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Abstract Image segmentation is discussed for years in numerous papers, but assessing its quality is
mainly dealt with in recent works. Quality assessment is a primary concern for anyone working towards
better segmentation tools. It both helps to objectively improve segmentation techniques and to compare
performances with respect to other similar algorithms.
In this paper we use a statistical framework to propose statistical measures capable to describe the
performances of a segmentation scheme. All the measures rely on a ground-truth segmentation map that
is supposed to be known and that serves as a reference when qualifying the results of any segmentation
tool. We derive the analytical expression of several transition probabilities and show how to calculate
them. An important conclusion from our study, often overlooked, is that performances can be content
dependent, which means that one should adapt a measure to the content of an image.

1 Introduction

Segmentation is one the most difficult task in automatic image analysis. It consists in partitioning an image
into objects (segments) homogeneous with respect to a specific property. Many algorithms for segmen-
tation have been proposed over the years and this number still continues to raise. One of the reasons for
this proliferation of techniques is that no segmentation technique offer enough universality to meet the
requirements of a broad family of applications.

While the development of new segmentation techniques has attracted significant attention, fewer efforts
have been spent on their evaluation. Some could also argue that no satisfactory evaluation measure has
been proposed so far and that the discipline is still in its infancy.

In [1] ZHANG reviews some methods for segmentation evaluation. He divides the family of evaluation
methods into two categories:

1. the analytical methods, which evaluates the properties and the principles of segmentation algorithms,
2. and the empirical methods, that judge algorithms by applying them to test images and by measuring

the results.

According to ZHANG [1], empirical methods can been further divided into two types: goodness methods
and discrepancy methods. In the first category results are qualified according to human intuition and judged
by the values of goodness measures. In the second category some segmentation references, called ground-
truth maps, that represent expected results are given, and results are compared with these references by
counting the difference.

In [2] a procedure for evaluating the intrinsic quality of segmentation masks in video sequences where
the existence of ground-truth masks is assumed is proposed. The procedure adopted in MPEG-4 for ob-
jective and automatic evaluation is described in [3]. It assumes that ground-truth mask are available and
performs two types of analysis on segmented sequences that measure the spatial accuracy and the tempo-
ral coherence. As an alternative ERDEM et al. [4] propose measures to evaluate the performance of video
segmentation without ground-truth segmentation maps.
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All in all there is a conceptual difference between the two tasks of quality assessment and benchmarking,
often confused in literature. On the one hand researchers want to develop efficient segmentation algorithms.
In order to tune their algorithms they need a criterion capable to measure the quality of the segmentation.
On the other hand it is sometimes useful to compare the performances of competitive algorithms targeting
the same applications. This second task is known as benchmarking. It is defined as an objective measure of
the performances of a segmentation algorithm obtained by evaluating them on test data.

In practical terms both tasks are related. A developer may start by tuning an algorithm, then gradually trans-
form it to end up with a completely new algorithm. Quality assessment then turns off to a sort of poor bench-
marking. One may then object that this methodology does not prove the reliability of the new algorithm
nor that the final algorithmic expression has the best performances. Like COURTNEY and THACKER [5],
we believe that practical approaches neglect the important role that statistics must play in algorithm de-
velopment. It is even worse to notice that most articles, like [6], simply ignore any statistical issues. To
the contrary, papers dealing with image quality assessment do consider the statistical distribution of re-
sults [7]. For all these reasons our work concentrates on measures that provide statistical insights on the
segmentation performances.

In the following we investigate the statistical significance of a discrepancy method. In Section 2 we develop
a framework for describing a segmentation result. This model leads to statistical measures that are defined
and discussed in Section 3. From our study it appears that evaluating the quality of segmentation depends
on the data and that one has to adapt the measures to the size of the segmentation maps. These conclusions
are presented in Section 4.

2 Statistical model for assessing segmentation techniques

Let x be the location of a pixel inside the image that can be of any type (a 2D flat image, a volumetric 3D
image, or an image flow like a video). Generally speaking image segmentation produces a region map, in
which each pixel is labeled with a number designating the region to which it was assigned. In the following
we restrict the number of regions to a single object, that might be composed of several disconnected parts,
and a background.

There are various ways to generate segmentation references. Ideally a reference is specified on the base
of a perfect segmentation process. If this last is available the need to measure the quality of segmentation
techniques is rather low. One possible alternation is to use synthetic images made by the superposition
of an object (the blue screen technique can help producing a realistic object) on a real background. This
principle is illustrated in Figure 1. In this example, some images (a) were captured after a snow storm.
Then the white color was made transparent after thresholding and superimposed on a real background (b)
to produce a realistic scene with a perfectly known segmentation map (c). A more work intensive method

(a) (b) (c)

Figure1. Process to build ground-truth segmentation maps by superimposing a thresholded image on a natural back-
ground.
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is to segment images by hand.

Ground-truth segmentation maps are not widely available and one often has to build his own. A segmenta-
tion dataset has been distributed by a research group at the Bekerley University [8]. From this large dataset
one can download files which contain the probability of a boundary at each location of 200 training and
100 test images.

In the following we assume that there exists perfect segmentation maps. The known background is denoted
by b[x], and f [x] is the image captured by the camera. If no object is superimposed on the background then
b[x] = f [x] for any x. To the contrary, when an object is added to the scene, the previous equality holds
for some pixels but not all of them anymore. In this case, the background is masked by a function denoted
m[x]. We define m[x] = 0 when the background is visible and m[x] = 1 when an object in the foreground
hides the background. If per coincidence the color of the object is identical to the background color, i.e.
b[x] = f [x], we still consider that the background is masked and therefore that m[x] = 1. Note that this
simple model does not discard transparent objects like windows.

With the aforementioned model and notations the segmentation algorithm has to process

f [x] = m[x]f [x] + (1 − m[x])b[x] (1)

where
m[x]f [x] = o[x] (2)

denotes the superimposed object. From all the functions, b[x] is known and f [x] is observed. If we choose
a non-cooperative design scheme, the algorithm has no prior knowledge of o[x], nor of m[x]. Despite that
relation (1) holds for any x, there is not enough information for the algorithm to recover o[x] or m[x].

One of the key techniques to segment an image is background substraction [9,10]. A background is first
estimated, by time integration for example, and then the estimated background b̂[x] is compared to f [x]. If
one assumes that noise has been filtered out, a simple decision rule states that if f [x] 6= b̂[x] then m[x] = 1

and f [x] = o[x]. Clearly this technique does not suffice as f [x] = b̂[x] does not imply that m[x] = 0.
In order words background substraction produces underestimated object surfaces. Therefore background
substraction is usually combined to an object tracking algorithm. This avoids the two main drawbacks of
background substraction techniques : the progressive inclusion in the background of static objects and the
non-detection of objects that have the same color than the background (like transparent objects).

2.1 A statistical interpretation of the segmentation process

Regardless of whether the background is known or not the segmentation process may be seen as a stochastic
process. Let us consider image segmentation as a two states pixel classification process M [x]. For any
location x, M [x] is a random variable equal to

– 1 when x belongs to a foreground object O, and
– 0 when x is included in the background B.

When the ground-truth segmentation map is not available, M [x] can only be described in terms of proba-
bilities characterizing two possible outcomes: M [x] = 1 or M [x] = 0. Let the probabilities of these events
be p(x ∈ O) and p(x 6∈ O) = p(x ∈ B). For simplicity these probabilities are denoted p(o) and p(b)
respectively. Obviously x ∈ O or x ∈ B, so that p(o) = 1 − p(b).

The role of segmentation is to estimate the masking function M [x], hopefully as close as possible to the
real segmentation mask. In practical terms we have to estimate the function M̂ [x] which should be equal
to M [x] almost everywhere. Since a perfect match is not achievable, we have to model the segmentation
process with some probabilities. Let ps(o) and ps(b) be the probabilities for a pixel to be classified as a
foreground object or as a background respectively. The probability ps(o) sums the probability of two cases:
x belongs to the object or, although x is in the background, it has been assigned to the object.
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Figure2. Binary model for segmentation.

Figure 2 shows the model used in the following. Let us consider a given location x. The input, drawn on the
left-hand side, represents the original two possible states (and probabilities) for the mask. A referenceless
segmentation produces an estimated binary value M̂ [x]; it is drawn on the right -hand side of Figure 2.

As suggested by MARTIN [11], we could compute the mutual information I between M̂ and the ground-
truth map M which is a global measure. Our model puts the focus on several probabilities rather than
on a global measure. The model is characterized by the set of possible original states, the set of possible
outcomes, and a set of conditional probabilities also called transition probabilities. For example, p(o|b) is
the probability of an error for a background pixel to be labelled as an object.

As a consequence
ps(o) = p(o|o)p(o) + p(o|b)p(b). (3)

A similar relation yields for ps(b):

ps(b) = p(b|b)p(b) + p(b|o)p(o). (4)

Segmentation errors originate from the diagonal probabilities p(b|o) and p(o|b). The larger these probabil-
ities, the larger the segmentation error rate will be. The probability of error pe for a two-class problem can
be defined by [12]

pe = p(b|o)p(o) + p(o|b)p(b) (5)

where p(o) and p(b) are viewed as a priori probabilities. An extension of pe for multi-class problems can
be found in [13].

3 Statistical discrepancy measures

The idea of computing discrepancy based on the number of misclassified pixels is also reflected in some
edge-detection evaluation schemes. The most elementary way to match reference region boundaries and
computer generated boundaries is to compute the percentage of boundary pixels that overlap. However cor-
responding boundary pixels, though typically close to one another, often do not overlap. In [14] PAGLIERONI
introduces some tolerance on spatial overlap that states that patterns are said to be potentially co-occurrent
as long as they are separated by less than some tolerance distance. The purpose of spatial tolerance is to
take into account the fact that edges are difficult to localize exactly in continuous images. But this intro-
duces the need for a local correlation model whose validation is difficult from a practical point of view. As
we are dealing with a binary mask, we clearly would like to favour a simpler spatial model.
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3.1 Statistical assumptions

The statistical segmentation model summarized in Figure 2 is location-dependent. Indeed classification
probabilities as well as transition probabilities are related to the position of a pixel in the image. We will
nevertheless suppose that M [x] is spatially stationary in the wide sense, which implies that its mean is
constant. This assumption is debatable but if an object moves equally over the image plane or inside a 3D
volume, wide-sense stationarity is acceptable.

Additionally we assume that M [x] is mean-ergodic. As a consequence the constant local mean theoretically
equals the average over the observation volume. In order words, if x is observed over D ∈ R

n then

µM = E {M} =
1

](D)

∫

D

m(x) dx (6)

where ](D) is the cardinality of D. Again this is acceptable if D is large enough, which is the case for a
usual image size, like a 640 × 480 VGA image.

3.2 Estimation of the means

Assuming wide-sense stationarity and ergodicity in the mean it is possible to compute the means of M and
M̂ . The statistical mean of M is equal to

µM = E {M} = 1 × p(o) + 0 × p(b) = p(o). (7)

If the ground-truth segmentation map is known, the cardinality of the objects by ](o) is easily computed so
that µM = p(o) is nothing but the ratio of ](o) to the image size ](D):

µM =
](o)

](D)
. (8)

Computing the mean of M̂ is not as straightforward. Analytically,

µcM
= E

{
M̂
}

= 1 × ps(o) + 0 × ps(b) = ps(o). (9)

Using equation (3) this yields
µcM

= p(o)p(o|o) + p(b)p(o|b). (10)

Because of segmentation inaccuracies, µM 6= µcM
.

3.3 Probabilistic quality measures

Basically all four transition probabilities drawn on Figure 2 are interesting measures but for different rea-
sons:

– p(o|o) directly relates to the aim of segmentation,
– p(b|b) is a useful measure for gauging the quality of any background detection tool, and
– p(o|b) and p(b|o) determine the overall segmentation errors.

Like for relation (8), the mean of M̂ can be estimated by counting the number of object pixels divided by
the image size:

µcM
=

](os)

](D)
(11)
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where os represents the objects after segmentation. Accordingly we can easily compute a valid statistical
estimate of µcM

, and its value is assumed to be known hereafter.

Let us now reconsider equation (10). A substitution of p(o) and p(b) by their values yields

µcM
=

](o)

](D)
p(o|o) +

(
1 −

](o)

](D)

)
p(o|b) (12)

Further simplifications are needed to isolate p(o|o) and p(o|b). We will first consider the case of large
objects and then the case of small objects as the number of samples impact of the statistical significance of
the estimates.

First case: large objects. If the objects occupy a large portion of the image and the segmentation performs
relatively well –it would be pointless to address the performances of a poor segmentation technique!–,
p(o|b) ¿ p(o|o). Consequently µcM

reduces to

µcM
'

](o)

](D)
p(o|o). (13)

This provides the value of p(o|o):

p(o|o) ' µcM

](D)

](o)
=

](os)

](o)
. (14)

So two simple counting processes on the segmentation reference and on the real segmentation are sufficient
to compute a criterion capable to estimate the object segmentation quality. Note that p(o|o) might be supe-
rior to 1 which is theoretically impossible. Therefore we should use a modified criterion, like the absolute
value of 1 − p(o|o), to evaluate the segmentation performances.

To compute p(b|b) we start with the complementary probability of ps(o), 1 − ps(b), and replace ps(b) by
its value (see relation 4):

ps(o) = 1 − p(b)p(b|b) − p(o)p(b|o), (15)

= 1 −

(
1 −

](o)

](D)

)
p(b|b) −

](o)

](D)
p(b|o). (16)

Remember that µcM
= ps(o) and considering that the large objects hypothesis also implies that p(b|o) ¿

p(b|b), we get after some simplifications,

p(b|b) =
](D) − ](os)

](D) − ](o)
. (17)

To determine the missing diagonal transition probabilities we use the coherence relationship between prob-
abilities originated from the same original event: p(b|o) + p(o|o) = 1. Therefore

p(b|o) = 1 − p(o|o) =
](o) − ](os)

](o)
. (18)

Likewise,
p(o|b) = 1 − p(b|b) =

](os) − ](o)

](D) − ](o)
. (19)

Second case: small objects. Expression (14) is inadequate when the objects occupy a negligible part of
the image. More precisely, if ](o) ¿ ](D), then

µcM
'

](o)

](D)
p(o|o) + p(o|b). (20)
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We now consider that the segmentation is symmetric, i.e. that p(b|o) = p(o|b); a non-symmetric segmenta-
tion would otherwise be biased towards the foreground or the background and would lead to unacceptable
results in the case of small objects. As p(o|o) = 1 − p(b|o),

µcM
' 1 +

(
](o)

](D)
− 1

)
p(o|o) (21)

so that, after further simplifications,

p(o|o) '
1 − µcM(
1 − ](o)

](D)

) '
(
1 − µcM

)(
1 +

](o)

](D)

)
= 1 +

](o) − ](os)

](D)
+

](o)](os)

](D)2
. (22)

](os) and ](o) are small compared to ](D), so that the quadratic term is negligible and therefore

p(o|o) ' 1 +
](o) − ](os)

](D)
. (23)

This probability gets very close to 1 as ](os) tends to 0. We then obtain p(b|o) on the spot:

p(b|o) = 1 − p(o|o) =
](os) − ](o)

](D)
, (24)

which is also the value of p(o|b). Again, by symmetry, p(b|b) = p(o|o). The probability of error is then

pe =
](os) − ](o)

](D)
. (25)

Discussion. In [1] ZHANG concludes that evaluation methods based on discrepancy measures are more
powerful than evaluation methods using other measures. Moreover he compared several discrepancy mea-
sures to rank their ability to discriminate the overall quality. While there are many discrepancy measures,
it appears that pe is one of the best quality measure. Subsequently we can rely on this conclusion and do
not have to validate pe as a useful measure.

In the meanwhile we have computed additional probabilities that can have their relevance for certain seg-
mentation purposes. A possible measure could be any weighted summation of p(o|o), p(b|b), p(o|b), and
p(b|o). But one has to be careful with the interpretation of such a criteria because its statistical suitability
is questionable. A sounder approach consists in comparing the probabilities separately, but then one has to
cope with multiple criteria.

All four transition probabilities offer different insights on the quality of the segmentation but we can notice
that the transition probabilities, in particular p(o|b), seem less sensitive to the object size. They are also
analytically very close to pe. Therefore, if one is looking for a measure independent of the size of the
object, we recommend p(o|b). On the other hand p(o|o) and p(b|b) can also be useful if one wants a
measure that changes its discriminating power with the foreground size.

4 Conclusions

In this paper we have derived several statistical measures to assess the quality of a segmentation algorithm
with respect to a ground-truth reference. The measures are expressed in terms of transition probabilities;
their analytical expression are summarized in Table 1.

From these values we can conclude that:

– appropriate estimates of transition probabilities depend on the data content.
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Large objects Small objects
Assumptions: p(b|o) ¿ p(b|b), p(o|b) ¿ p(o|o), and ](o) À ](o) ¿ ](D), and p(b|o) = p(b|o)

p(o|o)
](os)
](o)

1 + ](o)−](os)
](D)

p(o|b)
](os)−](o)
](D)−](o)

](os)−](o)
](D)

p(b|o)
](o)−](os)

](o)
](os)−](o)

](D)

p(b|b)
](D)−](os)
](D)−](o)

1 + ](o)−](os)
](D)

pe p(o|b)p(b) + p(b|o)p(o)
](os)−](o)

](D)

Table1. Statistical measures for assessing the quality of a segmentation technique.

– the statistical relevance of these estimates varies with the size of the object in the foreground. Analyt-
ical expressions show that ](o) and ](os) appears in all the transition probabilities. Since ](os) is an
estimate, it would be interesting to investigate the impact of the variability of ](os) on the probabilities.

– we recommend p(o|b) as a assessment criterion insensitive to the size of the object.

Further works are needed to examine the influence of several parameters of the model. Still we have estab-
lished the unsuitability to trust a single criterion all over the foreground object size range.
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