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Abstract. Using machine learning based models in clinical applications
has become current practice and can prove useful to provide information
at the subject’s level, such as predicting an (early) diagnosis or monitor-
ing the evolution of a disease. However, the performance of these models
depends on the choice of a biomarker to detect the presence or absence of
a disease. Choosing a biomarker is not straightforward, especially in the
case of Parkinson’s disease when compared to healthy subjects. In the
present work, we investigated the mental imagery of gait as a biomarker
of Parkinson’s disease and showed that the signal in the mesencephalic
locomotor region during the mental imagery of gait at a comfortable pace
can discriminate significantly between idiopathic Parkinson’s disease pa-
tients and healthy subjects. Although there is room for improvement,
the results of this preliminary study are promising.

1 Introduction

During the past decades, advances in neuroimaging techniques allowed inves-
tigating the brain structure and functioning in both health and disease. More
particularly, Positron Emission Tomography (PET) and Magnetic Resonance
Imaging (MRI) enabled the identification of biomarkers in dementias, such as
Alzheimer’s disease [1] or in different states of consciousness [2]. They also al-
lowed the characterisation of more complex paradigms such as the mental im-
agery of gait in both healthy [3] and Parkinson’s diseased subjects [4].

Up to now, the methods used to analyse such data focused on characteriz-
ing the individual relationship between a cognitive or perceptual state and each
voxel, i.e. following a univariate approach. For functional images, a well-known
univariate technique is Statistical Parametric Mapping [5], detecting which vox-
els show a statistically significant response to the experimental conditions at
the individual subject level but also within and between groups of subjects. For
structural images, a common approach is Voxel-BasedMorphometry, (VBM, [6]),
which investigates focal differences in grey matter density between groups of sub-
jects. However, these studies typically infer group differences while conclusions



at the subject’s level would be desirable for diagnosis, prognosis, treatment plan-
ning or the monitoring of disease progression [7].

Recently, univariate analyses have been complemented by the use of machine
learning based models [8]. These methods aim at predicting a variable of interest
(e.g. mental state 1 vs. mental state 2, or patients vs. controls) from the pattern
of brain activation/anatomy over a set of voxels. They have been particularly
useful in clinical applications [7], e.g. to distinguish between healthy subjects
and Alzheimer’s disease patients [9, 10] or to assess the level of consciousness of
vegetative states patients [11]. Machine learning based models have also been
applied to Parkinson’s Disease (PD) when discriminating Idiopathic Parkinson’s
Disease (IPD) from Parkinson Plus Syndromes (PPS) [12]. However, it seems
that finding a biomarker distinguishing IPD from healthy controls remains an
open issue [7, 12].

In the present work, we investigated whether the mental imagery of both
comfortable and brisk walking could predict the presence or absence of IPD,
based on previous works [3, 4].

2 Material and Methods

The material considered in this work is the same as in [4]. Therefore, only a brief
description of the population and experimental design will be provided.

2.1 Population

In total, 29 subjects participated in the study: 14 patients (7 males; mean age:
65.1 ± 9.5 years) diagnosed with IPD with different degrees of severity of gait
disturbances and 15 controls matched for age (63.8 6 ± 8.1 years) and gender
(7 males). Written informed consents for this research protocol approved by the
local ethics committee were obtained from all participants.

2.2 Design

Before fMRI, the subjects were asked to walk comfortably and then briskly
on a 25m path. After gait evaluation, they were trained to mentally rehearse
themselves walking on the path.

All subjects then underwent an fMRI session comprising three taks: mental
imagery of standing on the path (STAND), walking at a comfortable pace along
the path (COMF) and walking briskly along the path (BRISK). The COMF and
BRISK conditions were self-paced, subjects indicating when they had completed
each trial by a key press, while each trial of the STAND condition was constrained
by the duration of the previous COMF trial. Eight trials of each condition (12 for
BRISK to account for a shorter duration of the trials) were randomly presented
to each subject.

In addition to BOLD fMRI, all participants underwent a high-resolution
volumetric anatomical MRI of the brain.



2.3 Preprocessing

fMRI data preprocessing and univariate analysis were performed using SPM81.
Functional images were realigned and co-registered to the structural image before
normalisation using DARTEL [13]. Finally, smoothing was applied using a 8mm
FWHM Gaussian kernel.

A General Linear Model then summarized the time series from each subject
by modelling each condition by a boxcar function convoluted with a canonical
haemodynamic response function. In the end, three images per subject were
considered for further analysis: the parametric maps of STAND, COMF and
BRISK representing the BOLD signal activity associated with each condition.

2.4 Multivariate Modelling

The multivariate analysis was performed using PRoNTo2. This Matlab based
software (MathWorks, Natick, MA) provides a framework to perform pattern
recognition based on machine learning models.

In its current version, PRoNTo does not provide wrapper or embedded feature
selection. Three masks were therefore used as filters before building the linear
kernel, based on [4]:

– A “whole brain” mask, selecting all voxels within the brain.

– A “motor mask”, built on the WFU-PickAtlas [14] and comprising the areas
involved in gait (both in healthy subjects and patients), as described in Table
1 of [15].

– A mask comprising the Mesencephalic Locomotor Region (MLR) and pe-
dunculopontine nucleus, further referred to as “MLR mask”.

Classification was performed using binary SVM [16], as in [12] and [7]. For
the between groups classification, the three tasks will be combined in every pos-
sible way (e.g. BRISK, BRISK+COMF, . . . ) and tested for each mask, leading
to 7 combinations times 3 masks, equals 21 models. In addition to the IPD vs.
CTRL comparison, the discrimination between the three tasks was also assessed
by pooling together the data of both groups. This multiclass classification re-
quired the use of multiclass Gaussian Processes [17]3. For both classification
problems, leave-one-subject-out cross-validation was performed to compute the
balanced and class accuracies, as well as Positive Predictive Values (PPV). The
significance of accuracy measures was assessed by non-parametric testing using
1000 random permutations of the training labels.

1www.fil.ion.ucl.ac.uk/spm
2Application for a demonstration of PRoNTo at NIPS has been submitted,

www.mlnl.cs.ucl.ac.uk/pronto
3Binary Gaussian Processes could also have been used on the between groups com-

parison but [18] has shown that SVM and GP had similar performances on balanced
datasets with reduced computational expenses for SVM.

www.fil.ion.ucl.ac.uk/spm
www.mlnl.cs.ucl.ac.uk/pronto


3 Results

3.1 Between groups comparison

Results are presented for each (combination of) condition(s) in Table 1 in terms
of balanced accuracy while weights of the COMF model are represented in Fig.1
for each mask.

Table 1. Balanced accuracy (in %) for the IPD vs. CTRL classification for each com-
bination of the three tasks (rows) and for each mask (columns). “All” represents the
combination of the three tasks. Significant results are displayed in bold.

Conditions used Masks used

Condition Whole brain Motor MLR

STAND 14.3 34.5 72.6

COMF 58.3 62.1 76.0

BRISK 59.0 66.2 62.1

STAND+COMF 36.3 36.2 72.4

STAND+BRISK 36.7 39.7 65.4

COMF+BRISK 62.3 65.8 62.1

All 42.9 48.3 56.4

Overall, the whole brain mask led to a poor discrimination of IPD vs. CTRL,
with the accuracy reaching 62.3% when considering both the COMF and BRISK
conditions together (only significant result). Slightly better results were obtained
from the features in the motor mask, as shown by a higher balanced accuracy
for the BRISK-COMF combination, as well as for the BRISK condition (both
significant at p < 0.05). The signal comprised in the MLR mask led to the best
results, the highest performance being reached when considering the COMF
condition. For this model, the balanced accuracy had a value of 76% (p=0.01),
with the class accuracies reaching 78.6% for IPD and 73.3% for CTRL (both
significant at p < 0.05). PPV are in the same range, with a PPV of 78.6% for
CTRL and 73.3% for IPD.

3.2 Between tasks comparison

In terms of balanced accuracy, significant results could be obtained from the
discrimination between the three tasks across the two groups of subjects when
considering the whole brain and motor masks (Table 3.2). This result is con-
firmed by the PPV for each class, which are quite high. However, the signal in
the MLR doesn’t lead to a significant classification of the three tasks, which is
further confirmed by the PPV (almost all samples are classified as STAND).



Fig. 1. Weights of the SVM model discriminating between CTRL (label +1) and IPD
(label -1) based on the combination of the BRISK and COMF conditions, for A the
whole brain, B, motor and C MLR masks (Note that the cross-hair position has been
centred on the MLR for this panel). D displays the SPM single subject canonical
structural image for better representation.

Table 2. Balanced accb and class accuracies (in %, PPV in brackets) of the multiclass
GP model discriminating between the three tasks (STAND, COMF and BRISK) when
considering both groups jointly. Significant results are displayed in bold.

Mask accb STAND COMF BRISK

Whole brain 65.5 58.6 (65.4) 41.4 (75.0) 96.6 (62.2)

Motor areas 66.7 62.1 (64.3) 41.4 (70.6) 96.6 (66.7)

MLR area 32.2 89.7 (32.1) 0.0 (0.0) 6.9 (33.3)

4 Discussion

In the present work, we classified the parametric maps of three tasks (STAND,
COMF and BRISK) to identify idiopathic Parkinson’s disease patients from
healthy controls. The best model discriminated significantly between IPD and



controls with a balanced accuracy of 76%, when using the signal comprised in the
mesencephalic locomotor region. Furthermore, combining the mental imagery of
gait at comfortable and brisk paces led to consistent and significant results across
feature sets.

Although these results are not overwhelming, it is (to the best of our knowl-
edge) one of the first significant classification between IPD and controls [7,12]. In
view of the simplicity of the model (SVM with a filter feature selection), this re-
sult is promising and suggests that mental imagery of gait could be a biomarker
of Parkinson’s disease although improvements need to be performed before being
able to deal with more complex issues, such as diagnosing Parkinson’s disease in
its early stage, or distinguishing between IPD and Parkinson Plus Syndroms.

However, distinguishing between the three tasks using both groups led to
significant results when considering the whole brain and motor masks, suggest-
ing that the between-subject variability within one group is large compared
to the between-groups variability for those features. This result highlights the
importance of feature selection in the present case and favours the use of wrap-
per or embedded feature selection techniques to increase the performance of the
machine learning based models. Regarding the Parkinsonian group, the between-
subjects variability might further be explained by the heterogeneity of the gait
disorders in patients. Distinguishing between patients with light or sever gait
disorders, for example by considering the Freezing of Gait (FoG, [19]), might in-
crease the ratio of between versus within group variability and thereby improve
the classification.

Finally, although a large overlap has been observed between mental imagery
of gait and actual gait in healthy subjects [20], our results question the overlap
between mental imagery of disturbed gait and actual disturbed gait, especially
in the STAND and BRISK conditions. Solving this issue is not straightforward
but developments in ambulatory Electro-EncephaloGraphy (EEG) acquisition
systems and in the decoding of this type of signal might bring a solution by
directly acquiring the brain activity under actual gait.

5 Conclusion

Finding a biomarker of Parkinson’s Disease allowing for the detection of IPD
remains an open issue, but we have shown here that BOLD signal recorded
during controlled mental imagery is a good candidate. Indeed the activity in
the mesencephalic locomotor region induced by mental imagery of gait at a
comfortable pace leads to promising results.
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10. Klöppel, S., Stonnington, C.M., Chu, C., Draganski, B., Scahill, R.I., Rohrer, J.D.,
Fox, N.C., Jack, C.R., Ashburner, J., Frackowiak, R.S.J.: Automatic classification
of MR scans in Alzheimer’s disease. Brain 131 (2008) 681–689

11. Phillips, C., Bruno, M.A., Maquet, P., Boly, M., Noirhomme, Q., Schnakers, C.,
Vanhaudenhuyse, A., Bonjean, M., Hustinx, R., Moonen, G., Luxen, A., Lau-
reys, S.: ’Relevance Vector Machine’ consciousness classifier applied to cerebral
metabolism of vegetative and locked-in patients. NeuroImage 56(2) (2011) 797–
808

12. Focke, N.K., Helms, G., Scheewe, S., Pantel, P.M., Bachmann, C.G., Dechent,
P., Ebentheuer, J., Mohr, A., Paulus, W., Trenkwalder, C.: Individual voxel-based
subtype prediction can differentiate progressive supranuclear palsy from idiopathic
Parkinson syndrome and healthy controls. Human Brain Mapping 32 (2011) 1905–
1915

13. Ashburner, J.: A fast diffeomorphic image registration algorithm. NeuroImage 38
(2007) 95 – 113

14. Maldjian, J.A., Laurienti, P.J., Burdette, J.B., A, K.R.: An automated method for
neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets.
NeuroImage 19 (2003) 1233–1239
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