowest** conductance will be the limiting factor

Integration at the root system level

$$\sum K = \sum I/K_x + \sum I/K_r + \sum I/K_s$$

Conclusions

Water preferably takes the path of maximum conductance (for a given $\Delta \psi$)

The **lowest** conductance will be the limiting factor

Decrease water availability

Conclusions

Influence uptake dynamics

Conclusions

Influence uptake dynamics

Introduction

Change soil properties

Conclusions

Influence uptake dynamics

Introduction

Change soll properties

Influence uptake dynamics

Change soft properties

Change root characteristics

Influence uptake dynamics

Change soll properties

Change root characteristics

Change the root diameter de Jong v. L. et al. 2006, Vadoze Zone J 5 (4)

Influence uptake dynamics

Change son properties

Change root characteristics

Change the root diameter

de Jong v. L. et al. 2006, Vadoze Zone J 5 (4)

Change root architecture

King et al. 2003, Ann Bot 91 (3) Bernier et al. 2009, Field Crops Res 110

Influence uptake dynamics

Change soft properties

Change root characteristics

Change the root diameter

de Jong v. L. et al. 2006, Vadoze Zone J 5 (4)

Change root architecture

King et al. 2003, Ann Bot 91 (3) Bernier et al. 2009, Field Crops Res 110

Change Kr and Kx

Influence uptake dynamics

Change soil properties

Change root characteristics

Change the root diameter

de Jong v. L. et al. 2006, Vadoze Zone J 5 (4)

Change root architecture

King et al. 2003, Ann Bot 91 (3) Bernier et al. 2009, Field Crops Res 110

Change Kr and Kx

Richards et al., 1989, Aust J Agr Res 40

Computer modeling can be used to define an ideotype

Introduction

