A Verification-Based Approach to Memory
Fence Insertion in PSO Memory Systems*

Alexander Linden and Pierre Wolper

Institut Montefiore, B28
Université de Liege
B-4000 Liege, Belgium
{linden,pw}@montefiore.ulg.ac.be

Abstract. This paper addresses the problem of verifying and correcting
programs when they are moved from a sequential consistency execution
environment to a relaxed memory context. Specifically, it considers the
PSO (Partial Store Order) memory model, which corresponds to the use
of a store buffer for each shared variable and each process. We also will
consider, as an intermediate step, the TSO (Total Store Order) memory
model, which corresponds to the use of one store buffer per process.
The proposed approach extends a previously developed verification tool
that uses finite automata to symbolically represent the possible contents
of the store buffers. Its starting point is a program that is correct for the
usual Sequential Consistency (SC) memory model, but that might be
incorrect under PSO with respect to safety properties. This program is
then first analyzed and corrected for the TSO memory model, and then
this TSO-safe program is analyzed and corrected under PSO, producing
a PSO-safe program. To obtain a TSO-safe program, only store-load
fences (TSO only allows store-load relaxations) are introduced into the
program. Finaly, to produce a PSO-safe program, only store-store fences
(PSO additionally allows store-store relaxations) are introduced.

An advantage of our technique is that the underlying symbolic verifi-
cation tool makes a full exploration of program behaviors possible even
for cyclic programs, which makes our approach broadly applicable. The
method has been tested with an experimental implementation and can
effectively handle a series of classical examples.

1 Introduction

Modern multiprocessor architectures optimize accesses to shared memory and,
doing so, do not implement the traditional Sequential Consistency (SC) memory
model [1], in which all accesses to the shared memory are immediately visible
globally. The exact behavior of these processors with respect to memory accesses
is rather complex and is usually only described by a set of typical behaviors
in vendor documentation. Nevertheless, formal models that cover the behavior

* This work is supported by the grant 2.4545.11 of the Belgian Fund for Scientific
Research (F.R.S.-FNRS).

2 Alexander Linden and Pierre Wolper

of many existing processors have been defined. These are usually referred to as
relazed memory models, among the most common being Total Store Order (TSO)
and Partial Store Order (PSO), both defined in [2, 3]. Writing correct code under
these models is quite challenging given that they allow even more executions than
the traditional SC model. This has motivated work on verifying code under these
memory models, as well as on techniques for preserving the correctness of code
when it is moved from the SC model to a relaxed memory model. This is done
by introducing forced memory synchronizations known as fences. However, using
fences means forgoing the benefits of the hardware optimizations that lead to
relaxed memory models, so the issue is to minimize the number of inserted fences.

In earlier work, [4, 5], we proposed a technique that models TSO using store
buffers and uses finite automata to represent the potentially infinite set of pos-
sible contents of these buffers. This representation coupled with acceleration
techniques similar to those proposed in [6], as well as with the persistent-set and
sleep-sets partial-order reduction techniques [7], allows a full exploration of the
state space of programs, including for cyclic programs. In this earlier work both
the problem of verifying a program under TSO and of inserting fences to preserve
the correctness of a program being moved from SC to TSO are addressed.

This paper focuses on porting a program verified under SC to PSO, while
preserving its safety properties. The approach is based on the verification tech-
niques and tool already presented in [4, 5] for TSO. The first contribution of this
paper is to extend these techniques and the tool to PSO. One challenge that
had to be solved for doing this is that in PSO, a single process writes to several
buffers, one for each variable. Thus when dealing with the repetition of cycles,
it seems necessary to synchronize the writes to different buffers, hence taking us
beyond what can be represented with finite automata. Fortunately, as we will
establish in this paper, this synchronization can safely be ignored.

The second contribution of the paper is a method for safely porting programs
from SC to PSO. It starts by analyzing and correcting the program under TSO,
inserting the necessary memory fences [5]. The fences inserted here are mfences,
which is what is required to avoid the store-load relaxations possible in TSO.
The second step is to move a program safe under TSO to PSO. Here, the ap-
proach is similar to the first step, but we only use sfences, which are weaker,
but sufficient for avoiding the store-store relaxations possible under PSO. We
present experimental results that show that the approach is quite effective, can
efficiently handle a number of meaningful examples, and compares favorably to
other methods proposed for the same problem.

2 Concurrent Programs and Memory Models

We consider a very simple model of concurrent programs in which a fixed set of
finite-state processes are interacting through a shared memory. Such a concurrent
system is thus defined by a finite set of processes P = {p1,...,p,} and a finite
set of memory locations M = {mg,...,my}, the initial content of the shared

Memory Fence Insertion in the PSO Relaxed Memory Model 3

memory being defined by a function Z : M — D, D being the domain of memory
values.

The definition of each process p; includes a finite set of control locations L(p;),
an initial control location ¢y(p;) € L(p;) and a set of transitions 7 labeled by
operations taken from a set O. The transitions of a process p; are thus elements
of L(p;) x O x L(p;), also written as £ 28 ¢/, where both £, € L(p;).

The set O of operations contains the two following memory operations:

— store(p, m,v), the meaning of which is that process p stores the value v € D
to the memory location m,

— load(p, m,v), the meaning of which is that process p loads the value stored
in memory location m and checks if that value is equal to v. The operation
is possible only if the values are equal, otherwise it does not go through and
execution is blocked.

Under the SC memory model, the semantics of such a concurrent program is
the one in which the possible behaviors are all the interleavings of the operations
executed by the different processes, and in which the store operations become
immediately visible to all processes.

In TSO, each process executing a store operation can directly load the value
saved by this store operation, but other processes cannot always immediately see
that value and might read an older value stored in shared memory. This is known
as the fact that TSO allows the store-load relaxation. PSO also allows such store-
load relaxations to happen but, additionally, stores accessing different shared
memory locations can be reordered within the same process, which is known
as the store-store relaxation. Thus, the possible SC-executions are included in
the set of TSO-executions, which are themselves included in the set of PSO-
executions.

The formal definitions of the memory models use the concepts of program
order and memory order [2, 8]. Program order (<) is a partial order in which the
instructions of each process are ordered as executed, but instructions of different
processes are not ordered with respect to each other. Memory order (<,,) is a
total order on the memory operations, which is fictitious but characterizes what
happens during relaxed executions.

Let [or I’ denote any load operation, s any store operation, I, a load operation
on location a, and s, or s! store operations on location a. Furthermore, let val(l)
be the value returned by the load operation .

Using these notions, a formal definition of PSO can be given (for the defini-
tions of SC and TS0, see [2, 8] or [5]).

A PSO execution is one for which there exists a memory order satisfying the
following constraints for each process p:

VL2 <, P =0 <, 1P
Vis:l<p,s=>1<pys
Vsl s2 sl <, 82 = sl <, 82

val(ly) = val(néax{sa | Sa <m laVSq <plg}). If there is no such a s,, val(l,)

Ll s

is the initial value of the corresponding memory location.

4 Alexander Linden and Pierre Wolper

The first three rules specify that the memory order has to be compatible with
the program order, except that a store can globally be postponed after a later
load or a later store accessing a different variable of the same process. The last
rule specifies that the value retrieved by a load is the one of the most recent
store in memory order that precedes the load in memory order or in program
order, the latter ensuring that a process can see the last value it has stored. If
there is no such store, the initial value of that memory location is loaded.

This axiomatic definitions of PSO gives insight, but the equivalent opera-
tional model is much more useful for applying explicit state-space exploration
techniques. This operational model is described in Fig.1. Stores from each process
are buffered, a separate buffer being used by each process for each shared mem-
ory location. A store only takes effect when it is transferred from a buffer to the
shared memory, which is called a commsit. This can be seen as the moment when
it is entered into the memory order. A commit operation is an internal system
operation, which is assumed to be executed nondeterministically for each buffer
and each process. This model (using buffers and commits) ensures that stores by
the same process accessing the same locations cannot be reordered, while those
accessing different locations can. When a load is executed by a process, it will
read the most recent value out of its own store buffer for this variable if there
exists at least one buffered store to that variable, otherwise the load reads the
value out of the shared memory. This means that loads can be reordered with
earlier stores of the same process, while they always read the most recent values
either from a buffer or the main memory.

Loads Stores Loads Stores

Myl My miylcoc s imy

b(Pl,ml)’) b(Pl,mk)

/ Commits
o, O
\Q Switch

Single Port Memory

Comumits

Fig. 1. Operational definition of PSO [2, 3]

To match what is available in actual processors, in particular Intel’s x86 pro-
cessors, extensions have to be made to TSO and PSO [9, 10]. The first extension
is adding a new component, the lock, which is used to grant processes exclusive

Memory Fence Insertion in the PSO Relaxed Memory Model 5

access to the shared memory. The second extension consists of operations called
memory fences, which constrain how stores are committed to main memory. In
TSO, only one type of fence is available, the mfence. An mfence operation blocks
the executing process until every earlier executed store operation of that process
has been committed to the shared memory. In PSO, a second type of fence is
also available, the sfence. When an sfence occurs in a process, it forces every
store preceding the sfence to be committed to memory before every store that
occurs after the sfence. An sfence does not block the process executing it, but
of course restricts the execution of commit operations. When comparing sfences
and mfences, it is clear that the effect of an mfence is stronger than the effect
of an sfence. The mfence disables all relaxations between operations before and
after the mfence, whereas the sfence only disables the store-store relaxations.
To formally define the operational model of PSO, we first add a set

B= {b(thl)? by mi) s Opa,ma)y oo b(Pmmk)}

of buffers to the system, each process having one store buffer per variable!.
Secondly, we add a global lock I component whose value can be a process p € P
when p holds the lock, or undefined (L) when the lock is not held by a process. A
global state of the system becomes the composition of the content of the memory,
the value of the global lock, and, for each process p, a control location as well as
the content of its store buffers [be, m,), .., b(pm,)]- The content of a buffer is a
sequence of elements that are either (1) triplets (m, v, t) where m € M, v € D
and t € T, representing a store operation and identifying the transition where
it was executed, or (2) a special symbol *' representing an sfence(p) transition
t. These semantics are very similar to those that were given for TSO in [5], and
thus we will focus only on the operations that are specific to, or different in,
PSO: sfence and commit.

sfence operation : sfence(p):
Ym e M: [b(p7m)] — [b(p,m)] *t,

where ¢ is the transition corresponding to the current sfence operation.
commit operation : commit(p, m):

If ([L] #L and [L] # p), where L is the lock, then commit(p, m) cannot be
executed;

otherwise, let [be, m)] = (m,v1,t1)(m, v, t2) ... (m, vy, tr) (the first element
to commit is not an sfence). Then, if [b(,)] # €, the result of the commit op-
eration is [be, my] <= (m, v, t2) ... (m, vy, ty) and [m] <= vy, or, if (b,)] = &,
the commit operation has no effect. If [b(,)] = ' (m,v1,t1) ... (m, vy, tg),
i.e. the buffer content starts with the symbol representing the sfence(p) op-
eration of transition ¢, then commit(p, m) becomes a synchronized operation

! Note that we introduce the buffers per process rather than by processor. This ap-
proach is safe for verification since it allows more behaviors than a model in which
some processes could share the same buffer. Furthermore, it is impossible to know
which process will run on which processor when analyzing a program.

6 Alexander Linden and Pierre Wolper

which requires all buffers of p to start with x*. If this is not the case, the
commit cannot be executed. If all buffers start with x¢, the commit operation
can be executed, and simultaneously removes the element x* from all buffers.

Note that commit(p,m) is not an operation that can appear in a program, but
is assumed to be always enabled and nondeterministically interleaved with the
actual program operations. Thus, when an mfence(p), unlock(p) or the sfence(p)
operation is blocked because the buffers of p are not all empty, or because not
all buffers of p start with the same %', the implicit execution of commit(p,m)
operations makes it possible to empty the buffers of p or to reach x* for all buffers
of p, and enable the operation.

3 Representing Sets of Buffer Contents and State Space
Exploration

Verifying a program under the TSO or PSO memory models can be done with
a tool such as SPIN ([11]). However, this leads to two problems. First, one must
bound the size of the buffers in order to keep the model finite-state. Second, the
size of the state space quickly explodes as the size of the buffers grows.

These problems were addressed in [4], for TSO, as follows. To start with,
rather than limiting buffers to a fixed size, finite automata, called buffer au-
tomata, are used to represent possibly infinite sets of buffer contents. Such buffer
automata represent sets of unbounded buffer contents, those contained in the
accepted language (L(A)) of the buffer automata (A). This allows unbounded
buffer contents to be taken into account and, with the help of acceleration tech-
niques similar to those of [12] and [6], to explore the full state space of programs,
even if they include memory accesses, in particular memory writes, in cycles that
can be infinitely repeated. The cycles that actually need to be, and can be, “ac-
celerated” are those in which one particular process repeatedly writes to memory,
thus potentially leading to an unbounded buffer content.

For PSO, the situation is similar, except that we need to handle not just
one buffer per process, but a set of buffers, one for each variable and that we
also need to handle sfence operations. The state-space exploration, including
the use of partial-order techniques, as well as the detection of cycles is done
exactly as for TSO, see [4]. What changes are the operations applied to the buffer
automata to accelerate the cycles: rather than operating on a single automaton
for each cycle, the one corresponding to the active process, we need to operate
on multiple automata, one for each updated variable of the active process. The
obvious way to do this is to filter from the cycle the operations corresponding
to each variable and only consider these when dealing with the corresponding
buffer automaton. This is straightforward to implement, but generates more
buffer contents than can actually occur: the link between the number of times
write operations are applied to different variables is lost! To make this clear, let
us examine an example.

Consider the program given in Fig 2. It contains just one process with mem-
ory locations x,y and z all set to 0 initially. There will be a cycle detected after

Memory Fence Insertion in the PSO Relaxed Memory Model 7

the sequence of states 1 -+ 2 — 1 — 2 — 1, and the content of the buffers for z, y
and z will then be modified to be ((x,1,¢1)(z,1,%1)*; (v, 1,t2)(y, 1,t2)*;€). How-
ever, since the number of stores to x and y are the same, the accurate representa-
tion of the buffer contents after iterating the cycle would be ((z,1,1)(z,1,41)™;
(y,1,t2)(y, 1,¢2)™;¢), and thus by considering the variables separately we have
introduced buffer contents that cannot be generated by iterating the cycle.
Fortunately, this is not a problem since committing several times the same
memory write operation has no influence on the possible future behaviors of
the program. More precisely, any program behavior that is possible from a
global state with buffer contents ((z,1,t1)(x, 1,¢1)™; (y, 1,t2)(y, 1,t2)"2;¢) with
ni1 # ng is also possible from the corresponding global state with buffer con-
tents ((z, 1,t1)(z, 1,11)™@0m2): (1, 9) (y, 1, tp)™@x("1m2) . o) by applying dif-
ferent numbers of commit operations to the variables x and y.

t1 : st(po,x,1)

l ts : st(po, 2, 1)
oot

\/
to: St(pOa Y, 1)

Fig. 2. A program with writes to different variables in a cycle

We now need to generalize the observation made in the previous example.
To do this, we have to compare the executions that are possible if we compute
the buffer contents resulting from the repeated execution of a cycle separately
for each variable, or if we take into account the necessary synchronization of
the operations performed on the different variables. We will refer to these as
synchronized versus unsynchronized executions. For this we use the following
concepts.

Definition 1. Given a word w over an alphabet X and L C X7, a word w' is
a L stutter subword of w if w can be obtained from w’ by, for one or more
subwords u of w with u € L, replacing u by a word in u™.

Example. The word aabc is a {b, ¢, bc} stutter subword of aabbbce and aabcebebe.

Definition 2. A sequence of operations that does not modify the store buffer
i a way that affects the result of subsequent load operations is called load-
preserving.

We can then formalize the fact that repeating load-preserving sequences of
commit operations has no real impact on an execution.

Lemma 1. Le o be an execution of a concurrent system and let LE be the set
of load-preserving commit operation sequences appearing in o. Then every LE
stutter subword o’ of o is also a valid execution of the system.

8 Alexander Linden and Pierre Wolper

Proof. This is a direct consequence of the fact that load-preserving sequences of
commit operations are idempotent, i.e. applying them one or several times has
no effect on the rest of the execution.

From this Lemma, it is easy to establish the property we need.

Theorem 1. Computing the buffer automata of different variables independent-
ly only leads to valid executions.

Proof. Indeed, the potentially incorrect executions that could be obtained by
handling the buffers for different variables independently are those in which the
number of stores to variables executed in the same cycle could be taken to be
different. Notice that this will only have an effect on the execution when these
stores are committed to memory and that committing the stores appearing on
a cycle is load-preserving. Thus, such an unsynchronized execution will always
be a LE stutter subword of a synchronized execution, where LE is the set of
load-preserving commit sequences corresponding to cycles, and hence will be
valid. Indeed, since we allow unbounded repetition of cycles, the synchronized
execution can be taken to be the one in which the cycle is repeated a number
of times greater than the largest number of times a store to any of the variables
modified in the cycle is committed to memory.

After having introduced buffer automata representing sets of buffer contents
rather than single buffer contents, one needs to redefine the operations on buffers
to also apply to buffer automata. For the operations store and mfence, please
refer to [4, 5].

load operation : load(p, m,v):

The problem with a load operation applied to a buffer automaton is that it
may succeed on some contents of the buffer represented by the automaton
and fail on others. Thus, once a load was successfully applied to a buffer
automata, we need to restrict the possible buffer contents to those on which
the load operation succeeds (see [4]). But now that we are dealing with PSO,
special care should be applied if #* symbols are present. Indeed, if a ** sym-
bol is removed when modifying a buffer to take into account the fact a load
has succeeded, the synchronization required by the sfence will no longer be
possible, thus introducing a fictitious deadlock. If this occurs the buffers for
the other variables of the process are also modified in order to remove the
now spurious ** symbols.

sfence operation : sfence(p):
Ym e M : L(A(p,m)) — L(A(nm)) *t,

where t is the transition corresponding to the current sfence operation.
commit operation : commit(p):

As for the load operation, the commit also may have an impact on the

Memory Fence Insertion in the PSO Relaxed Memory Model 9

possible buffer contents. How to restrict the buffer contents to those that
match the current commit operation has been described in [4]. The related
problem due to the sfences, as described above for the load operations, also
occurs for the commit operation and is handled similarly.

4 From SC to TSO to PSO

We now turn to the problem of preserving the correctness of a program when
it is moved from an SC to a PSO memory environment. By correctness, we
mean preserving state (un)reachability properties. Note that this captures safety
properties, since safety can always be reduced to state (un)reachability in an
extended model.

An obvious way to make sure a program can safely be moved from SC to PSO
is to force writes to be immediately committed to main memory by inserting
an mfence after each store, thus precluding any process from moving with a
nonempty store buffer. The obvious drawback of doing so is that any performance
advantage linked to the use of store buffers in the implementation is lost.

However, it is not at all necessary to guarantee that the executions that can
be seen under PSO are also possible under SC. We might rather just restrict
the possible executions to those satisfying the desired safety property, i.e. only
exclude those executions reaching states violating the safety property. Recall
that the difference between SC, TSO and PSO can be summarized as follows:
SC does not allow any relaxation, TSO allows the store-load relaxation, and
PSO allows the store-load and the store-store relaxations. When needed, these
relaxations can be avoided by placing adequate fences into the program.

In [5], we exploited this to maintain correctness of a program (wrt a safety
property) when it was moved from SC to TSO. In the current approach, we want
to go further and maintain correctness of a program when it is moved from SC
to PSO. We will do this by first modifying the program to guarantee that it is
still correct under TSO, and then further modify it so that it remains correct
under PSO.

To avoid all relaxations, it is sufficient to place an mfence between all loads
and any preceding store, as well as an sfence between stores accessing different
variables. If this is the case, no relaxation will be possible, and all PSO executions
will also be SC executions. As our approach proceeds in two steps, the first of
which is described in [5], we now only need to describe how to avoid the store-
store relaxations allowed in PSO, but not in TSO. Lemma 2 gives a sufficient
condition for guaranteeing this..

Lemma 2. Given a PSO execution, if in the program order of each process,
an sfence is executed between every pair of successive stores accessing different
memory locations, the memory order satisfies all the TSO constraints.

Proof. The semantics of sfence operation can be formalized by introducing these
operation in the memory order with the following constraints, where s, repre-
sents a store operation accessing memory location a, and S represents an sfence
operation:

10 Alexander Linden and Pierre Wolper

1. Vsq,8 18, <p S =54 < S
2. V54,5:8 <p 8a =5 <m 5a

In the conditions of the lemma, we have if s, <, sp, there is an sfence S such
that s, <, S and S <, sp, and thus we have that s, <, sp. It follows that the
memory order thus satisfied all constraints of a TSO order. a

Combining the criteria of lemma 2 with the one of [5], we obtain a suffi-
cient condition for guaranteeing correctness while moving from SC to TSO to
PSO. The condition is expressed on executions, but can easily be mapped to a
condition on programs: in the control graph of the program, an mfence (resp.
sfence) must be inserted on all paths leading from a store to a load (resp. a store
to a store accessing different variables). This is sufficient, but can insert many
unnecessary mfence/sfence instructions. We now turn to an approach that aims
at only inserting the fence instructions that are needed to correct errors that
have actually appeared when moving the program from SC to TSO to PSO.

5 An iterative fence insertion algorithm

The basic outline of the algorithm is quite simple: it consists of two steps, and
is based on the iterative algorithm of [5]:

1. apply the iterative algorithm of [5] for TSO, starting with a safe program P
under SC and returning a TSO-safe program P’, by inserting only mfence
instructions into the program;

2. apply the iterative algorithm of [5] adapted as described below for PSO,
starting with the TSO-safe program P’ and returning a PSO-safe program
P” by inserting only sfence instruction into the program.

The algorithm will thus first make the program correct under TSO by iter-
atively inserting mfence operations. When this is done, the TSO-safe program
is analyzed under PSO, and sfence operations are inserted iteratively until the
program is correct under PSO. Both parts are guaranteed to terminate, see [5]
for the first step and lemma 2 for the second step.

In this second step, the idea is still to look for relaxations (this time we look
for store-store relaxations) that occur on a path that leads to an error state.
To detect store-store relaxations, we need to keep track of which operations are
compatible with TSO and which are not. This is done by running the state-
space exploration with TSO store buffers alongside the PSO store buffers. All
operations are also applied to the T'SO-buffers, until a store-store relaxation is
encountered. Once such a relaxation is encountered, we stop updating the TSO-
buffer for the process for which the relaxation has occurred since the execution
no longer is a TSO-execution, while continuing to update the TSO-buffers for
the other processes. Note however that once the TSO-buffer stops being updated
for a process, updating can be restarted when all PSO-buffers of that process
are completely empty, the TSO-buffer being then reset to empty.

Memory Fence Insertion in the PSO Relaxed Memory Model 11

A store-store relaxation is detected as follows. The set of enabled transitions
of a given global state is computed using the PSO-buffers, which allows the
memory order of stores to be changed. When the order of two stores is changed,
i.e. a commit of a store is executed while an earlier store accessing another vari-
able is still in the corresponding buffer, the commit of the later store cannot be
executed on the TSO-buffer, which indicates that a relaxation has occurred, and
the state is marked as a store-store relaxation. This relaxation can be disabled
by placing an sfence operation before the store operation for which the infringing
commit has been executed.

When exploring the state-space under PSO, we know that, if we reach an
error state, at least one store-store relaxation must have occurred on the path
leading to that state. It is then sufficient to disable one of these relaxations to
remove that path. When there is a choice of relaxations to disable, we choose
the latest on the path leading to the detected error state.

Remark 1. Note that we will not necessarily detect all store-store relaxations on
a path, as our symbolic buffer content representation makes it impossible to keep
the T'SO-buffer correctly updated once a relaxation has occurred. New iterations
will thus be necessary to find all store-store relaxations.

Remark 2. The algorithm we have presented does not guarantee that a program
with a minimal number of fences is produced. It could happen that, after the
algorithm has iteratively inserted a given number of fences, a fence that was
inserted becomes unnecessary due to fences inserted later. One could reiterate
on the introduced fences by removing a fence and checking if an error state
can be reached. If so, the fence is needed, if not, we can safely remove it. After
repeating this procedure until no more fences can be removed we obtain a fence
set called “mazimal permissive’?, meaning that each fence is needed to ensure
the safety property. This does not however imply that the set of inserted fences
is globally minimal since the set obtained is dependent on the order in which
fences are inserted.

Note however, that no inserted sfence can make an mfence unnecessary. In-
deed, sfences will not prevent the store-load relaxations that can occur in TSO.
The reiteration for removing unnecessary fences should thus be done first after
inserting mfences to make the program correct under T'SO, and then a second
time after the insertion of sfences to adapt the program for PSO.

6 Experimental Results

The fence insertion technique presented in this paper has been implemented
within the prototype tool described in [4], extending the tool presented in [5]. The
input language for this tool is a simplified and modified version of Promela. It
is implemented in Java and uses the BRICS automata-package [14] for handling
the automata representing buffer contents.

% which was first defined in [13]

12 Alexander Linden and Pierre Wolper

This prototype has been tested on examples, most of which are mutual exclu-
sion algorithms (part (a) of Tab. 1). For all those algorithms, we could success-
fully modify the programs to produce a PSO-safe program, by first iteratively
inserting mfence operations in order to make the program TSO-safe, followed
by iteratively inserting sfence operations to finally obtain a PSO-safe version of
the program. For all those programs, no limitation on the size of buffers were
enforced, and most of the programs were analyzed when all processes try to
enter into the critical section repeatedly. The only program where only a single
entry by each process were considered is Lamport’s Bakery, where the use of
the counter pushes the repeated entry version beyond the scope of our tool. For
those programs, the number of iterations is the sum of inserted mfences and
sfences, incremented by 2 (each step (for TSO and then PSO) needs an iteration
to build the state-space of the corrected program and check that there are no
more errors). The column #St contains the number of states in the state-space
of the corrected program (all mfences and sfences inserted). All computed fence
sets are maximal permissive, except for Szymanski’s algorithm and Lamports
fast mutex. For both of these algorithms, one could use Remark 2 to obtain a
maximal permissive fence set.

Part (b) of Tab. 1 describes the results for programs that were analyzed
and did not need to be corrected to stay correct under TSO or PSO. For those
programs, execution times only contains one iteration, which explored the state-
space under PSO only, without detecting any error state. All those programs were
taken from [15], the Increasing Sequence example being limited to 10 instead of
20.

Table 1. Experimental results for several programs with memory fence insertion

Mutual Exclulsion Algorithms Corrected PSO-safe program
Program entry-vers|#Proc|| #St |#it|#mfence|#sfence| t
Dekker repeated 2 381 | 6 4 0 1.9s
Peterson repeated 2 219 | 6 2 2 1.4s
Generalized Peterson | repeated 3 28544| 8 3 3 56.7s
Lamport’s Bakery single 2 727 | 8 4 2 3.2s
Burns repeated 2 123 | 4 2 0 1.2s
Szymanski repeated 2 221 | 8 6 0 2.2s
Dijkstra repeated 2 879 | 4 2 0 3.9s
Lamport’s Fast Mutex| repeated 2 5654 | 10 4 4 11.3s

(a)

Other programs (PSO-safe) No fences inserted
Program limit |#Proc|| #St |#it|#mfence|#sfence| t
Alternating bit - 2 1184 | 1 0 0 2.3s
Clh queue lock - 2 3004 | 1 0 0 2.8s
Increasing Sequence 10 2 59570| 1 0 0 140s

Memory Fence Insertion in the PSO Relaxed Memory Model 13

All experimental results were obtained by running our Java-program on a
laptop with a 2.7GHz quad-core processor and 8GB RAM, running Ubuntu.

7 Conclusions and comparison with other work

Other work on verification under relaxed memory models includes [16], which
proceeds by detecting behaviors that are not allowed by SC but might occur
under TSO (or PSO). This is done by only exploring SC interleavings of the
program, and by using explicit store buffers. The more theoretical work presented
in [17] uses results about systems with lossy fifo channels to prove the decidability
of reachability under TSO (or PSO) with respect to unbounded store buffers,
but the undecidability of repeated reachability. Another approach adopts the
axiomatic definition of relaxed memory models and exploit SAT-based bounded
model checking [18-20], which of course pushes handling cyclic programs or
unbounded buffers beyond their reach. Yet a different approach can be found in
[21], which proposes an approach based on SPIN that uses a Promela model with
(bounded) explicit queues and an explicit representation of the dependencies on
memory accesses that are implied by the relaxed model RMO (Relaxed Memory
Order) [3]. Finally, [22] presents an approach for the verification of programs
under relaxed memory models where finite-state programs under SC may turn
into infinite-state programs under TSO that proceeds by under-approximation.

With respect to fence insertion algorithms, several other approaches have
been proposed. Note that the main originality of our approach is that it is based
on a tool that can analyze cyclic programs under TSO/PSO and thus that it
can infer fence insertion in this context.

In [23], an over-abstraction technique for potentially infinite store buffers is
proposed, combined with the fence insertion algorithm described as “maximal
permissive” that was presented in [13]. The abstraction works by representing the
buffers as a combination of a finite fifo-buffer that keeps the order of the stores
and of an unordered set of stores that is used when the fifo-buffer is full. The fence
inference technique works by propagating through the state graph constraints
that represent relaxations that could be removed by an mfence or sfence. Once
an undesirable state is reached, one can use the associated constraints in order to
determine how to make that state unreachable for all incoming paths. However,
even if the state-space that is computed is finite in theory, the number of states
grows very fast, even for very simple programs, which puts Lamport’s fast mutex
out of reach of this method, if a first fence is not manually inserted before running
the tool. A version of the CLH queue lock could also not be handled, but it is
unclear if their version and ours are the same. Also, the increasing sequence
example cannot be verified by their approach. For all programs that both our
and their approach can handle, and for which no manual fence insertion was
done, the computed fences are the same.

Another important piece of work to mention is [15], which exploits the fact
that TSO can be simulated by lossy fifo channels. The advantage is that in this
setting, state reachability is decidable by a procedure that can be implemented

14 Alexander Linden and Pierre Wolper

quite efficiently. This approach, combined with a fence insertion algorithm that
computes all minimal fence sets, by restricting the places in the program where
fence insertion is allowed, makes it very efficient in the case of TSO. It is worth
mentioning that their technique for computing the minimal fence sets is com-
patible with our approach in the case of TSO, as they iteratively construct those
sets by looking for relaxations on a path to an error state. However, in the case
of TSO, our approach for inserting mfences iteratively is as optimal as the one
in [15], and the number of mfences is consistent with their results. It might be
confusing that for Dekker’s algorithm, we insert 4 instead of 2 mfences, but this
is only caused by a different modeling of the same algorithm.

Finally, the simultaneously appearing [24] presents results based on the idea
of "TSO-Robustness”, i.e. ensuring by fence insertion that, under TSO, only
executions which correspond to SC-executions are allowed. It does not consider
PSO.

As conclusion, we have successfully extended our previous work on relaxed
memory models from TSO to PSO, obtaining experimental results that compare
favorably with other results on this topic. It came as a pleasant surprise while
developing these results that the synchronized writing to different buffers that at
first seemed necessary and impossible to handle simply, was in fact not needed.

References

1. Lamport, L.: How to Make a Multiprocessor Computer That Correctly Executes
Multiprocess Programs. IEEE Trans. Computers 28(9) (1979) 690-691

2. SPARC International, Inc., C.: The SPARC architecture manual: version 8.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA (1992)

3. SPARC International, Inc., C.: The SPARC architecture manual (version 9).
Prentice-Hall, Inc., Upper Saddle River, NJ, USA (1994)

4. Linden, A., Wolper, P.: An automata-based symbolic approach for verifying pro-
grams on relaxed memory models. In: Proceedings of the 17th international SPIN
conference on Model checking software. SPIN’10, Berlin, Heidelberg, Springer-
Verlag (2010) 212-226

5. Linden, A., Wolper, P.: A verification-based approach to memory fence insertion in
relaxed memory systems. In: Proceedings of the 18th international SPIN conference
on Model checking software, Berlin, Heidelberg, Springer-Verlag (2011) 144-160

6. Boigelot, B., Godefroid, P., Willems, B., Wolper, P.: The power of qdds (extended
abstract). In: Proceedings of the 4th International Symposium on Static Analysis.
SAS ’97, London, UK, UK, Springer-Verlag (1997) 172-186

7. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems
- An Approach to the State-Explosion Problem. Volume 1032 of Lecture Notes in
Computer Science. Springer (1996)

8. Loewenstein, P., Chaudhry, S., Cypher, R., Manovit, C.: Multiprocessor mem-
ory model verification. Technical report Unpublished presentation at FLOC-AFM
2006, http://fm.csl.sri.com/AFMO6/papers/4-Loewenstein.pdf.

9. Sewell, P., Sarkar, S., Owens, S., Nardelli, F.Z., Myreen, M.O.: x86-TSO: a rigorous
and usable programmer’s model for x86 multiprocessors. Commun. ACM 53 (July
2010) 89-97

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Memory Fence Insertion in the PSO Relaxed Memory Model 15

Owens, S., Sarkar, S., Sewell, P.: A better x86 memory model: x86-tso. In: Proceed-
ings of the 22nd International Conference on Theorem Proving in Higher Order
Logics. TPHOLs ’09, Berlin, Heidelberg, Springer-Verlag (2009) 391-407
Holzmann, G.: Spin model checker, the: primer and reference manual. First edn.
Addison-Wesley Professional (2003)

Boigelot, B., Wolper, P.: Symbolic verification with periodic sets. In: Proceedings
of the 6th International Conference on Computer Aided Verification. CAV ’94,
London, UK, UK, Springer-Verlag (1994) 55-67

Kuperstein, M., Vechev, M., Yahav, E.: Automatic inference of memory fences.
In: Proceedings of the 2010 Conference on Formal Methods in Computer-Aided
Design. FMCAD ’10, Austin, TX, FMCAD Inc (2010) 111-120

Mpgller, A.: dk.brics.automaton — finite-state automata and regular expressions for
Java (2010) http://www.brics.dk/automaton/.

Abdulla, P.A., Atig, M.F., Chen, Y.F., Leonardsson, C., Rezine, A.: Counter-
example guided fence insertion under tso. In: Proceedings of the 18th international
conference on Tools and Algorithms for the Construction and Analysis of Systems.
TACAS’12, Berlin, Heidelberg, Springer-Verlag (2012) 204-219

Burnim, J., Sen, K., Stergiou, C.: Sound and complete monitoring of sequential
consistency for relaxed memory models. In: Proceedings of the 17th international
conference on Tools and algorithms for the construction and analysis of systems.
TACAS’11/ETAPS’11, Berlin, Heidelberg, Springer-Verlag (2011) 11-25

Atig, M.F., Bouajjani, A., Burckhardt, S., Musuvathi, M.: On the verification
problem for weak memory models. In: Proceedings of the 37th annual ACM
SIGPLAN-SIGACT symposium on Principles of programming languages. POPL
’10, New York, NY, USA, ACM (2010) 7-18

Burckhardt, S.,; Alur, R., Martin, M.M.K.: Checkfence: checking consistency of
concurrent data types on relaxed memory models. In: Proceedings of the 2007
ACM SIGPLAN conference on Programming language design and implementation.
PLDI ’07, New York, NY, USA, ACM (2007) 12-21

Burckhardt, S., Musuvathi, M.: Effective program verification for relaxed memory
models. In: Proceedings of the 20th international conference on Computer Aided
Verification. CAV ’08, Berlin, Heidelberg, Springer-Verlag (2008) 107-120
Burckhardt, S., Alur, R., Martin, M.M.K.: Bounded model checking of concur-
rent data types on relaxed memory models: a case study. In: Proceedings of the
18th international conference on Computer Aided Verification. CAV’06, Berlin,
Heidelberg, Springer-Verlag (2006) 489-502

Jonsson, B.: State-space exploration for concurrent algorithms under weak memory
orderings: (preliminary version). SIGARCH Comput. Archit. News 36 (June 2009)
65-71

Atig, M.F., Bouajjani, A., Parlato, G.: Getting rid of store-buffers in tso analysis.
In: Proceedings of the 23rd international conference on Computer aided verifica-
tion. CAV’11, Berlin, Heidelberg, Springer-Verlag (2011) 99-115

Kuperstein, M., Vechev, M., Yahav, E.: Partial-coherence abstractions for relaxed
memory models. In: Proceedings of the 32nd ACM SIGPLAN conference on Pro-
gramming language design and implementation. PLDI ’11, New York, NY, USA,
ACM (2011) 187-198

Bouajjani, A., Derevenetc, E., Meyer, R.: Checking and enforcing robustness agains
tso. In: Proceedings of the 22nd European conference on Programming Languages
and Systems. ESOP’13 (2013) to appear

