
University of Liege

PhD Thesis
Computer science

Trimming the complexity of
Ranking by Pairwise Comparison

Samuel Hiard

2012

2

Abstract

In computer science research, and more specifically in bioinformatics, the size of
databases never stops to increase. This can be an issue when trying to answer
questions that imply algorithms in nonlinear polynomial time with regards to
the number of objects in the database, the number of attributes or the number
of associated labels per objects.

This is the case of the Ranking by Pairwise Comparison (RPC) algorithm.
This algorithm builds a model which is able to predict the label preference for a

given object, but the computation needs to be performed in an order of N(N−1)
2

in terms of the number N of labels. Indeed, a pairwise comparator model is
needed for each possible pair of labels.

Our hypothesis is that a significant part of the set of comparators often con-
tains redundancy and/or noise, so that trimming the set could be beneficiary.
We implemented several methods, starting from the simplest one, which merely

chooses a set of T comparators (T < N(N−1)
2) at random, to a more complex

approach based on partially randomized greedy search.

This thesis will provide a detailed overview of the context we are working
in, provide the reader with required background, describe existing preference
learning algorithms including RPC, investigate on possible trimming methods
and their accuracy, then will conclude on the relevance and robustness of the
trimming approximation.

After implementing and executing the procedure, we could see that using
between N

2 and 2N comparators was sufficient to keep up with the original RPC
algorithm, as long as a smart trimming method is used, and sometimes even

3

4

outperforms it on noisy datasets. Also, comparing the use of base models in
regression mode vs. classification mode showed that models built in regression
mode may be more robust when using the original RPC.

We thus empirically show that, in the particular case of RPC, reducing the
complexity of the method gives similar or better results, which means that prob-
lems that could not be addressed by this algorithm, or at least not in an accept-
able period of time, now can be. We also found that the regression mode yields
RPC to be often more robust regarding its base learner parameters, meaning
that the quest of optimality, which can also be time-consuming, is less difficult.

Yet research on this topic is not over, and we could think of different means to
further improve the RPC algorithm or investigate other innovative approaches,
which will be discussed in the future work section. Also, the trimming method
is not limited to RPC and could be applied to other algorithms which aggregate
information provided by a set of models, e.g. the whole multitude of ensemble
models used in machine learning.

Frequent notations

In this thesis, we will refer to mathematical objects or concepts using symbols.
We hereby provide the correspondence between our notations and what they
represent.

The number of items in a set. For instance, #Q is the number of
objects in set Q

a An object attribute
A The set of attributes (features) used to build a model
A An algorithm
A A computer software
B A human being
C A human being different than B
c A class
C A set of conditions or constraints
d The depth of a node in a tree structure if d transitions are required

to reach this node from the root node
D A domain, i.e. a field of study that defines a set of common re-

quirements, terminology, and functionality for any software pro-
gram constructed to solve a problem in that field

f() A mathematical function
G A set of goal states
h A solution, a hypothesis
H The set of all possible solutions, the hypothesis space
H The heuristic knowledge

5

6

i, j, k, l Used to represent index values
K The number of randomly selected pairs (attribute,threshold) in

the node split procedure of the Extra-Trees algorithm
LS The learning set (i.e. the set of objects used to construct a model)
M The number of trees in a tree ensemble
M A tree structure
n The size of the learning set (thus n = #LS)
nmin The number of required objects in a given node in order to perform

a node split
N The total number of class labels in a given preference learning

dataset
o An object or an observation
O A set of objects
P (...) A probability distribution
P A prediction procedure
π An ordering (also quoted “ranking”) or a permutation
π A mean ordering
π̂ A predicted complete ordering
Π(Y) The set of all possible orderings on Y

Π(Y) The set of all possible orderings on all subsets of Y
qkl A comparison, comparing label yk to label yl (also quoted as �kl)
fkl(x) A comparator built on a qkl comparison
Q A set of comparisons
QFull The set of all N(N − 1)/2 possible comparisons
r A reward
S A score
S A state space
si The ith state
s0 The initial state
T The number of comparisons (or their corresponding comparators)

in a trimmed subset of comparisons (comparators)
T A state transition graph
TS The test set (i.e. the set of objects used to estimate the model

accuracy)

7

u An action
U A set of possible actions
v A real-valued variable which can be used in particular to represent

a vote
x The attribute vector of an object
X A set of objects
X The set of all possible attribute vectors (the input space)
y An output (a value, a class label, a ranking,...)
Y The set of all possible outputs (the output space)

Contents

1 Introduction 15
1.1 Context and History . 15
1.2 Definition of AI . 17
1.3 Problem solving . 18
1.4 Knowledge representation . 19
1.5 Machine Learning . 20
1.6 Objective . 21
1.7 Thesis outline . 22

2 A gentle introduction to Machine Learning 25
2.1 Machine Learning . 26
2.2 Types of ML protocols . 27

2.2.1 Supervised learning . 27
2.2.2 Unsupervised learning . 28
2.2.3 Semi-supervised learning 31
2.2.4 Reinforcement learning 31
2.2.5 Interoperability of ML techniques 33

2.3 Supervised learning algorithms 36
2.3.1 Definition of “model” . 37
2.3.2 Problem settings . 37
2.3.3 Definition of “good model” 39
2.3.4 Predictive accuracy . 39
2.3.5 Examples of SL algorithms 45

3 Preference Learning 55
3.1 Preference representations . 57

3.1.1 Utility function . 57

9

10 CONTENTS

3.1.2 Pairwise information . 58
3.1.3 Orderings . 58
3.1.4 Interchangeability . 58

3.2 Learning to rank . 60
3.2.1 Label ranking . 60
3.2.2 Object ranking . 68
3.2.3 Instance ranking . 69

3.3 Combining (partial) orderings . 71
3.3.1 Difficulty of combining orderings 72
3.3.2 Minimizing pairwise disagreements 72
3.3.3 FAS-PIVOT . 73
3.3.4 PTAS . 74
3.3.5 Mallows model . 75

3.4 Similar domains . 80
3.4.1 Multi-label classification (MLC) 80
3.4.2 Multi-label ranking (MLR) 86

3.5 Existing reduction techniques . 86
3.5.1 QWeighted algorithm . 87
3.5.2 QWeighted for multi-label classification 87

3.6 Summary and outlook . 88

4 Methods and algorithms 91
4.1 Formal description of the problem 93

4.1.1 Complexity reduction . 94
4.1.2 Sparsity in partially ranked datasets 95

4.2 Scoring a ranking scheme on a sample 96
4.3 Dealing with sparsely ranked datasets 98

4.3.1 Modeling empty comparisons by dummy models 98
4.3.2 Dropping empty comparisons 98

4.4 Comparison selection algorithms 99
4.4.1 Evaluating a set of comparisons during optimization . . . 99
4.4.2 Pure Random selection (PR) 100
4.4.3 Estimation of Distribution Algorithm (EDA) 103
4.4.4 “Exhaustive” Greedy Search (EGS) 106
4.4.5 Randomized Greedy Algorithm (RGS) 109

4.5 Models for learning comparators 111
4.6 Hard comparators vs soft comparators 114
4.7 Summary . 115

CONTENTS 11

5 Results 117
5.1 Datasets used for experimental validation 119

5.1.1 OMIB database (synthetic, complete, N = 10) 120
5.1.2 Sushi database (real life, partial, N = 100) 121
5.1.3 MovieLens database (real life, partial, N = 1682) 122

5.2 Effect of the model mode in a RPC scheme 123
5.2.1 Using optimized tree parameters 124
5.2.2 Using sub-optimal tree parameters 125

5.3 Evaluation of the PR selection method 133
5.3.1 Effect of imposing a full class coverage 134

5.4 Evaluation of EDA, EGS and RGS 136
5.4.1 Relevance of optimizing with respect to the LS outputs . 137
5.4.2 Ranking score on OMIB 139
5.4.3 Ranking score on Sushi 140
5.4.4 Ranking score on MovieLens 142

5.5 Effect of (meta-)parameters in a trimmed RPC scheme 145
5.5.1 Effect of the model mode 145
5.5.2 Effect of sparsity control 148
5.5.3 Influence of the tree parameters (on RGS) 154
5.5.4 Influence of the default order used in tie breaking 158
5.5.5 Removing the object ID from the model construction . . 161
5.5.6 Using simulated perfect models 163
5.5.7 Setting the j1 and j3 RGS parameters to huge values . . . 167

5.6 Complexity of our set selection algorithms 167
5.6.1 Time Complexity (computational speed) 169
5.6.2 Space Complexity (memory usage) 170

5.7 Concluding remarks . 171

6 Applications 175
6.1 Decision support systems . 175
6.2 Recommender systems . 176
6.3 Personalized devices . 178
6.4 Ranking search results . 179
6.5 Text categorization . 180

7 Future work 181
7.1 Limits of this work . 181
7.2 Possible improvements . 182

7.2.1 Using prior knowledge . 182

12 CONTENTS

7.2.2 Other trimming algorithms 183
7.2.3 Method parameters . 185
7.2.4 Controlling partial ranking and noise 186
7.2.5 Extremely Randomized Ranking 186
7.2.6 Optimizing with a given budget 187
7.2.7 Using the mean ordering to select Q 187
7.2.8 Weighted distribution based on comparator LS 188

8 Conclusion 189

9 Published work 191
9.1 Bioinformatics publications . 191
9.2 Preference learning publications 193

10 Acknowledgments 195

A Efficient implementations 197
A.1 Weighted distribution . 198

A.1.1 Simple array . 199
A.1.2 Linked List . 199
A.1.3 Binary tree . 200

A.2 Spearman’s ρ correlation coefficient 201
A.2.1 Naive method . 201
A.2.2 Optimized method . 203
A.2.3 Computational gain . 204
A.2.4 Efficient computation of ρ in an EGS/RGS context 205

A.3 Pre-computing . 206
A.3.1 Tree building . 207
A.3.2 Rejected comparisons . 207

B Result figures 209
B.1 Accuracy . 210

B.1.1 Reverse alphanumerical order 210
B.1.2 Reverse alphanum / Mean order 219
B.1.3 Mean order . 224

B.2 Correlation between LS and TS ranking scores 226
B.3 Complexity . 227
B.4 Robustness of RGS . 229

B.4.1 Omib . 229

CONTENTS 13

B.4.2 Sushi 0, Dropping empty comparisons 231
B.4.3 Sushi 0, Using a dummy model 232
B.4.4 Sushi 3, Dropping empty comparisons 233
B.4.5 Sushi 3, Using a dummy model 235
B.4.6 MovieLens, Dropping empty comparisons 236
B.4.7 MovieLens, Using a dummy model 237

C Alternative approach 239
C.1 Introduction . 239
C.2 LRANN loss function . 240
C.3 Experimental setup . 240
C.4 Results . 241
C.5 Conclusion . 242

Bibliography 243

14 CONTENTS

Chapter 1

Introduction

Contents
1.1 Context and History 15

1.2 Definition of AI . 17

1.3 Problem solving . 18

1.4 Knowledge representation 19

1.5 Machine Learning 20

1.6 Objective . 21

1.7 Thesis outline . 22

This chapter provides an overview, in a quite broad manner, of artificial
intelligence. The task of summarizing AI is very challenging due to the vast
diversity of domains which emerged from it, so we will limit this introduction
to (i) a discussion about AI over the ages, (ii) the definition of an intelligent
system, (iii) an explanation on how an AI can find the solution to a problem,
(iv) how AI stores knowledge and (v) how to provide AI with learning abilities.
This chapter ends with the thesis outline.

1.1 Context and History

Since many decades, mankind tried to manufacture robots and computers that
could think and reason or, at least, pretend that they do. But where are we now?

Nello Cristianini, in his plenary talk named “Are we there yet?” [Cri09],
given during ECML 2009 at Bled, Slovenia, gives us a hint. No, we are not

15

16 CHAPTER 1. INTRODUCTION

there yet, but we have done quite a long journey.

The real origins of the first machine gifted with “intelligence” remain quite
vague, as many examples of artificial beings can be found in mythologies over
the ages, but without any discovered associated physical devices. However, even
if one can be, from a scientific point of view, legitimately suspicious about the
development of AI in ancient times, the will to “forge the gods” is present in
several texts, according to Pamela McCordruck in her book “Machines Who
Think” [McC79].

Research in AI began during a conference on the campus of Dartmouth
College in the summer of 1956, where participants were asked to share ideas
about artificial intelligence in general, all fields included. From this conference
emerged several applications which were considered astonishing at that time,
such as theorem proving or English speaking. AI founders were very optimistic
and stated, in the middle of the 1960’s that within twenty years, AI would be
so advanced that a computer could replace a human in most of the tasks.

This prediction was a bit too optimistic, as they lacked the ability to cor-
rectly estimate the difficulty of some of the problems they were addressing. In
1974, due to the lack of productive projects, US and British government cut off
all undirected exploratory research in AI. This period of time, where funding
on this topic was hard to acquire, was called the “AI winter”.

Fortunately, research on AI in the early 1980’s was revived thanks to expert
systems, which could simulate knowledge and skill of one or several experts.
In 1985, the market of AI reached billions of dollars, but in 1987, a second AI
winter occurred and lead to the collapse of the Lisp machine market.

Finally, in the 1990’s, AI knew a second blow and was used in several fields
like logistics, data mining and medical diagnosis.

At present time, we can make computers learn, decide, and even reason on
some subjects. Yet the question “Can a machine act intelligently?” is still an
open problem, and the simulation of intelligence has been separated into sev-
eral fields, depending on traits or skills that the developer wants his machine to
acquire.

We will use, as main references, the books “Machine Learning” [Mit97] by

1.2. DEFINITION OF AI 17

Tom Mitchell and the “Encyclopedia of Artificial Intelligence” [SE87] by Shapiro
and Eckroth. Although we will try to cover as many aspects of artificial intelli-
gence and machine learning as possible, these two books provide a much more
complete overview of the knowledge in these domains.

1.2 Definition of AI

Defining formally an intelligent system is not an easy task for two reasons. The
first one is that the notion of intelligence is relative. From a fly point of view, a
chicken is very smart, but it is no longer the case from a human point of view.
Hence a human being would consider a system to be intelligent if its response is
equivalent or better than a classical human response. The second one is that we
expect more and more cognitive behavior from an intelligent system. In 1956,
optical character recognition (OCR) was considered as AI but, at the present
time, most scanners’ drivers provide an OCR service and no one considers this
kind of software as AI anymore.

The first attempt to decide whether a system is intelligent or not was the
Turing test. In this experiment, the system A interacts with a human B through
written messages. This human B simultaneously converses with another human
C in the same manner. The system passes the test if the human B is unable
to differentiate the AI system A from the human being C. This test has been
criticized for mainly two reasons: the subjectivity of the judge (human B) and
the restriction of the machine to behave like a human, but not smarter (other-
wise, the judge would notice that the machine is “too intelligent” and is hence
not a human).

In the Encyclopedia of Artificial Intelligence [SE87], a system is considered
to be intelligent if it possesses at least one of the following two features:

1. It produces an “intelligent” response to a given task. The internal func-
tioning is not considered in this statement, as long as the output corre-
sponds to an intelligent response to a given input.

2. It simulates the behaviour of a human brain. In this dual case, the re-
sponse itself does not need to be optimal, as human behavior is sometimes
suboptimal. The most important criterion is that the process of the system
is similar to the process of the human brain. Estimation of the perfor-
mance of such systems are performed by comparing in very small intervals

18 CHAPTER 1. INTRODUCTION

(say one second) the output of the computer and the human behavior.

To these two features is often added a third one: adaptivity. The system
should be able to learn from its experiences and adapt itself to a changing envi-
ronment or goal, by updating its decisions accordingly. This could be achieved
by encoding all possible situations that the system could possibly meet or by
using a more flexible approach where the system uses a feedback loop (it receives
information on the accuracy of its previous decisions) to adapt its behavior.

Finally, Marvin Lee Minsky, one of the AI founders, defined the field as “the
building of computer programs which perform tasks which are, for the moment
performed in a more satisfactory way by humans because they require high level
mental processes such as: perception learning, memory organization and critical
reasoning”.

1.3 Problem solving

Problem solving plays an important role in AI. A solver should be able, in a
domain specification D, to find a solution h, where h belongs to the set of
possible solutions H such that h satisfies a problem condition C. C and H
should be expressed in elements of D. So, the representation of a problem is

h ∈ H, C(h) = true, D ` {C,H}. (1.1)

One possible manner of algorithmically solving a problem is to use a state-
space search. Having a starting hypothesis containing 5 elements {S, s0, T , G,H}
where S is the state space, s0 is the initial state, T is the transition graph, G is
the set of goal states and H is the heuristic knowledge, the system should find
a sequence of actions (i.e. transitions) U such that G is reachable from s0 when
sequentially applying actions in U .

In order to achieve this, one can build a tree structure M rooted at s0 and
expand it by adding j branches to every state si such that the j moves satisfy
both {si, skj} ∈ T and skj 6∈ M. The tree can be built in at least three ways
[Pea84]:

• Breadth first: Each possible move is taken into account in the branch
construction for a given state before analyzing the next one, and all states
of depth d are evaluated before considering states at depth d+ 1.

1.4. KNOWLEDGE REPRESENTATION 19

• Depth first: Each state is evaluated as soon as it is added in the tree,
and other possible moves from the parent state are considered only after
all the moves from the child states have been explored.

• Best first: The next evaluated state depends on a heuristic (an estimate
of the distance from the current state to the goal state), and the state
which appears as the closest to G is expanded.

The accuracy of the heuristic is crucial for the best first search, otherwise
states which are actually farther from the solution could be evaluated before
a closer one, leading to a loss of time or, even worse, to a failure in finding a
solution. Heuristics are typically used when the state space is too large to be
searched entirely in a reasonable amount of time (as in chess, for instance). In
this latter case, the tree search will be arbitrarily limited to a certain depth (e.g.
limited lookahead) and the heuristic is applied to all leaf states to evaluate the
head subset of U .

1.4 Knowledge representation

Efficiency of many solutions in AI depends more on the availability of a large
amount of knowledge rather than on complex algorithms. For example, in med-
ical care, the accuracy of the diagnosis of a patient and the list of available cures
depend on medical research. Moreover, human beings do not need to learn sev-
eral times how to perform a given task; one does not need to learn again how
to drive before using one’s car. So, AI systems should be able to store and use
some kind of knowledge in order to perform their tasks.

In practice, a Knowledge based systems (KBS) should at least contain three
functionalities:

1. Storing: The system is able to keep the information as well as to check
that the fact to be added is well-formed and does not conflict with previ-
ously stored facts.

2. Retrieval: The system can use his knowledge to answer direct questions
about its stored facts (e.g. “When did the first man walk on the moon?”
or “Provide the list of all past U.S.A. presidents’)

3. Inference: From facts and rules in its knowledge base, the system is able
to infer new knowledge using, for instance, syllogisms (e.g. if x is a car
and if all cars have wheels then x has wheels)

20 CHAPTER 1. INTRODUCTION

Several structures have been proposed to allow a computer to possess these
functionalities, but they are all included in three classes.

1. Slot-and-filler structures: Objects or classes of objects are represented
by a slot (a box, a frame, a node, ...) and relations by arcs between them
(is a, has, produces, ...). The two main structures using this representation
are semantic networks[Sow91] and frames[Min74].

2. Production rules[BFKM85]: The knowledge is stored by the means of
IF THEN statements. It can be used to produce new facts (e.g. IF person
is a smoker THEN person has a higher risk of lung cancer. John is a
smoker. ⇒ John has a higher risk of lung cancer.) or to perform actions
(e.g. IF temperature is under 10◦C AND people are in the building THEN
turn on the heat.).

3. Logical formulas[Men87]: Facts are represented by formulas which con-
sists of atomic terms (e.g. p, q, ...), functions (e.g. Solid(p)), connectors
(¬, ∧, ∨, ...) and quantifiers (∀, ∃). For instance, a logical formula could
be :
∀x (Smoker(x)⇒ HigherLungCancerRisk(x)).

1.5 Machine Learning

Although the field of machine learning will be more thoroughly explored in the
next chapter, we will hereby provide a general overview of this domain.

The goal of machine learning is to provide a machine or software with the
ability to learn or to adapt itself. Historically, the field arose in the mid-1950’s
and became really active in the 1980’s when expert systems, despite their suc-
cesses, showed three major limitations:

1. They require man-years to construct them and to maintain them.

2. They are problem-specific and can not easily be transposed to other func-
tions neither be adapted if the working environment changes.

3. They are unable to model human learning mechanisms.

Developing machine learning algorithms can be hard due to the lack of inter-
pretability from human behaviors compared to other algorithms. For instance, if

1.6. OBJECTIVE 21

one considers sorting algorithms, one can easily describe a step by step method-
ology used by human beings and conceive the bubble sort algorithm [Knu98],
which would be non optimal in terms of computational time, but will be intu-
itive. On the other hand, would one be asked to describe one’s methodology for
learning, this would be very difficult, as the mental process used in learning is
somehow performed at the subconscious level.

The most widely studied problem in machine learning is to learn a concept
from examples. This is also well correlated to what one would expect human
beings to use for learning. Indeed, in this learning framework, the computer
is provided with (positive and/or negative, labeled or unlabeled) examples, or
samples. The goal is to find a generalization of these examples in the form of
a concept, such that the concept is consistent with the given examples1. The
generated concept can then be used to perform a prediction on unseen data.

The “concept” to learn in machine learning can take various forms. For in-
stance, it could be a function, a decision strategy, a probability distribution, etc.

Without the philosophical aspect that this implies, we can consider that hu-
man beings behave in a similar fashion in order to learn the difference between
“good” and “bad”. They are confronted to situations or events, which corre-
spond to the “examples” in machine learning. From these examples, they can
generate a concept of “good vs. bad”. This concept can evolve with the appear-
ance of new examples. In the same manner that two human beings can have a
different representation of the “good vs. bad” concept, two concepts produced
by the same machine learning algorithm can differ according to a difference in
the learning examples.

1.6 Objective

This thesis will focus on a particular problem in machine learning, namely pref-
erence learning2. In this context, the examples are characterized by a (possibly
partial) ordering of classes (a label ranking instance) and are also described
by an attribute vector. The objective of preference learning algorithms is to

1Without anticipating, we would like to note that perfectly fitting the learning sample is
generally not a good idea (or is sometimes impossible). Nevertheless, we expect the produced
concept to have a reasonable correlation with the learning sample.

2and, more specifically, label ranking, which will be further defined.

22 CHAPTER 1. INTRODUCTION

find a concept which correlates the attribute vector to the corresponding class-
label ordering. The predicted ordering obtained with this concept should be
as close as possible to the true labeled ordering. For instance, the problem
of designing a recommender system in a media selling website (e.g. Amazon)
can be addressed using a preference learning protocol: the output labels would
correspond to the set of items to be recommended, while the attributes would
correspond to information about the potential consumer. We will especially fo-
cus on the Ranking by Pairwise Comparison algorithm (RPC) [HFCB08], whose
learned concepts are generally reliable but are obtained at a prohibitive com-
putational price when the number of labels is large. Our contribution aims at
drastically reducing this computational complexity (for both the learning and
the prediction stages) while generating concepts which remain of competitive
accuracy with respect to the state-of-the-art.3

1.7 Thesis outline

Chapter 2 provides the reader with background knowledge in machine learning
required to fully understand the notions that we will be using further, e.g. mod-
els and supervised learning.

Chapter 3 depicts published preference learning algorithms for label rank-
ing, including the Ranking by Pairwise Comparison algorithm, which we will
try to improve. We will discuss different representations of preference relations,
different classes of learning to rank problems, as well as the main problem of
combing several rankings into a single one.

Chapter 4 will start by formally describing the problem which we are trying
to solve, then present the algorithm used to compute the correlation between
two rankings. Furthermore, it will detail methods and algorithms which we
will be using to solve our problem, whether low-level as, for instance, the model
used in pairwise comparators, or high-level, as the comparator selection method.
Some solutions to the data sparsity due to partial ranking will be presented, and
this chapter concludes by considering the mode (classification or regression) of
base models.

3This informally describes the subject of the thesis. A more formal definition of the problem
and of our contribution will be given in chapter 4.

1.7. THESIS OUTLINE 23

Chapter 5 collects the empirical validations we carried out, and provides a
thorough analysis of these. We first consider accuracy for our main concern,
where each trimming methodology is evaluated. Then we investigate the ro-
bustness of our most efficient comparator selection method.

Chapter 6 is dedicated to a discussion of the large-scale applications that
could not be directly addressed by the original RPC but that our algorithms of
reduced complexity could tackle.

Chapter 7 sets the limits of our research and discusses about future work,
and how the proposed methods could still be improved, and which fields of re-
search can emerge from it.

Chapter 8 gives a conclusion on this thesis.

Chapter 9 lists the publications that were produced during the thesis as first
author, whether related to preference learning or not.

Chapter 10 ends this thesis with acknowledgments.

Appendix A provides technical information about some implementation is-
sues and how they were addressed.

Appendix B contains all detailed result figures, which were not included in
the corresponding chapter (5) for the sake of readability.

Appendix C presents an alternative approach line that we have investigated
during our work. It is based on using a single artificial neural network to solve
preference learning problems. We provide here some preliminary test results
about this idea.

24 CHAPTER 1. INTRODUCTION

Chapter 2

A gentle introduction to
Machine Learning

Contents
2.1 Machine Learning 26

2.2 Types of ML protocols 27

2.2.1 Supervised learning 27

2.2.2 Unsupervised learning 28

2.2.3 Semi-supervised learning 31

2.2.4 Reinforcement learning 31

2.2.4.1 Active learning 33

2.2.5 Interoperability of ML techniques 33

2.2.5.1 Solving SL with a NSL framework 33

2.2.5.2 Solving RL with a SL framework 35

2.3 Supervised learning algorithms 36

2.3.1 Definition of “model” 37

2.3.2 Problem settings . 37

2.3.2.1 Attribute selection 37

2.3.2.2 Object selection 38

2.3.2.3 Different types of goals 38

2.3.3 Definition of “good model” 39

2.3.4 Predictive accuracy 39

2.3.4.1 Estimation on the LS 41

2.3.4.2 Using a test set 41

25

26CHAPTER 2. A GENTLE INTRODUCTION TO MACHINE LEARNING

2.3.4.3 M-fold cross validation 42

2.3.4.4 Avoiding over-fitting 42

2.3.5 Examples of SL algorithms 45

2.3.5.1 Multi layer perceptrons (MLPs) 45

2.3.5.2 K-nearest neighbors 46

2.3.5.3 Decision Trees 47

2.3.5.4 Support vector machines 50

This chapter provides the user with an intuitive introduction to the sub-
domain of artificial intelligence we are working in, namely Machine Learning.
The first section will formally define this domain. Differences between machine
learning protocols will be explained in Section 2.2. Section 2.3 will define the
term “model” in the context of supervised learning, its purpose and how to
estimate its predictive accuracy, and present some state-of-the-art supervised
learning algorithms.

2.1 Machine Learning

Machine Learning [Mit97] (also quoted to as “ML”) algorithms are intended to
give computer systems the ability to learn. But before formally defining ML,
we need to define what is “learning”.

All human beings learn every day, without even being aware of it. When we
think about the term “learning”, we think about school, and the vast amount of
information that we had to somehow put into our memory. This is one aspect
of learning, that is: store information. But this type of learning does not allow
you to infer information from your knowledge. For instance, if I tell you that
f(2) = 8, it does not help you to infer the value of f(3). However, if you can
learn a more general rule, you can then apply this rule to produce new knowl-
edge. In our example, if I tell you also that f(0) = 0, that f(1) = 1, and that
f(4) = 64, you might infer that for any v, f(v) = v3, and you could then use
this general rule to compute f(v) for any given value of the variable v, and in
particular find that f(3) = 27.

The machine learning field focuses on the second aspect of learning (i.e.
learn a general rule). Indeed, any developer can easily write a software which
only stores information, but inferring new knowledge from these informations is

2.2. TYPES OF ML PROTOCOLS 27

more challenging.

The process used to provide a computer with the ability to learn is inspired
from the process in which humans do learn. They acquire new information from
experiments and use this information to update their policy of actions so that
their general behaviour is better according to a performance measure. This is
consistent with the definition which Tom M. Mitchell provided in [Mit97]: “A
computer program is said to learn from experience E with respect to some class
of tasks T and performance measure P, if its performance at tasks in T, as
measured by P, improves with experience E”.

The use of ML algorithms in AI problems has two benefits. First, the ap-
plication of this method does not require any prior knowledge of the problem.
They can thus be applied to numerous problems without any further develop-
ment (apart from formatting the data into the expected input). Secondly, if the
software is to be used in a changing environment, it will be able to adapt its
policy of actions accordingly.

2.2 Types of ML protocols

Several types of ML protocols have emerged. The diversity comes from the
type of practical needs. We will further define supervised learning, unsupervised
learning, semi-supervised learning and reinforcement learning.

2.2.1 Supervised learning

In supervised learning (also quoted to as SL), input data are objects which
have a attributes and a (potentially multi-dimensional) output of size p. Every
example is labeled with the observed output value. Formally, every object is a
pair [x, y] with x ∈ X, the input space, being an attribute vector and y ∈ Y,
the output space, is the desired output. For example, if all input and output
variables are numerical, we have that

[x, y] ∈ Ra × Rp. (2.1)

These objects are drawn i.i.d. (independently and identically distributed)
from an unknown probability distribution P (x, y), which we are trying to learn,
and are grouped into a learning set (quoted to as “LS”) . Thus, if we are pro-

28CHAPTER 2. A GENTLE INTRODUCTION TO MACHINE LEARNING

vided with #LS objects, then LS ∈ (X×Y)#LS.

We are also given a loss function ` : Y ×Y → R+ which, ∀y, y′ ∈ Y, usu-
ally represents the distance between y and y′. Finally, we are provided with a
hypothesis space H which contains functions h : X→ Y.

We can evaluate a function h ∈ H by defining

Loss(h) = EP (x,y){l(y, h(x))}.

The aim is to find a function h∗ ∈ H such that

h∗ ∈ arg min
h∈H

Loss(h).

We can also differentiate two variants of supervised learning algorithms:
batch and online. Batch mode SL algorithms simultaneously use all the objects
of the database in order to choose the function h whereas, in online mode, every
new observation helps to sequentially improve this function. Note that these
modes are interchangeable as one could sequentially use each object even if the
observation set will not further change or reversely, one could gather informa-
tion from an online flow and only consider the learning step when a sufficiently
large batch of observations has been collected.

An example of a supervised learning algorithm is the decision tree induc-
tion method [BFSO84]. Figure 2.1, illustrates a decision tree for a simple toy
problem. Each internal node (including the root-node, generally depicted at the
top of the tree) contains a test whose outcome determines which branch will be
considered next in order to progress downwards in the tree. The traversal stops
when a leaf node is reached at the bottom of the tree, and the prediction value
h(x) corresponds to the label of this leaf. In section 2.3.5.3 we will explain how
decision trees are learnt from a learning sample.

2.2.2 Unsupervised learning

With unsupervised learning (or non-supervised learning; NSL), the input data
(objects) are unlabeled. Instead of a P (x, y) distribution, the data is drawn
i.i.d. from a distribution P (x). The goal is thus to extract information about
P (x) from the data.

2.2. TYPES OF ML PROTOCOLS 29

Figure 2.1: A decision tree is used in a top-down fashion to separate the input
space with elementary attribute-wide tests.

(Figure reproduced from [WGIA]).

One technique for unsupervised learning is clustering, that is: separate data
points into several clusters such that a new entry could be attributed to one of
these clusters (ex: Figure 2.2). The clusters correspond to modes of the density
P (x). Several types of algorithms can be used, namely connectivity models (e.g.
hierarchical clustering [HTF03]), centroid models (e.g. k-means [Mac67]), dis-
tribution models (e.g. expectation-maximization algorithm [DLR77]), density
models (e.g. dbscan [EKJX96]) or subspace models (e.g. biclustering [CC00]),
this list not being exhaustive.

Figure 2.2: Clustering partitions the unlabeled data

30CHAPTER 2. A GENTLE INTRODUCTION TO MACHINE LEARNING

Other unsupervised learning techniques include, but are not limited to:

• Density estimation algorithms [Ros56]. These algorithms construct
an estimate of the probability density function P (x). The aim is to be
able to compute a good estimate of the value of P (x) for any (and possibly
unseen) x.

• Graphical models and relational learning. In order to infer prob-
abilistic and/or causal relations between features, one can use graphical
models, such as Bayesian networks [Pea85] or Markov chains [Mar71].
Figure 2.3 shows an example of the former where the grass can be wet
(G) if it is raining (R) or if the sprinkler is turned on (S). The state of
the sprinkler also depends on the rain, that is, the probability to be on
during rain is very low. The joint probability function is P (G,S,R) =
P (G|S,R)P (S|R)P (R). With this model, it is possible to answer ques-
tions such as “what is the probability that it is raining, given that the
grass is wet”, by computing P (R = T |G = T).

• Association rules. From an unlabeled database, one can extract asso-
ciation rules [AIS93]. For instance, in a supermarket database, the rule
{Sugar ⇒ Eggs} may apply if most customers buy eggs every time that
they buy Sugar.

Figure 2.3: Example of a bayesian network
Source : Wikipedia

As there is no associated label and no supervision in unsupervised learning,
evaluating the reliability of the method can be very challenging, yet possible. In

2.2. TYPES OF ML PROTOCOLS 31

clustering, for instance, one would expect a high similarity between objects in
the same cluster, and a low similarity between clusters, so it could be possible
to evaluate the clustering by computing these two similarity levels.

2.2.3 Semi-supervised learning

Semi-supervised learning [BM98] is at the junction between supervised and un-
supervised learning. Only a fraction of the objects available at the learning stage
are labeled. A simplistic manner of dealing with such databases would be to re-
move unlabeled objects and apply supervised learning to the remaining objects.
However, this would generally lead to a loss of accuracy, as unlabeled data still
provide clustering information, and thus could help in labeling missing data. An
illustration of this remark can be found on figure 2.4 which represents a semi-
supervised learning problem and figure 2.5 which shows the difference between
the application of supervised and semi-supervised learning to this problem.

Figure 2.4: Two data points are labeled, the rest is unlabeled. This is a
semi-supervised learning problem.

This illustration shows that semi-supervised learning can improve the mod-
eled function.

2.2.4 Reinforcement learning

Reinforcement learning (RL) [Sut88] differs from (semi-)supervised learning in
the sense that the correct label is not explicitly given to the learning system.
Instead, it has to interact with its environment to collect information.

32CHAPTER 2. A GENTLE INTRODUCTION TO MACHINE LEARNING

Figure 2.5: Left graph: the model (orange) is built with a supervised learning
method. Right graph : the model is built with a semi-supervised learning

method.

The system starts in the state s0 belonging to the state space S. If it is
aware of its current environmental state, we speak about “full observability”,
otherwise the system only receives an observation from its environment and we
then speak about “partial observability”. In both cases, it works in discrete
iterations. At any time i, it first receives an observation oi which contains in-
formation about the current state si and it then it has to choose an action u
from the set of possible actions U. This action is then transmitted to the envi-
ronment which changes the state of the system into si+1 and also leads to the
observation of a numerical reward ri ∈ R.

The aim of reinforcement learning is to develop algorithms which maximize
the cumulative reward. For instance, putting money into a savings account will
immediately reduce the total amount of money that you have, but possibly this
investment will in the long term be more rewarded than not sparing money. A
common RL technique to solve this optimization problem is Q-learning. This
technique consists in learning a function Q(s, u) → R which represents the ex-
pected utility of action u when the system is in the state s.

Another interesting aspect of this type of algorithms is the exploration-
exploitation dilemma. To illustrate this concept, imagine that you are in a
room with five dispensers in front of you and that you possess ten coins of one
euro. You put one euro into a randomly chosen dispenser and receive two coins
of one euro from that dispenser. You repeat this process three times and, each

2.2. TYPES OF ML PROTOCOLS 33

time, you collect two coins of one euro. At this point, you never tried the other
dispensers, so you have to choose between using the same dispenser again, which
seems to have a good reward or try another dispenser which may give you a
better reward (or a worse one). So, the exploration-exploitation dilemma is the
need to choose between exploiting the rewards using the optimal actions from
the set of actions that were already performed or to explore the action space
by choosing another action (for instance at random). In practice, this choice
is performed by a random draw of a uniform variable v ∈ [0, 1] and applying
the exploitation if v > ε and exploring otherwise. The value of ε can be chosen
arbitrarily or be adaptive using a heuristic (see [Tok10]).

2.2.4.1 Active learning

Although not directly related to reinforcement learning, active learning [FSST97]
shares the same conceptual issue, namely that the label on a particular object
must be queried explicitly. The aim of such algorithms is to request a particular
observation in order to refine the model. If we are in the context of SL and try-
ing to find a separation between two or more classes, the more relevant points
are often located in the boundary between the classes.
Active learning can be used in two situations:

• The determination of a label is expensive (e.g. it requires human inter-
vention or some costly experimentation protocol). In this case, particular
attention should be given to the observations required to refine the model,
and avoid performing useless experiments.

• The database contains a large number of labeled observations. Thus,
asking for the value of particular points may help in “compacting” the
database and more rapidly extracting the relevant information.

2.2.5 Interoperability of ML techniques

Due to the structure used to describe ML techniques, the reader might think
that SL, NSL and RL are completely different and mutually exclusive. However,
we will show, using two examples, that a problem in a ML domain can be solved
using algorithms from another ML domain.

2.2.5.1 Solving SL with a NSL framework

Assume that we are provided with a SL database where each object corresponds
to a person and possesses a single attribute named glu representing the level

34CHAPTER 2. A GENTLE INTRODUCTION TO MACHINE LEARNING

of plasma glucose concentration for this person. Each object is labeled with a
binary variable diabetes representing the fact that this patient is suffering from
diabetes or not. Typically, we want to model the correlation between the glu-
cose level and the disease, which is effectively a SL problem.

We can compute the conditional density of glu given diabetes, which is shown
on Figure 2.6. The black curve represents the density of P (glu), which is the
only information that we could retrieve if we were working in a NSL context.
However, as objects are labeled, we can also compute the density estimation of
P (glu|diabetes = 1) and P (glu|diabetes = 0).

Figure 2.6: Estimated density of P (glu|diabetes = 1) (red),
P (glu|diabetes = 0) (blue), and P (glu) (black).

Source : Wikipedia

The Bayes’ law [Bay63] states that:

P (A|B) =
P (B|A)P (A)

P (B)
. (2.2)

We can now compute the probability that the patient suffers from diabetes
according to its plasma glucose concentration by:

2.2. TYPES OF ML PROTOCOLS 35

P (diabetes = 1|glu)

=
P (glu|diabetes = 1)P (diabetes = 1)

P (glu)
,

=
P (glu|diabetes = 1)P (diabetes = 1)

P (glu|diabetes = 1)P (diabetes = 1) + P (glu|diabetes = 0)P (diabetes = 0)
.

The corresponding probability curve is shown on Figure 2.7 and can be used
for prediction, e.g. predict diabetes = 1 if P (diabetes = 1|glu) > 50%.

Figure 2.7: Estimated probability of P (diabetes = 1|glu).
Source : Wikipedia

2.2.5.2 Solving RL with a SL framework

Fitted Q iteration [EGWL05] (or FQI) is a perfect example of the application
of SL framework to a RL problem.

In order to compute the optimal Q function, it proceeds by iterations. As
a reminder, the Q function is provided with two arguments: a state s and an
action u, and outputs the corresponding cumulative reward r. FQI induces a
Q̂ function, which is guaranteed to converge under certain conditions, by itera-

36CHAPTER 2. A GENTLE INTRODUCTION TO MACHINE LEARNING

tively solving consecutive SL problems (see algorithm 1).

Conceptually, the procedure is to move the horizon at each step, starting by
taking the action which maximizes the immediate reward, then considering the
impact from farther states. If the problem has a fixed horizon, the advantage
is that the corresponding Q̂i function will be specifically designed to maximize
the reward over i+ 1 steps, which would not necessarily be true with a generic
Q function which considers infinite horizons.

Algorithm 1 Fitted Q Iteration [EGWL05]

Input: a set of four-tuples F = {(slt, ult, rlt, slt+1), l = 1, . . . ,#F} and a su-
pervised learning (regression) algorithm
Output: a matrix S×U representing a Q(s, u) function which provides, for
a given state s, the action u which maximizes the cumulated reward

i← 0
Q̂i ← 0 everywhere on S×U
repeat
i← i+ 1
Build the learning set LS = {(xl, yl), l = 1, . . . ,#F} based on Q̂i−1 and on
F

xl = (slt, u
l
t)

yl = rlt + γ max u∈U Q̂i−1(slt+1, u)

Use the regression algorithm to induce from LS the function Q̂i(s, u)
until i is sufficiently large

2.3 Supervised learning algorithms

As previously explained, Supervised Learning needs to build and store a repre-
sentation of a function. One can use models, which are data structures (graphs,
trees, kernels, ...) in order to represent a specific function. This section will be
separated in five parts. Firstly, we will define the term “model”. Secondly, we
will discuss about the parameterization of models. Then we will define what
we will call a “good model”. Next, we will see how to estimate the efficiency of
models and, finally, we will provide some examples of SL algorithms.

2.3. SUPERVISED LEARNING ALGORITHMS 37

2.3.1 Definition of “model”

From the introductory sentence at the beginning of this section, we have now
an intuition of what a model is. But we will now formally define it.

A model is typically a data structure which is built according to an algo-
rithm A based on a set of observations (also called “learning set”) LS and which
produces, from an input vector x, an output y by using a prediction procedure P.

Let us illustrate this definition with an example. A decision tree is a very well
known model. As its name indicates, it is a tree and often a binary tree. The
algorithm A used to build this structure could be the c4.5 algorithm [Qui92]
and will be described in Algorithm 2, page 48. The prediction procedure P
consists in taking the input vector x and, starting from the root node of the
tree, to iteratively verify the conditions at the test node (using the input vector
x) and to continue to the child node whose condition matches the values in x.
The procedure P stops when a leaf node has been reached, and the value of the
output y corresponds to the label of the leaf. An example of such tree was given
in Figure 2.1.

2.3.2 Problem settings

Models can be parameterized. Some of them have more specific parameters, but
common parameters can be applicable to all models.

2.3.2.1 Attribute selection

The model is not forced to be built according to each element of the attribute
vector. From the previous decision tree example, we can see that if the input
vector x is two slots wide (thus, the observation oi has two associated attributes)
and the tree only has one test node, then one of the attributes will not be used.

The aim of using only a part of the attributes is to improve the models by
dropping attributes that do not seem to be correlated to the goal attribute.
For instance, the resting metabolic rate (the amount of daily energy expended
by humans at rest) depends notably on age and gender, but is not correlated
to the identification number of the person. This information should thus not
be taken into consideration when building a predictive model of the resting
metabolic rate. Of course, in this example, the knowledge that we have about

38CHAPTER 2. A GENTLE INTRODUCTION TO MACHINE LEARNING

the problem helps us to filter irrelevant attributes, but this is not always the
case. To determine which attributes are to be dropped, one can compute the
variable importance (which can be done in several ways [SBZH07]) and build
the model using only the j most important variables.

2.3.2.2 Object selection

In the same way that one can select some of the attributes from the attribute
vector, one can also select some of the objects from the database in order to
build the model. This can be done either in a passive mode (just take a subset
of the objects arbitrarily) or in an active mode (ask for particular objects in the
database in order to refine the model; we explained already that active learning
algorithms could be used for this purpose).

One of the reasons why one would want to select only a part of the database
for learning a model is to be able to perform the evaluation of this model on
the not used part (see Section 2.3.4).

2.3.2.3 Different types of goals

There are basically two representations of the attribute we want to predict (also
known as “goal”) plus their derived representations.

The first one is for real values, we call it “regression”. For instance, the
speed of a car depends on the brand of the car, the RPM and the gear. In this
case, models can predict values that were not explicitly given in the input data
and will be as close as possible to the true value.

The second one is classification. Every object (or observation) belongs to
one or several classes. For instance, you can divide your e-mails in two groups:
Spam and the rest. Every e-mail is then being attributed a class based on its
content or based on an expert knowledge, but cannot belong to both. You can
also imagine that you have instead of two (making it a binary classification
problem), three or more classes (we then talk about multi-class problems). For
instance: Spam, Work, Other. But the model will never be able to predict a
class that was not originally planned.

A generalization of this last representation is what we call multi-label classi-
fication. This is very similar to the regular classification, except that one object

2.3. SUPERVISED LEARNING ALGORITHMS 39

can be labeled with more than one class. Think of movies, they can often be
marked with a single class, but there are also many of them which can belong
to two styles, for instance drama and horror, or comedy and sci-fi. So you need
multi-label classification if you want to handle this.

2.3.3 Definition of “good model”

When building a model, one wants it to be as good as possible. But this notion
of “goodness” depends on what is the most important to achieve. Basically, we
can consider three criteria: accuracy, complexity, interpretability.

In general, the accuracy is the most important criterion. It is a measure,
usually given in the [0, 1] interval, providing an estimation on the distance be-
tween h(x) (the prediction) and y (the true value associated to x) over pairs
(x, y) drawn i.i.d. from P (x, y). The complexity is the effort needed to build
and use the model. We can divide this effort into two parts: time complexity
and space complexity. The space complexity is the amount of memory needed
to build and store the model. The time complexity is the time needed to build
the model and to perform a prediction. Finally, interpretability is described as
the ease for human beings to understand the function represented by the model.

Currently, no machine learning algorithm can simultaneously and universally
be champion on those three criteria, as more complex algorithms are generally
more accurate but in the same time less interpretable.

2.3.4 Predictive accuracy

Accuracy can be formally defined in terms of average loss, which actually de-
pends on the SL problem type. In classification, we can use a 0-1 loss while, in
regression, the mean squared error would be more appropriate.

Loss =
Number of well classified objects

Total number of predictions
In classification.

Loss =
∑I
i=1 (h(xi)− yi)2 In regression.

The more a model reduces the loss, the more it is accurate.

In the particular case of binary classification, we can also speak in terms
of precision and recall. Table 2.1 summarizes the statistical information which

40CHAPTER 2. A GENTLE INTRODUCTION TO MACHINE LEARNING

we can gain after a batch of predictions, where we can distinguish four kinds
of predictions: (i) the object is actually labeled as “Positive” and is predicted
likewise, (ii) the object is actually labeled as “Positive” and is predicted “Nega-
tive”, (iii) the object is actually labeled as “Negative” and is predicted likewise,
(iv) the object is actually labeled as “Negative” and is predicted “Positive”.

True label
Positive Negative

Prediction
from the

Positive True
Positive

False
Positive

→ Positive predicted value
or Precision

model Negative False
Negative

True
Negative

→ Negative predicted value

↓ Sensi-
tivity or
recall

↓ Speci-
ficity

↘ Accuracy

Table 2.1: Definition of accuracy, precision, recall, sensitivity and negative
predictive value

For instance, precision is the probability that a predicted positive object will
be effectively positive. On the dual, sensitivity is the probability that a positive
object is effectively predicted as positive.

Let us use the following notation : TP for True Positive, FP for False Posi-
tive, TN for True Negative and FN for False Negative. We can then define each
measure as

Precision = TP/(TP + FP)

Negative predicted value = TN/(FP + TN)

Sensitivity = TP/(TP + FN)

Specificity = TN/(FP + TN)

Accuracy = (TP + TN)/(TP + FP + TN + FN)

Accuracy of the model, even if not the priority in some cases, should at least
be reasonably high. Indeed, a fast or readable model would be quite useless if
the prediction is not reliable. Thus we need tools and techniques to estimate the

2.3. SUPERVISED LEARNING ALGORITHMS 41

reliability of the model and to ensure that the prediction is good enough. We can
think of three ways of estimating the predictive accuracy of a model: estimation
on the LS, using a test set and the m-fold cross validation procedure. We will
discuss these three methods in the further subsections, then will conclude this
section about a remark on the efficiency/complexity dilemma.

2.3.4.1 Estimation on the LS

A simple procedure for computing the accuracy of a model consists in using
the produced model to perform a prediction on all the labeled objects in the
database, even if these objects were used for model construction.

This is in general a very poor estimation on the model accuracy, since a
model which would simply store the training information without inferring a
general rule would be 100% accurate using this estimation procedure. However,
without inference, this dummy model would be unable to perform a prediction
on unseen data.

2.3.4.2 Using a test set

Estimating the predictive accuracy can be done by keeping apart some obser-
vations as we previously noticed the possibility. If the database contains many
objects, then removing a small part of these objects from the LS will not dras-
tically affect the model accuracy. Hence, after the model creation this part of
this database can be used through the model in order to determine how well
the model performs on unseen data (Figure 2.8).

Figure 2.8: A part of the database is kept apart to compute
an estimate of the accuracy of the model

42CHAPTER 2. A GENTLE INTRODUCTION TO MACHINE LEARNING

2.3.4.3 M-fold cross validation

The problem of a simple test is that it is highly sensitive to the split (which can
lead to optimistic or pessimistic evaluations). This effect is even worse when
only a few data are available.

A good way of solving this problem is to use an m-fold cross validation
procedure (where m is typically equal to 10). In this scenario, m models are
built independently, each model using an independent partition1 of size #LS/m
as a test set (as shown on figure 2.9) and being built using the remaining data.
The error output is then averaged over the m models, which reduces the test
variance.

Figure 2.9: Building m models with separate test
samples reduces the test variance. Here m = 4.

2.3.4.4 Avoiding over-fitting

One of the major issues in machine learning is the efficiency/complexity dilemma.
One might think that the more complex your model is, the more accurate it will
be, but that is not completely true. At some point, adding more complexity to
the model will cause what we call “over-fitting”, because the model will be too
specific to the input data but will be more erroneous on predictions because it
misses the general rule. This is even more true if the training sample is noisy.

1Each object in LS will be used in the test set of only one model.

2.3. SUPERVISED LEARNING ALGORITHMS 43

Figure 2.10 shows an example where an extremely complex model would per-
fectly fit the noisy sample (in green) while a simpler model (in black) will be
closer to the true function and will thus perform more accurate predictions than
the complex model when considering unseen inputs.

Figure 2.10: The green curve is perfectly separating the noisy sample, but the
black curve is a simpler function and is closer to the true function, hence its

predictions will be better for unseen points

As shown in figure 2.11, at some point, the red curve, representing the error
on the test set (the part of the database used to test the model, also quoted
TS), goes up, meaning that the error increases. This is because the model fits
the learning set (LS) too closely, as we can see that the blue curve representing
the error on the LS keeps going down.

This could also be expressed using the terms of “bias” and “variance”. Using
a SL algorithm, we could train several models using different training samples
drawn from the same P (x, y) distribution. The bias is the distance between
an average prediction over all models and the true output. The variance is
the average distance between each individual prediction. Reducing the variance
generally induces an additional bias. Variance reduction techniques should have
a significant impact on the variance while tempering the increase of the bias.

This concept is often illustrated using the dartboard example. Imagine that

44CHAPTER 2. A GENTLE INTRODUCTION TO MACHINE LEARNING

Figure 2.11: Fitting the learning sample too close will lead to
over-fitting and produce a less accurate model

you are given the opportunity to launch four darts on a board. The bias would be
the distance between the center of the board and the centroid of your launches.
The variance would be the average distance between your individual launches.
Figure 2.12 illustrates this concept.

Figure 2.12: Left : High bias, low variance. Right : Low bias, high variance.

Some variance reduction techniques have been proposed. For instance, in
the context of decision tree induction, it is possible to prune the tree either dur-
ing the model construction (pre-pruning; e.g. by increasing the nmin parameter
which controls the number of objects required to perform a node split) or after
the model construction (post-pruning), hence artificially limiting its complexity
so as to reduce the variance. Another example is regularization which, in linear

2.3. SUPERVISED LEARNING ALGORITHMS 45

regression models (which searches for a linear combination of features minimiz-
ing the quadratic error) adds an extra term in the minimization process in such
a way to penalize models based on the norm of the weight of their parameters
(features).

2.3.5 Examples of SL algorithms

In this section, we will present some examples of SL algorithms. They will be
used as a reference in the following chapter.

2.3.5.1 Multi layer perceptrons (MLPs)

Multi layer perceptrons (quoted to as MLPs) are SL models mainly used when
the desired approximated function is hard to guess, but when many observations
can be obtained at low cost. These networks are built in perceptron layers, each
node in a layer being connected to every node in the next and previous layer,
and the inner layers are hidden as shown in Figure 2.13. To compute the output
of a neuron, the weighted sum of the output of nodes from the previous layer is
calculated, then applied to a (non linear for hidden layers) function, such as a
sigmoid or an hyperbolic tangent.

Figure 2.13: Each neuron in a layer feeds every neuron in the next layer

The accuracy of such a model strongly depends on the weights of the vertices
and the training is usually performed in an iterative manner. Every weight is

46CHAPTER 2. A GENTLE INTRODUCTION TO MACHINE LEARNING

first set to a random value between [−1, 1] and the model is used to predict the
output of the objects in the learning sample. The predicted value is then com-
pared to the true value and this gives an error δ which will be used to update
the weights. Because neurons are arranged in layers, the error can be propa-
gated iteratively on each layer using the back-propagation algorithm [Roj96] to
compute the gradient of the error with respect to the weights and therefore up-
date the weights with gradient descent. The prediction process will be referred
to as the “forward pass” while the error propagation will be referred to as the
“backward pass”.

An iteration (or “epoch”) is composed of a pass of forward-backward prop-
agations over the whole LS, combined with a weight update reducing the cu-
mulated error over the learning sample. Particular attention should be taken
to choose a satisfactory end point as this method has a propensity to over-fit.
At each iteration, the whole learning set must be considered, but this can be
done either in an online or in a batch mode. However, D. Randall Wilson and
T. R. Martinez empirically showed in [WM03] that the use of batch mode is
counter-productive as, to quote the conclusion of their work, online mode is a
better option “due to the ability of on-line training to follow curves in the error
surface throughout each epoch, which allows it to safely use a larger learning
rate and thus converge with less iterations through the training data”.

2.3.5.2 K-nearest neighbors

The k-nearest neighbor algorithm (also quoted to as kNN) is a SL method which
takes as an hypothesis the fact that the class of an object is generally identical
to the class of its neighbor(s) (see figure 2.14). To predict a label for a given
object, the algorithm looks at the k nearest objects in the feature space. The
label with a majority of objects in this set of k objects will be used as the
prediction. If ties occur between the top labels, then one of them is randomly
chosen.

The kNN algorithm does not build any model. Instead, the k nearest objects
are scanned at each prediction, which can be very time-consuming.

2.3. SUPERVISED LEARNING ALGORITHMS 47

Figure 2.14: An object which is close or surrounded by identically labeled
objects will be labeled according to the label of its neighbors

If the data labels are mixed across the feature space, then the quality of the
prediction will depend on the noise of the learning sample. Choosing a small
value of k will then generally lead to noise sensitive predictions, of lower ac-
curacy than if a higher value of k is used. Overall, the optimal value of k is
problem specific, and also depends on the size of the learning set. The value of
k can be chosen by minimizing the cross-validation error.

In terms of computational complexity, the total number of objects of the
learning sample has generally a stronger influence than the particular value of
k that is used.

2.3.5.3 Decision Trees

A decision tree is a model which recursively separates the learning set into sub-
sets according to a collection of comparative tests on an attribute value (see
an example on figure 2.15). During the learning procedure, the recursion stops
when a split criterion has been met (e.g. a node becomes a leaf if all his as-
sociated objects are labeled identically, if the number of associated objects is
smaller than a given parameter nmin or if all features (attributes) are constant).
The c4.5 algorithm[Qui92], which can be used to create a decision tree is given
in Algorithm 2.

48CHAPTER 2. A GENTLE INTRODUCTION TO MACHINE LEARNING

Algorithm 2 C4.5 [Qui92]

Input: A set of labeled objects LS, nmin ∈ N
Output: A tree model

Create a new node M
if All objects in LS have the same label y or the size of LS is smaller than
nmin or all attributes are constant in LS then

Turn the node M into a leaf, labeled by y or by the most representative
class in LS
else

for All attributes a do
Compute the normalized information gain IG from splitting on a

end for
Let a best be the attribute maximizing IG
Add a test in M with a best
for All sublists LSi obtained from the split do

Recurse by computing Mi = C4.5(LSi)
Attach Mi as children of M

end for
end if
return M

To choose the best couple attribute/threshold in a test node, each of the
possible couples is considered and the information gain is computed. This com-
putation is based on Shannon’s entropy [Sha48]. Class entropy in a subset of
objects X is computed as:

HC(X) = −
m∑
i=1

P (ci|X) log2 P (ci|X), (2.3)

where X is a set of objects, ci denotes one of the output classes of these objects
and P (ci|X) is the relative frequency of objects of class ci observed in the set
X. The information gain is then computed as:

Information gain = HC(X)− (
#X1HC(X1) + #X2HC(X2)

#X
), (2.4)

where X1 and X2 are the mutually exclusive subsets of X obtained after the

2.3. SUPERVISED LEARNING ALGORITHMS 49

Figure 2.15: A decision tree (here with nmin = 10) separates the feature space
in a linear fashion to purify each cluster as much as possible

node split, and where #X is the number of objects in X. Let us illustrate this
concept with an example. Consider that X contains 8 objects. 4 of these objects
are labeled with class A and the others with class B. Then

HC(X) = −(0.5 log2 0.5 + 0.5 log2 0.5),

= − log2 0.5,

= log2 2,

= 1.

The entropy is maximum. If we randomly picked an element from X, it
would be impossible to predict (or at least, give a statistical preference to) the
associated class.

Let us now consider two extreme node splits. The first one separates per-
fectly X into two sets containing 4 objects labeled A and 4 objects labeled B
respectively. The second one creates two sets, each one containing two objects
labeled A and two objects labeled B. The information gain for those splits are
then:

50CHAPTER 2. A GENTLE INTRODUCTION TO MACHINE LEARNING

IG for split1 = 1− (4(−(1 log2 1 + 0 log2 0))

+4(−(0 log2 0 + 1 log2 1)))/8,

= 1− (0 + 0)/8,

= 1;

IG for split2 = 1− (4(−(0.5 log2 0.5 + 0.5 log2 0.5)),

+4(−(0.5 log2 0.5 + 0.5 log2 0.5)))/8,

= 1− (4 + 4)/8,

= 0.

Split1 has a gain of 1, meaning that it is now possible to predict at 100%
which label will be associated to any object randomly picked in one of the
subsets (given that we know in which set the selection occurred). Conversely,
Split2 has a gain of 0, meaning that even if we knew in which subset the random
selection would occur, we would still be unable to predict the associated label.
In this case, Split1 is better than Split2 as the information gain for the former
is greater than the information gain for the latter.

2.3.5.4 Support vector machines

The Support vector machine (SVM) algorithm[CV95] was designed by Cortes
and Vapnik. This algorithm aim at finding a linear hyperplane which separates
the input data into two classes.

The whole learning set is not necessarily relevant to build the model, and
only a few data points (also called “support vectors”) are being used. These
support vectors are determined by selecting the points which maximize the sepa-
rating margin (i.e. the distance of the hyperplane to the closest points). Within
this margin, an infinity of hyperplanes can be defined (see Figure 2.16, (a)).
The SVM algorithm then selects the hyperplane which minimizes the distance
to each support vector (the closest points to the plane) as depicted on Figure
2.16, (b).

2.3. SUPERVISED LEARNING ALGORITHMS 51

(a) (b)

Figure 2.16: The is an infinity of separating hyperplanes (a), but SVM
algorithms seek the hyperplane which maximizes the margin (b).

Source : Wikipedia

Formally, the SVM algorithm solves an optimization problem which can be
expressed by the following equations:

h(x) = w.x+ b (2.5)

w.x+ b ≥ 1 (for each positive example) (2.6)

w.x+ b = 0 (for the separating hyperplane) (2.7)

w.x+ b < 1 (for each negative example) (2.8)

d(x) =
|w.x+ b|
||w||

(d(x) is the distance of x to the hyperplane) (2.9)

(2.10)

We thus need to find w and b such that each example is correctly classified
using the h(x) function and such that the distance of each point to the hyper-
plane is maximal (which is equivalent to minimizing ||w||).

52CHAPTER 2. A GENTLE INTRODUCTION TO MACHINE LEARNING

Solving this problem directly is quite challenging. Using Lagrangian multi-
pliers, we can transpose this problem into its dual form, i.e. maximizing

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

yiαiyjαjx
T
i xj (2.11)

subject to

∀iαi ≥ 0, (2.12)
n∑
i=1

yiαi = 0 (2.13)

where yi (yj) is the label of object oi (respectively oj) which equals 1 for a
positive example and -1 for a negative example. One of the most common SVM
solvers is the Sequential Minimal Optimization (SMO) designed by John Platt
[Pla98].

Using this dual form, the separating hyperplane w which maximizes the
margin can we rewritten as a linear combination of the support vectors, i.e.
w =

∑#SV
i=0 (αixi), where w is the separating hyperplane maximizing the mar-

gin (represented by a vector), xi is the ith support vector, #SV is the number
of support vectors and αi is the weight associated to xi.

The prediction can be computed as f(x) = σ(
∑#SV
i=0 (αix

T
i x)), where σ is

the sign function and x is a point in the space.

Many supervised learning algorithms make the assumption that a classifi-
cation problem can be easily solved by using the correct set of features. Of
course, finding this set is not always trivial as, for instance, the discriminant
feature may not have been directly measured. One can assess this problem by
adding dimensions into the input space such that the problem becomes linearly
separable in the new feature space. To transform the data in input space to
data in feature space, one has to use a φ function which is able to change the
dimensionality of the problem. Note that φ can also be extremely simple (e.g.
the identity function for problems which are already linearly separable in the
input space).

2.3. SUPERVISED LEARNING ALGORITHMS 53

This dimensionality extension can be applied to SVMs. Figure 2.17 illus-
trates an example where data in the input space are not linearly separable, while
a linear hyperplane can be found in the new feature space, adding the dimension
z and defining φ as

φ(x, y) = (x, y, x2 + y2 − 5)/3).

Note that, in the prediction phase, φ must be applied both on the support
vectors and on the data point for which we want a prediction.

(a) (b)

Figure 2.17: Data is not linearly separable in the original input space (a) but
well in the extended feature space (b)

The problem of using the φ function is that the computations have to be
performed in an higher dimensional space, which drastically increases the time
complexity and prevents the use of an infinite number of dimensions. Moreover,
the appropriate definition of φ is crucial to maintain an acceptable accuracy.
To solve this issue, one can use the so-called “kernel trick” which consists in
using a kernel K(xi, x) instead of φ(xi)

Tφ(x) during the prediction and the
learning phase. A kernel can potentially represent any φ function while the
computations are still performed in the original input space. In addition, some
kernels have been studied in the literature (e.g. polynomial, gaussian, sigmoid,
etc) and provide an acceptable reliability for many problems.

54CHAPTER 2. A GENTLE INTRODUCTION TO MACHINE LEARNING

Chapter 3

Preference Learning

Contents
3.1 Preference representations 57

3.1.1 Utility function . 57

3.1.2 Pairwise information 58

3.1.3 Orderings . 58

3.1.4 Interchangeability 58

3.1.4.1 Utility to pairwise 58

3.1.4.2 Utility to orderings 59

3.1.4.3 Pairwise to utility 59

3.1.4.4 Pairwise to orderings 59

3.1.4.5 Orderings to utility 60

3.1.4.6 Orderings to pairwise 60

3.2 Learning to rank . 60

3.2.1 Label ranking . 60

3.2.1.1 Ranking by Pairwise Comparison 61

3.2.1.2 Constraint classification 64

3.2.1.3 Solving label ranking with MLPs 67

3.2.1.4 Solving label ranking with decision trees . 67

3.2.2 Object ranking . 68

3.2.2.1 Solving object ranking using SVM 68

3.2.3 Instance ranking . 69

3.2.3.1 Ordinal Regression by Extended Binary Clas-
sification 70

55

56 CHAPTER 3. PREFERENCE LEARNING

3.3 Combining (partial) orderings 71

3.3.1 Difficulty of combining orderings 72

3.3.2 Minimizing pairwise disagreements 72

3.3.3 FAS-PIVOT . 73

3.3.4 PTAS . 74

3.3.5 Mallows model . 75

3.3.5.1 Mallows model over complete rankings . . 76

3.3.5.2 Probability to observe an incomplete ranking 77

3.3.5.3 Maximum likelihood estimation of the model
parameters 77

3.3.5.4 Approximate solution of the optimal cen-
troid problem 78

3.3.5.5 Handling partial rankings 79

3.4 Similar domains . 80

3.4.1 Multi-label classification (MLC) 80

3.4.1.1 Solving MLC with MLP’s 80

3.4.1.2 Solving MLC with SVM 81

3.4.1.3 (Probabilistic) Chained Classification . . . 82

3.4.2 Multi-label ranking (MLR) 86

3.4.2.1 Solving MLR 86

3.5 Existing reduction techniques 86

3.5.1 QWeighted algorithm 87

3.5.2 QWeighted for multi-label classification 87

3.6 Summary and outlook 88

This chapter is dedicated to preference learning and the methods from this
domain which are published in the scientific literature.

It is divided into five sections. In the first section, we will discuss about
the possible representations of preference data. Then, in the second section,
we will describe the three types of ranking problems, namely label, object and
instance ranking. For each of these problem types, we will provide at least one
algorithmic protocol to solve it. The third section will concern a fundamental
problem in preference learning, which concerns the measurement of distances
among orderings, the determination of a “centroid” ordering which is on the
average closest to a set of given orderings, and measuring the quality of this
centroid approximation. In section four, we will talk about other fields which

3.1. PREFERENCE REPRESENTATIONS 57

can not be included stricto sensu in the field of preference learning, but which
are very closely related and whose problems could be addressed using a prefer-
ence learning methodology, or conversely. In section five, we describe published
algorithms which tackle the problem of reducing the number of comparisons in
a RPC framework by predicting only the top elements of the ranking. In the
last section, we will state in this light our contribution to the domain.

Algorithms and methods depicted in this chapter were mainly found in
[FH10] and [GV10].

3.1 Preference representations

In ranking problems, one has to represent the preference relation, either over a
collection of objects (in object ranking problems) or over a collection of class
labels (in label ranking problems).

There are several ways of representing preference information: utility func-
tion, pairwise information and orderings. Each of these can be complete or
partial (some information is missing). These representations may be used in or-
der to represent information in training datasets, as well as to represent output
information of prediction models.

We will briefly discuss each of these representations as well as how one
representation could be transformed into another.

We will use the term “item” to denote either a label or an object.

3.1.1 Utility function

In this representation, each item receives a score, either numerical (1,2,3,...)
or symbolic (++,+,-,–), The higher the score, the most preferred this item is.
Using this representation, it might be possible to have items having the same
preference. A completely specified utility function thus induces a total, but not
necessarily strict, order relation over items.

Preference information using a utility function is, for instance, expressed by
{A = 3, B = 2, C = 1, D = 0}.

58 CHAPTER 3. PREFERENCE LEARNING

3.1.2 Pairwise information

Preference data can also be represented in the form of pairwise preferences. One
can obtain this kind of information by asking what is the preference between two
items. Assuming that a pairwise comparison indicates for two items whether
one is preferred over the other (and vice-versa), then N(N − 1)/2 such pairwise
comparisons may be performed, where N is the total number of items.

In general, a set of pairwise comparisons does not necessarily satisfy the
transitivity property of an order relation. If the relation is transitive, then
all pairs can be reconstructed from O(N) comparison in the best case, and
O(N logN) comparisons on average (and worst case). Cycles can occur with
intransitive relations. For instance, if we consider the binary preference relation
�, we could have A � B, B � C and yet C � A. In this case, we would be
unable to determine which one is preferred over A,B and C.

3.1.3 Orderings

Finally, the preference information can also be represented by a (total or partial)
ordering of items. For instance, considering the preference relation �, we could
have A � B � C.

The main difference between this latter representation and utility function
based representation, is that in the case of a utility function one also represents
a quantitative strength of the preference relation.

In the sequel, we will use indifferently the terms “permutation” and “order-
ing”. A total ordering of set is a permutation of this set, while a partial ordering
of a set is a permutation of a subset of this set.

3.1.4 Interchangeability

Some representations cannot be transformed into others without loss of infor-
mation under certain circumstances. We will consider all six possibilities.

3.1.4.1 Utility to pairwise

This transformation can be performed by considering, for each pair, the score
of each element then attributing the preference to the element with the greater
score. However, since ties can occur using utility functions, some comparisons
can not be constructed using a 0-1 preference. Moreover, a pairwise comparison
will only assess that an element is preferred over another, without quantitative

3.1. PREFERENCE REPRESENTATIONS 59

information. For instance, the utility function {A = 5, B = 0} will be trans-
formed into the same pairwise information than {A = 3, B = 2}. The reverse
transform is thus not guaranteed to provide the same utility function.

Consider, for instance, a utility function of {A = 3, B = 2, C = 2, D = 0}.
From this data, we can induce that A � B, A � C, A � D, B � D and C � D.
However, if we want to perform the reverse transformation, by attributing a
vote for each preferred element in the pairwise comparisons, we will obtain
{A = 3, B = 1, C = 1, D = 0} which, although similar, is different from the
original utility values.

3.1.4.2 Utility to orderings

Obtaining an ordering from a utility function can be performed by sorting the
elements according to their utility value. Again, ties have to be broken, and
in this case the inverse transform will not provide the same utility values. For
instance, {A = 3, B = 3, C = 1} can be transformed into either A � B � C or
B � A � C, but the reverse transform of the former will provide {A = 3, B =
2, C = 1} while the latter will provide {A = 2, B = 3, C = 1}. On the other
hand, preference intensity will be discarded, as {A = 5, B = 1, C = 0} will be
transformed into the same ordering as {A = 3, B = 2, C = 1}.

3.1.4.3 Pairwise to utility

We can transform pairwise information into a utility function by attributing a
vote to the preferred element for each comparison. If the preference relation is
not transitive, we will loose information in this process. For instance, if we have
A � B, B � C and C � A, then the utility values will be {A = 1, B = 1, C = 1}
and no pairwise comparison can be extracted from the reverse transform.

3.1.4.4 Pairwise to orderings

Typically, this transform is performed by changing pairwise information into
utility values, then changing this representation to an ordering. We have previ-
ously shown that both transforms can lead to an information loss. Moreover, it
might be impossible to express pairwise information in the form of an ordering.
For instance, no ordering could express only A � B, C � D without imposing
an implicit order between A and C.

60 CHAPTER 3. PREFERENCE LEARNING

3.1.4.5 Orderings to utility

This transform can be performed by attributing a score to each element between
0 and N − 1 according to its position in the ordering. A full ordering can
be transformed into utility scores without loss and recovered in the reverse
transform. In the case of partial rankings, we would have ties for unrepresented
elements (the utility value would be equal to 0).

3.1.4.6 Orderings to pairwise

One can obtain a pairwise comparison by constructing it according to the given
ordering. These comparisons can be used to reconstruct the original ordering,
even if this ordering is partial, assuming that the reverse transform is performed
directly and not by using a utility function.

3.2 Learning to rank

We will now define the three types of ranking problems, namely “label”, “object”
and “instance” ranking problems, and we will provide at least one solution
protocol for each type.

3.2.1 Label ranking

In label ranking, one is provided with a dataset where each object is labeled by
a possibly partial ordering of a set of labels and a vector of attribute values.
The goal is to build a model which is able to provide a total ordering of the set
of labels for any new object as a function of its attribute values and in such a
way that each predicted ordering is close to the corresponding labeled ordering
in the training sample.

Formally, given a training set {(xi, πi)|i ∈ {1, 2, . . . , n}} of input-output
pairs, where each input xi is a vector (of attributes) belonging to the input
space X, and where each output πi is a permutation of a subset of a given set of
labels Y = {yj |j ∈ {1, 2, . . . , N}}, the aim is to build a model π̂(x) representing
a ranking function, i.e. a function which maps any x ∈ X to a permutation
π̂(x) of the full set of labels Y, in such a way that π̂(xi) is close to πi, for any
i ∈ {1, 2, . . . , n}, and so that the model works well for any unseen x ∈ X. We
postpone to chapter 4 the discussion of loss functions used in the context of

3.2. LEARNING TO RANK 61

label ranking.

In the sequel we will use the following notations:

• Π(Y) is the set of all possible permutations of Y.
Hence π̂(x) ∈ Π(Y),∀x ∈ X.

• Π(Y) is the set of all possible permutations of all subsets of Y.
Hence πi ∈ Π(Y),∀i = 1, . . . , n, and Π(Y) ⊃ Π(Y).

• An element of Π(Y) is said to be trivial if it is empty or contains only one
label. We always suppose that there are non-trivial rankings (i.e. N ≥ 2).

• For some π ∈ Π(Y), we will say that (yk, yl) ∈ π, if label yk appears before
yl in π, and we will say that yk ∈ π if label yk appears in π.

• More generally, we will say that π′ ⊂ π if the labels of π′ all appear in π
in a compatible ordering.
Hence, in the non-trivial case, [π′ ∈ π] ≡ [(yk, yl) ∈ π′ ⇒ (yk, yl) ∈ π].

3.2.1.1 Ranking by Pairwise Comparison

Ranking by Pairwise Comparison [HF04], also quoted to as RPC, is a method
developed by Johannes Fürnkranz and Eyke Hüllermeier in 2004. RPC works
in three steps: decomposition, modeling and aggregation.

The decomposition phase consists in transforming the original training set
into several auxiliary training sets, one for each possible pairwise label compar-
ison: for a given pair of labels (yk, yl) (k = 1, . . . , n; l = k+ 1, . . . , n), the corre-
sponding auxiliary training set is composed of those observations i ∈ {1, . . . n}
for which both yk and yl appear in the permutation πi, and those objects are
built as a pair (xi, yik,l), where yik,l is a boolean variable, true if (yk, yl) ∈ πi,
and false otherwise (see Figure 3.1 and Algorithm 3).

The second phase is model building. For each auxiliary training sample,
a pairwise comparator is trained with a supervised learning algorithm, for in-
stance: neural networks, support vector machines, ensemble of trees or single
decision trees (this list is not exhaustive) as depicted in Figure 3.2. At this
stage, the learning process is completed.

62 CHAPTER 3. PREFERENCE LEARNING

Figure 3.1: RPC first decomposes the given partial label orderings into
pairwise comparisons and creates the corresponding auxiliary training sets

Algorithm 3 Decomposition phase

Input: a training set LS
Output: N(N − 1)/2 auxiliary training sets
for all Possible pairs of labels (yk, yl)|k = {1, . . . , N}, l = {k + 1, . . . , N} do
AuxLS[(yk, yl)]← ∅
for all Objects oi = (xi, πi) ∈ LS do

if (yk, yl) ∈ πi then
Add < xi, true > in AuxLS[(yk, yl)]

else if (yl, yk) ∈ πi then
Add < xi, false > in AuxLS[(yk, yl)]

end if
end for

end for

The third step occurs during prediction. When a new object needs to be
evaluated, the prediction of all pairwise comparisons are computed by using the
corresponding comparators. In this process, each comparator gives one vote to
the class label that it prefers among those two that it was built for. Sorting
the class labels according to their cumulated votes (or utility) will produce the
predicted ranking as output (Figure 3.3 and Algorithm 4). Note that, in this
output, every class label will be represented, even if ties might have to be broken
arbitrarily.

3.2. LEARNING TO RANK 63

Figure 3.2: Pairwise comparators are learned using supervised learning on the
corresponding auxiliary training sets

Figure 3.3: The set of binary comparators is used to produce a predicted
ordering.

In the case where the predicted comparisons are transitive, each label re-
ceives a distinct number of votes between 0 and N − 1 (N being the total
number of labels) in such a way that the corresponding ordering is a strict total
order.

Even if this method has become state-of-the art in the field of label ranking,

it has its bottleneck, as N(N−1)
2 different pairs need to be evaluated and merged.

For a small problem, this can be easily handled, but when dealing with a huge

64 CHAPTER 3. PREFERENCE LEARNING

Algorithm 4 Prediction phase

Input: an input attribute vector x, and N(N − 1)/2 pairwise comparators
Output: π̂(x)
PairwiseOutputs[N(N − 1)/2] ← Apply the object’s input attributes x to
every pairwise comparator
Scores[N]← null vector of size N
for all Pairwise outputs qkl(x) ∈ PairwiseOutputs[N(N −1)/2] correspond-
ing to the label pair (yk, yl) do
Scores[yk]← Scores[yk] + qkl(x)
Scores[yl]← Scores[yl] + 1− qkl(x)

end for
Sorted[N]← The set of N labels
Sort Sorted[N] according to Scores[N] in descending order
return Sorted[N]

number of labels (say N = 10, 000 or more), the method collapses caused by the
computational complexity and/or memory usage, preventing the researchers to
use it in many problems in active research fields.

3.2.1.2 Constraint classification

Sariel Har-Peled et al. modified the SVM protocol to develop the Constraint
Classification [HpRZ02] algorithm. We describe its application to label ranking.

Let us assume that the inputs xi of our n training examples are vectors of Rd,
and suppose that for each possible label k ∈ {1, . . . , N} we dispose of a vector
vk ∈ Rd. Using these vectors, we can infer a (possibly non-strict) ordering of
the N labels based on an input vector x by the following operation

π̂(x) = argsort{vTk x}Nk=1 (3.1)

where “argsort” is a function which ranks the indexes of an array according to
the cell content of this array (in descending order). In other words, we compute
N scores as scalar products between the vectors vk and the input x, and then
sort the resulting numbers, in order to compute a permutation over our label set.

Given a training set {(xi, πi)}ni=1 where the outputs are permutations of sub-
sets of Y, the goal is hence to determine a set of vectors {vk : k ∈ {1, . . . , N}}

3.2. LEARNING TO RANK 65

such that the resulting predictions π̂(xi) are compatible with the corresponding
targets πi. The authors of [HpRZ02] show how this problem may be solved by
constructing a separating hyperplane (e.g. by using a support vector machine
approach) in RNd, based on a single auxiliary training set of binary labelled
examples derived from {(xi, πi)}ni=1.

Figure 3.4: Ranking information πi is separated into |πi|(|πi| − 1)/2
constraints and two examples are constructed per constraint and per object

Figure 3.4 illustrates the procedure used to derive from a given input-output
pair (xi, πi), a set of positive and negative auxiliary examples, a positive and
a negative one for each pairwise comparison that may be extracted from πi:
∀(yk, yl) ∈ πi we first construct a vector

zi = (0(k−1)d, xi,0(N−k)d)− (0(l−1)d, xi,0(N−l)d) ∈ RNd,

composed of zeroes except for the chunks of length d corresponding to labels k
and l, which respectively receive a positive and a negative copy of xi, and from
which we derive a positive example (zi, 1) and a negative example (−zi,−1)

66 CHAPTER 3. PREFERENCE LEARNING

(notice that in Figure 3.4, the subvectors of dimension d have been stacked
vertically, for the sake of legibility). The main idea behind this representation
is that, for each (yk, yl) ∈ πi, we wish that

vTk x
i > vTl x

i ⇒ vTk x
i + vTl (−xi) > 0 (positive example), (3.2)

⇒ vTk (−xi) + vTl x
i < 0 (negative example). (3.3)

The complete training set is obtained by merging all the subsets obtained
∀i ∈ {1, . . . , n}.

Assuming that the n original examples are all completely ranked over Y,
the auxiliary dataset constructed will be of cardinality n′ = 2nN(N −1)/2, and
each example will be of dimensionality d′ = Nd. The z vectors are however very
sparse, since they will contain at most 2d non-zero entries. These observations
suggest to use an on-line algorithm rather than a batch-mode approach in or-
der to determine a separating hyperplane, such as Algorithm 5, adapted from
[HpRZ02] to our notations.

Algorithm 5 Constraint classification

Input: A training sample S = {(xi, πi)}ni=1, where S ∈ (Rd ×Π(Y))n

Output: A ranking function π̂(x) : X 7→ Π(Y)
for k = 1, . . . , N do

Initialise vk ∈ Rd
end for
repeat

for i = 1, . . . , n do
for all (yk, yl) ∈ πi do

if vTk x
i < vTl x

i then
promote(vk) (e.g. vk = vk + xi)
demote(vl) (e.g. vl = vl − xi)

end if
end for

end for
until convergence
return π̂(x) = argsort{vTk x}Nk=1.

3.2. LEARNING TO RANK 67

3.2.1.3 Solving label ranking with MLPs

Chris Burges et al. proposed in [BSR+05] a method of label ranking using mul-
tilayer perceptrons. In their model, the input layer corresponds to the input
vector x and the output layer has one neuron per possible label.

In order to handle ranking problems, he first extracts training examples from
the original training set in the form (xi, (yk, yl)), such that (yk, yl) ∈ πi. Then,
for each such training example, a forward pass is performed for label yk and a
second one for label yl. The internal state of the network (input and output
values for each neuron) is stored for both passes. The cost function becomes a
function f of the difference of the outputs (ok−ol), and the associated gradient
∂f
∂α = (∂ok∂α −

∂ol
∂α)f ′, where α represents the model parameters and ∂ is the

partial derivative.

3.2.1.4 Solving label ranking with decision trees

Weiwei Cheng et al. proposed in [CHH09] an adaptation of the decision tree
induction algorithm to solve label ranking problems in a direct fashion. Since in
this scenario, the training information is labeled by orderings πi, this requires
to make two adaptations to the standard tree induction method:

• Adaptation of the information theoretic class purity measure to evaluate
the diversity of output orderings in a sample of observations of a node,
so as to determine a split that would lead to successor nodes as pure as
possible in terms of the observed partial rankings.

• Adaptation of the procedure that determines an optimal prediction at a
terminal node, in the form of a ranking that is as similar as possible on the
average to all the partial rankings observed in the corresponding training
subset.

As a matter of fact, these two problems are intimately linked, since to compute
the “information gain”, they need to be able to find the center ordering for the
subset of training examples corresponding to each node of the decision tree.

The methodology for solving this latter problem will be discussed in section
3.3, but let us assume for the moment that this center ordering can be found.
They then compute a θ, which measures the average similarity of a set of or-
derings to the center ordering of this set. Roughly, when θ is equal to 0, the set

68 CHAPTER 3. PREFERENCE LEARNING

contains all permutations of the center ordering while θ →∞ indicates that all
orderings in the set are identical to the center ordering.

This parameter θ can then be used to evaluate the “purity” of the outputs
in a node, and a split will be optimal if it maximizes:

|X|−1(|X1| ∗ θ1 + |X2| ∗ θ2), (3.4)

where θ1 and θ2 are estimated in the subsets of examples X1 and X2 induced
by the split.

3.2.2 Object ranking

In object ranking, instead of ranking the labels, one wants to rank the objects.
For instance, assume that you are a potato chips seller and have (at least par-
tial) information about the general preference of clients for your products. Each
of your products is described by a set of features (size, weight, salt level, etc...).
If new products are designed, you might want to predict the market response
for your new products and obtain a ranking in the form of an ordering which
contains your new products and possibly (a part of) your existing products.

Thus, given a (possibly large) set of observationsX = {xk|k ∈ {1, 2, . . . , N}},
and set of pairwise comparisons Z = {zi|zi = (xi1 � xi2)}ni=1 over the set X,
the aim is to find a ranking function which ranks a set of (possibly unseen)
objects X ′ by generating a permutation of this set. In this protocol, all objects
will have to be ranked by using only their feature vector.

3.2.2.1 Solving object ranking using SVM

Ralph Herbrich et al. [HGBSO98] proposed the use of the SVM protocol to
solve object ranking problems. To prevent the non transitivity of pairwise pref-
erence aggregation, they try to model a linear utility function û(x) = wTx+ b,
compatible with the available information about pairwise object preferences.

Consideringm comparisons in a training sample in the form {((xi1, xi2), yi)}ni=1,
where yi is equal to 1 if xi1 � xi2 and -1 otherwise, the function û(x) is inferred
by considering two support vectors at once and is then defined as (actually the
value of parameter b is irrelevant in this problem and can be fixed arbitrarily,
e.g. b = 0):

3.2. LEARNING TO RANK 69

û(x) = wTx+ b (3.5)

w =

n∑
i=1

αiyi(xi1 − xi2) (3.6)

α = arg max
(α1,...,αn)

 n∑
i=1

αi − 1

2

n∑
i,j=1

αiαjyiyj(xi1 − xi2)T (xj1 − x
j
2)

(3.7)

⇒ û(x) =

n∑
i=1

αiyi(xi1 − xi2)Tx. (3.8)

These formulas can be extended to the nonlinear case by replacing x by φ(x)
in the above equations, and if we have a kernel K(x, x′) to compute φ(x)Tφ(x′),
both the optimization and prediction steps may be expressed, by using the “ker-
nel trick”, only in terms of the function K(x, x′). This is relevant for problems
where it is easier to define a good kernel than a good feature space, such as for
instance document ranking, and when the problem is non-linear.

3.2.3 Instance ranking

The third and last type of ranking problem is instance ranking. In this scenario,
you want to sort objects, which are labeled by only one label and the labels have
a natural order between them. The most common example is the ranking of
papers in the categories rejected, accepted with modifications and accepted.

Hence, given a set of observations X = {xi|i ∈ {1, 2, ..., n}}, a set of labels
Y = {yj |j ∈ {1, 2, ..., N}} with an order y1 ≺ y2 ≺ ... ≺ yN and for each xi

an associated label yi, find a ranking function allowing to order a new set of
instances X ′.

Note that a standard classification algorithm could be used to solve this
problem, as each object is labeled with only one label. But these algorithms
would minimize the classification error and not the ranking error, so more spe-
cific algorithms have to be developed to take this into account.

70 CHAPTER 3. PREFERENCE LEARNING

3.2.3.1 Ordinal Regression by Extended Binary Classification

Ling Li and Hsuan-Tien Lin proposed in [LHT07] an algorithm to solve instance
ranking problems. They also consider the fact that standard classifiers do not
take into consideration the ordering between labels. For instance, consider a
problem with four labels, which are ordered as {1, 2, 3, 4}. For the example
(x, 4), two classifiers r1 and r2 will be penalized in the same way if r1(x) = 3
and r2(x) = 1 whereas r1 is a better predictor than r2 in this instance ranking
problem.

For k = 1, . . . , N − 1, they define a binary classifier fb(x, k) which predicts 1
if the rank of the label associated to x is strictly greater than k, and 0 otherwise.
They can thus define their ranker r(x) as

1 +

N−1∑
k=1

fb(x, k). (3.9)

The ordinal information can help to model the relative confidence in the
binary outputs. That is, when k is very distant from the rank of x, the prediction
from fb(x, k) should be very confident. The confidence can be modeled by a real-
valued function f : X × {1, 2, ..., N − 1} → R, with fb(x, k) = [[f(x, k) > 0]],
where [[f(x, k) > 0]] is equal to 1 if f(x, k) > 0 and is equal to 0 otherwise, and
the confidence encoded in the magnitude of f . Thus r(x) can now be defined as

1 +

N−1∑
k=1

[[f(x, k) > 0]]. (3.10)

Learning an instance ranking scheme is thus reduced to the problem of learning
a set of N − 1 binary classifiers or class-probability estimators, based on N − 1
auxiliary training sets. Any available base-learner could be applied to these
subproblems.

Note that we described an ordinal regression protocol in order to solve an
instance ranking problem. Although these problem types are closely related,
their goal are different. Ordinal regression tries to predict an ordered set of
labels, whereas the goal of instance ranking is to sort objects (whether each
object has a predicted label is irrelevant). This can be seen as another example
of interoperability between different techniques1.

1See Section 2.2.5 for the first example of interoperability.

3.3. COMBINING (PARTIAL) ORDERINGS 71

3.3 Combining (partial) orderings

Combining (partial) orderings is another challenging field of preference learning.
In this field, the goal is not to learn a predictor but to find a center ordering from
a set of orderings in such a way that the mean distance between the center and
the orderings in the set is minimal. Formally, given a set of (partial rankings)
{πi ∈ Π(Y)}ni=1 and a loss function `(π, π′)→ R+, the problem may be stated
as finding an optimal total ranking π ∈ Π(Y), minimizing the average loss

n∑
i=1

`(π, πi). (3.11)

Finding a center ordering can be necessary in the decision tree split process,
as seen earlier, or when using KNN’s in order to make a prediction. The trivial
application of KNN algorithms to ranking problems would be to consider each
permutation as a single element and to perform the prediction using the ma-
jority class as previously explained. However, this technique would probably
provide poor results as, unless the value of K is set to 1, the amount of training
data is huge or the number N of labels is very small, the aggregation phase
for the majority vote will be similar to randomly selecting one ordering in the
K nearest training samples. Reducing a ranking to a single variable does not
take into account the complex information given in this structure. Moreover,
this simple technique supposes that the training data is composed of complete
rankings, which is not always the case.

We would like to emphasize on the fact that some of the algorithms designed
to combine several orderings require a full ranking information from the learning
sample. As this is not always possible, Mark Huber proposed a method [Hub06]
for sampling exactly uniformly from the set of linear extensions of a partial
ranking2. Using his method, it then becomes possible to transform a partial
ranking into one of its computed linear extensions (which are fully ordered) for
the labeled examples in the learning set.

We will first consider the difficulty of finding such a center, then show a
method to estimate the distance between the center and the orderings in the
set, and finally describe four different methods to achieve the goal of combining
orderings.

2Linear extension : Full ranking which is consistent with a given partial ranking

72 CHAPTER 3. PREFERENCE LEARNING

3.3.1 Difficulty of combining orderings

J. Bartholdi et al. demonstrated in [BTT89] that finding the exact center rank-
ing using rank aggregation techniques is NP-Hard, either with a Dodgson or a
Kemeny voting scheme. The former is based on the Condorcet criterion which
stands that the class label which is ranked in the first position should defeat
any other class label in a pairwise election with simple vote counts. Of course,
in practice, it is generally impossible to find such label, due to cyclic preference
relations. But Dodgson proposed to attribute a score to each label based on the
smallest number of adjacent switches required in the voter’s preference order
such that this label becomes a Condorcet winner. The label with the lowest
score (or randomly selected along the smallest scores) is then top ranked. The
latter (i.e. the Kemeny voting scheme) defines a distance between two rankings
according to the number of discordant pairs, and the goal of Kemeny ranking is
to find a consensus which minimizes this distance. As both of these optimization
problems have been proven to be NP-Hard, we should only expect approxima-
tions for rank aggregation in a polynomial computational time.

3.3.2 Minimizing pairwise disagreements

Klaus Brinker and Eyke Hüllermeier proposed the use of a consensus label rank-
ing which is a generated permutation of labels which “minimizes the sum of
pairwise disagreement indices with respect to all K rankings” [BH06]. For-
mally, they seek to solve the problem of finding permutation π ∈ Π(Y) such
that the total loss over a set {π}ni=1

L(π) =

n∑
i=1

`(π, πi) (3.12)

is minimal. The method used to solve this optimization problem depends on
the loss function `.

In their paper, they consider various loss functions, and various techniques
for finding approximate solutions to the optimization problem

π∗ = arg min
π∈Π(Y)

{L(π)}. (3.13)

They also discuss the case where the given rankings may contain partial ones.

3.3. COMBINING (PARTIAL) ORDERINGS 73

3.3.3 FAS-PIVOT

Nir Ailon et al. consider in [ACN05] the problem of efficiently computing an
approximation of the so-called Kemeny optimal aggregation of a set {π1, . . . , πn}
of total rankings of a set Y of labels, which amounts to solving the optimization
problem of eqn. (3.12) when using the Kendall-tau loss function `K , which in
the case of total rankings is defined by

`K(π, π′) = |{(yk, yl) ∈ π : (yk, yl) 6∈ π′}| (3.14)

= |{(yk, yl) ∈ π′ : (yk, yl) 6∈ π}|,

and amounts to counting the number of different pairs {yk, yl}, among the
N(N − 1)/2 possible ones, for which the two rankings π and π′ disagree.

Notice that a simple approximation π̂∗e of the solution of (3.12), would consist
of selecting the best one among the given set of πi’s, which can be computed
efficiently by enumeration:

π̂∗e = arg min
π∈{π1,...,πn}

{LK(π)}. (3.15)

where LK denotes the total loss obtained by eqn. (3.12) when using `K as the
loss function.

One can show that π̂∗e is a 2-approximation of π∗, namely that

LK(π̂∗e) ≤ 2LK(π∗). (3.16)

As a matter of fact, for any πi we have LK(πi) ≤ 2LK(π∗).

The idea of the authors is to combine two efficient but complementary algo-
rithms, both only having a guarantee to find a 2-approximation. The first one,
(Algorithm 6), merely picks an element in {π1, . . . , πn} at random.

Algorithm 6 PICK-A-PERM

Input: {π1, . . . , πn}
Output: a 2-approximation π̂∗r of π∗

return A permutation πi chosen at random from the input

74 CHAPTER 3. PREFERENCE LEARNING

The second one, is inspired by the QuickSort algorithm, and is called FAS-
PIVOT (Algorithm 7). It is applied to a directed tournament graph G = (V,A)
derived from the set of permutations in the following way: the set of vertices
V = Y, and the set of arcs A contains all pairs of labels (yk, yl) such that
wk,l ≥ wl,k, where wk,l = |{πj : (yk, yl) ∈ πj}|, i.e. the number of input permu-
tations which rank yk before yl.

Algorithm 7 FAS-PIVOT(G = (V,A))

Input: a directed graph G = (V,A)
VL ← ∅
VR ← ∅
vi ← random pivot ∈ V
for all vj ∈ V \{vi} do

if (vj , vi) ∈ A then
add vj in VL

else
add vj in VR

end if
end for
GL = (VL, AL), the subgraph induced by VL in G
GR = (VR, AR), the subgraph induced by VR in G
return FAS-PIVOT(GL), i, FAS-PIVOT(GR)

The authors then show theoretically that taking the best result among the
two produced by these two algorithms yields a permutation that is a 11/7-
approximation of the optimal one, due to the fact that when one of two heuris-
tics works badly, the other one works well.

Anke van Zuylen proposed a method for selecting the best pivot [VZPW07].
His idea is to “choose a pivot so that the cost wi,j of the backward arcs created
by pivoting on this vertex is at most twice the budget for these arcs”.

3.3.4 PTAS

The algorithms that we described in the previous sections are constant factors
approximation (e.g. a 2-approximation for PICK-A-PERM and FAS-PIVOT,
a 11/7-approximation for the combination of the two). Claire Kenyon-Mathieu

3.3. COMBINING (PARTIAL) ORDERINGS 75

and Warren Schudy designed a polynomial time approximation scheme (PTAS)
[KMS07] which is able, for any given λ, to find an approximation π̂∗ such that

L(π̂∗) ≤ L(π∗) + λ (3.17)

in polynomial time.

Their algorithm supposes the existence of a AddApprox algorithm as, accord-
ing to [FK99], “there is a randomized polynomial-time approximation scheme
for maximum acyclic subgraph on weighted tournaments. Given β, η > 0, the
algorithm outputs, in polynomial time (...) an ordering whose cost is, with prob-
ability at least 1−η, less than OPT +βN2. The algorithm can be derandomized
into an algorithm which we denote by AddApprox, which increases the runtime
to NO(1/η)”. They also define the β parameter as

β(ε) = 2−O(1/ε log(1/ε)). (3.18)

where ε = λb and b defines the transitivity of the weights by

∀i, j ∈ {1, . . . , N} : wij + wji ∈ [b, 1]. (3.19)

Their algorithm exists in a randomized and a deterministic version, but we
will only describe the latter even if the former is, according to the authors, faster
than the latter, the latter is more intuitive. Firstly, they round the weights to
integers so as to reduce the computational complexity and ensure that this
complexity is bounded. Secondly, they apply a constant factor approximation
algorithm to determine the initial prediction π̂. Finally, they refine the predic-
tion by the use of single vertex moves (i.e. changing the rank of a single label
in the ordering) and the AddApprox function on a subset of the ordering.

Their deterministic PTAS is given in Algorithm 8.

3.3.5 Mallows model

Eyke Hüllermeier and his co-authors proposed another method [CH08, CHH09]
based on a probabilistic model (so-called Mallows model) over the set of permu-
tations Π(Y), whose parameters are derived by the maximum likelihood prin-
ciple from a sample {π1, . . . , πn} of possibly partial rankings (i.e. πi ∈ Π(Y)).
We will explain in details the ideas introduced by these authors while using our
notations, since several of these ideas are exploited in later chapters.

76 CHAPTER 3. PREFERENCE LEARNING

Algorithm 8 Deterministic PTAS [KMS07]

Input : Fixed parameters ε > 0 and b ∈]0, 1], A weighted tournament.
Output : An additive approximation π̂ whose cost is at most OPT + ε/b
Round weights to integer multiples of ε/N2.
π̂ ← constant factor approximation [ACN05].
while Some moves decrease the cost do

Apply these moves. Types of moves:
Single vertex move =
Choose vertex (label) y and rank j, take y out of the ordering π̂ and put it

back in so that its rank is j.
Additive approximation =
Choose intergers i < j.
Let U = { vertices (labels) with rank in [i, j]}.
π
′

U ← AddApprox(U) with parameter β(ε).

Replace the restriction πU of π̂ to U by π
′

U .
end while

3.3.5.1 Mallows model over complete rankings

The Mallows model is based on a loss-function `(·, ·) defined over Π(Y) and is
defined by two “parameters”, a centroid permutation π ∈ Π(Y), and a measure
of concentration around the center θ ∈ [0,∞[(the authors of [CH08, CHH09]
use the slightly counter-intuitive term of “spread” to denote θ).

Given these parameters and the loss function, the probability of observing a
permutation π ∈ Π(Y) is defined by

P (π|π, θ, `) =
exp (−θ`(π, π))

Z(θ, π, `)
, (3.20)

where Z is a normalization constant defined by

Z(θ, π, `) =
∑

π∈Π(Y)

exp (−θ`(π, π)) . (3.21)

Thus, if θ = 0, this model actually defines a uniform distribution over Π(Y)
whereas, if θ →∞, the probability mass is concentrated on the centroid π (as-
suming that the loss function `(π, π′) is non-negative and equal to zero only if
π = π′, as it is the case for all loss-functions used in practice).

3.3. COMBINING (PARTIAL) ORDERINGS 77

The authors of [CHH09] use the Kendall-tau loss-function `K defined by
eqn. (3.14), and show that in this case the normalization constant is actually
independent of π and may be computed efficiently by

Z(θ, π, `K) =

N∏
k=1

1− exp(−kθ)
1− exp(θ)

. (3.22)

3.3.5.2 Probability to observe an incomplete ranking

Given a partial information about the true permutation π′, in the form of a
partial ranking π ∈ Π(Y), we can infer that the probability to observe this
partial ranking is simply the cumulated probability mass over the set E(π) =
{π′ ∈ Π(Y) : π ∈ π′} of complete rankings compatible with π

P (E(π)|π, θ, `) =
∑

π′∈E(π)

P (π′|π, θ, `). (3.23)

Obviously, if π ∈ Π(Y), then P (E(π)|π, θ, `) reduces to P (π|π, θ, `).

3.3.5.3 Maximum likelihood estimation of the model parameters

In some context, if we are given a set of observations {π1, . . . , πn}, where each
πi ∈ Π(Y), i.e. is a possibly partial ranking of Y, and if we assume that
these observations were obtained by independently drawing them according to
a Mallows model of parameters (π, θ, `), we may use the maximum likelihood
principle in order to infer suitable estimates of π and θ. Namely

(π̂, θ̂) = arg max
π∈Π(Y),θ∈[0,∞[

n∏
i=1

P (E(πi)|π, θ, `). (3.24)

Notice that when ` = `K and all the observations are complete rankings,
this maximization problem can be rewritten as follows

arg max
π,θ

n∏
i=1

P (E(πi)|π, θ, `K) = arg max
π,θ

n∏
i=1

P (πi|π, θ, `K), (3.25)

= arg max
π,θ

n∏
i=1

exp
(
−θ`K(πi, π)

)
Z(θ, π, `K)

, (3.26)

= arg max
π,θ

∏n
i=1 exp

(
−θ`K(πi, π)

)∏n
i=1

∏N
k=1

1−exp(−kθ)
1−exp(θ)

, (3.27)

78 CHAPTER 3. PREFERENCE LEARNING

= arg max
π,θ

exp
(
−θ
∑n
i=1 `K(πi, π)

)(∏N
k=1

1−exp(−kθ)
1−exp(θ)

)n . (3.28)

The last maximization problem may be decomposed into two successive opti-
mization problems, namely

π̂ = arg min
π∈Π(Y)

n∑
i=1

`K(πi, π), (3.29)

θ̂ = arg max
θ∈[0,∞[

exp
(
−θ
∑n
i=1 `K(πi, π̂)

)(∏N
k=1

1−exp(−kθ)
1−exp(θ)

)n . (3.30)

Notice that the first (minimization) problem is the one that we have already
discussed in the preceding sections, and we know that this problem is difficult
to solve exactly.

On the other hand, once the solution of the first problem is given, the second
maximization problem is easy to solve. Indeed taking the logarithm of the right-
hand side of eqn. (3.30), we need to maximize

− θ
n∑
i=1

`K(πi, π̂)− n
N∑
k=1

1− exp(−kθ)
1− exp(θ)

, (3.31)

which can be shown to be equivalent to solving the following equation w.r.t. θ

0 =
1

n

n∑
i=1

`K(πi, π̂)− N exp(−θ)
1− exp(−θ)

+

N∑
k=1

k exp(−kθ)
1− exp(−kθ)

(3.32)

where the right-hand side is a monotone increasing function of θ [CHH09].

3.3.5.4 Approximate solution of the optimal centroid problem

The authors of [CHH09] recognize the difficulty to solve the problem

π̂ = arg min
π∈Π(Y)

n∑
i=1

`K(πi, π) (3.33)

exactly and hence propose another heuristic to solve it approximately, based on
so-called “Borda counts”. Because we will use this idea in later chapters, we

3.3. COMBINING (PARTIAL) ORDERINGS 79

describe here this method together with the intuitions behind it.

The main idea is to use as proxy for the Kendall-tau loss-function the Spear-
man rank correlation, which is often strongly correlated with `K and which leads
to a tractable optimization problem. The Spearman rank correlation between
two complete rankings in Π(Y) is defined as a sum of squared rank differences

`S(π, π′) =

N∑
k=1

(π(yk)− π′(yk))2, (3.34)

where we denote by π(yk) ∈ {1, . . . , N} the position at which label yk appears
in the ranking π. Given a set of full rankings {π1, . . . , πn}, one can find a
permutation π∗S minimizing the total loss

LS(π) =

n∑
i=1

`S(πi, π) (3.35)

by a very simple and efficient procedure. Indeed, an optimal π∗S may be obtained
by sequentially voting over the label set, and then sorting the labels according
to their votes.

In this so-called Borda counting scheme, each πi gives a vote of N+1−πi(yk)
to each label yk ∈ Y. The n votes obtained by each label are cumulated, and the
labels are then sorted according to these cumulated votes in decreasing order,
yielding an ordering which is optimal with respect to `S .

3.3.5.5 Handling partial rankings

In order to solve the general problem of finding a centroid π and a measure
of concentration θ well representing a sample {π1, . . . , πn} of possibly partial
rankings (i.e. πi ∈ Π(Y)), the authors of [CHH09] propose an Expectation-
Maximization like algorithm, of which we briefly sketch here the main ideas
(see [CHH09] for a more accurate description of the corresponding algorithms).

• At the first iteration, they choose an initial π̂ and θ̂ by assuming for each
partial ranking that its possible extensions (all full rankings compatible
with the partial one) are equally likely, and by exploiting slightly adapted
versions of equations (3.35) and (3.32) to this assumption.

• At any subsequent iteration, they proceed in two steps:

80 CHAPTER 3. PREFERENCE LEARNING

– use of the current probabilistic model parameters π̂ and θ̂ to complete
the partial rankings πi by their most probable extension πie, namely
the one minimizing `K(π1, πie) (it can be computed exactly, in an
efficient way);

– use of the completed dataset {π1
c , . . . , π

n
c }, and equations (3.35) and

(3.32) to compute updated values of π̂ and θ̂

• until π̂ (and hence θ̂) has reached a fixed point.

3.4 Similar domains

Some learning problems cannot be considered stricto sensu as a problem of
learning to rank, but are so closely related that they can be still addressed
by using ranking ideas. These problems include multi-label classification and
multi-label ranking. Each of these problems will be described in its own section
and at least one resolution protocol will be given for each problem.

3.4.1 Multi-label classification (MLC)

In multi-label classification (or MLC), each object xi ∈ X is labeled with a
subset of relevant labels Y i ⊂ Y, inducing that unused labels are not relevant
to this specific object. For instance, we could label movies according to their
types considering that a movie can have different types (Comedy and Sci-Fi,
or Drama and Horror, ...). The goal is to learn a model able to determine
which subset of labels Ŷ (x) ⊂ Y is relevant and which are irrelevant for a given
(possibly unseen) object x.

3.4.1.1 Solving MLC with MLP’s

A modified version of MLP suitable for multi-label classification was proposed
by Koby Crammer et al. in [CDK+06]. Their idea is to output a score for
each label which is enforced to be such that scores of relevant labels are higher
than scores of irrelevant ones. As they are working on multi-label classification
rather than ranking, they want to separate relevant labels from irrelevant ones.
The margin is the difference between the score of the lowest ranked relevant
label and the score of the highest ranked irrelevant label. A positive margin
means that every relevant label is ranked above irrelevant ones, but they also
impose the margin to be higher than 1 by applying an error loss according to
the following hinge-loss function:

3.4. SIMILAR DOMAINS 81

loss =

{
0 margin ≥ 1,
1−margin otherwise.

(3.36)

Koby Crammer et al. also proposed an algorithm that considers that the
obtained feedback takes the form of a partial ranking. They can thus separate
relevant labels from irrelevant ones. This information is represented using a
bipartite graph where relevant labels are on top of irrelevant ones, and each top
label is connected to each bottom label. The vertex [A,B] will thus be consis-
tent with the predicted total order if A > B in the order, and non consistent
otherwise. The loss function is then derived from this graph in four possible
manners:

loss =

Number of inconsistent vertices
Total number of vertices

(all-pair cover),{
0 All consistent vertices
1 otherwise

(0-1 cover),

Number of relevant labels which do not
dominate all the irrelevant labels

Number of relevant labels
(domination cover),

Number of irrelevant labels which are
not dominated by all the relevant labels

Number of irrelevant labels
(dominated cover).

(3.37)

and applied in a MLP algorithm.

3.4.1.2 Solving MLC with SVM

André Elisseeff and Jason Weston proposed in [EW02] the algorithm “RankSVM”
to perform multi-label classification by maximizing a separation margin, an ap-
proach which is in some sense similar to SVMs. This algorithm first outputs
a ranking and an additional procedure is required to set a separation between
relevant and irrelevant labels. However, we could skip this procedure if we solely
want to obtain a ranking as output.

Elisseeff and Weston work with m training samples of the form (xi, Y i) where
Y i is a subset of the complete set Y of labels associated with the input data xi.

82 CHAPTER 3. PREFERENCE LEARNING

He denotes by Y i the subset Y\Y i, that is, the subset of labels not associated
with object xi. Considering that the objective is to find N = |Y| vectors wk
which are used by sorting the values of 〈wk, x〉+bk to obtain a predicted ranking,
the following optimization problem needs to be solved :

min
i,j=1,...,N

N∑
k=1

||wk||2 + C

n∑
i=1

1

|Y i||Ȳ i|

∑
(k,l)∈Y i×Y i

ξikl (3.38)

s.t.: 〈wk − wl, xi〉+ bk − bl ≥ 1− ξikl,∀(k, l) ∈ Y i × Ȳ i, (3.39)

ξikl ≥ 0. (3.40)

However, this problem is quadratic in terms of the learning set size and is
generally solved in O(n3) steps, which is not acceptable, so the authors used
a linearization method combined with a predictor-corrector logarithmic barrier
procedure to be able to test their method on large datasets.

3.4.1.3 (Probabilistic) Chained Classification

The concept of Chained Classification first appeared in [RPHF09] by Read et
al. In opposition to Binary Relevance, or BR, which consists in training N
independent classifiers, each one predicting the relevance of one label, Chained
Classification takes the correlation between class labels into account. It also
builds N classifiers, but the data used to build the kth classifier contains the
input vector x plus the k − 1 outputs of classifiers {1, . . . , k − 1}. The first
classifier is build in a traditional manner, i.e. using only the feature vector x.
In the learning phase, the true outputs yj , j ∈ {1, . . . , k} given as supervision
are used for training the classifier k + 1 but, in the prediction phase, only the
predictions of classifiers {1, . . . , k} (plus the feature vector x) can be used as
input for classifier k+ 1 since the true outputs are not available, which can add
some bias. In the case where probabilistic classifiers are used (i.e. the output
of classifier k represents the probability that the corresponding class label yk is
relevant), the final prediction can be computed by thresholding the classifiers
outputs such that a set of binary values are obtained. Algorithm 9 describes
this process.

Since we are trying to maximize

P (y|x) =

N∏
k=1

P (yk|x, y1, . . . , yk−1), (3.41)

3.4. SIMILAR DOMAINS 83

Algorithm 9 Inference by Greedy Search [RPHF09]

Input : N binary classifiers h1, . . . , hN , feature vector x
Output : A relevance vector representing a subset of labels
for k = 1 . . . N do
yk ← hk(x, y1, . . . , yk−1)
if yk ≥ 0.5 then
yk ← 1

else
yk ← 0

end if
end for
return y = {y1, . . . , yN}

Dembvzynski et al. proved in [DWH12] that this greedy approach can lead to a
prediction which can be quite far from the true optimum. Consider for instance
the example given in Figure 3.5 representing a probability tree which is built
using the conditional outputs of each classifiers for a given x, and where the
leafs represents P (y|x) for each possible combinations y of the set of binary
variables. In this example, we are working with 3 classes. The first classifier
outputs the value of 0.6, meaning that there’s a 60% chance that label y1 is rel-
evant to the current feature vector x. According to the greedy policy, this label
is thus considered relevant and the output of the second classifier is calculated
based on the fact that y1 = 1. Again, P (y2 = 1|y1 = 1) = 0.6, thus we will con-
sider y2 as relevant and continue this process until we reach the leaf labeled by
(y1 = 1, y2 = 1, y3 = 1) which has a probability P (y|x) of 0.6 ∗ 0.6 ∗ 0.6 = 0.216
to be the prediction which minimizes the loss. However, if we could have ex-
plored the entire probability tree, we would have seen that a better solution was
(y1 = 0, y2 = 1, y3 = 1) since it has a probability of 0.4 ∗ 0.9 ∗ 0.9 = 0.324 to be
the prediction which minimizes the loss.

Exploring the entire probability tree would require the analysis of 2N label
combinations, which is extremely costly. The authors of [DWH12] provide two
algorithms in order to smartly search the tree. The first algorithm is based on
monte-carlo search. Starting from the root node, the search is performed by
flipping a biased coin at each node, where the probability to explore the left
branch is given by the output of the classifier (thus, the probability to explore
the right branch is equal to 1 - the output). This search is repeated s times

84 CHAPTER 3. PREFERENCE LEARNING

Figure 3.5: A probability tree. The probability of each leaf is computed as the
product of the classification outputs from the direct hierarchy and represents

the chance that the labeled solution minimizes the loss.

and the leaf with the maximum probability, across all discovered leaves, is the
prediction. The second algorithm is called ε-approximate inference and is shown
in Algorithm 10. In a nutshell, this algorithm explores the probability tree in
a best first manner. As long as P (yv|x) ≥ ε, where yv is the (partial) solution
represented by node v, the left and right child of v are expanded, otherwise
v is stored in another array K and the exploration on v is stopped. If v is a
leaf, then the solution yv is output. If no leaf can be reached, the greedy search
is applied to each node in K and the solution maximizing the probability is kept.

3.4. SIMILAR DOMAINS 85

Algorithm 10 ε-approximation inference [DWH12]

Input : A probability treeM representing N binary classifiers outputs based
on feature vector x, parameter 0 < k ≤ N
Output : A relevance vector representing a subset of labels
ordered list Q← {vM} (contains root node initially)
ordered list K ← {} (non-survived parents)
define

∏
(vM) = P (yM|x) = 1 (yM is the solution represented by node vM)

ε← 2−k

while Q 6= ∅ do
v ← pop first element in Q
if v is a leaf then

delete all elements in K and break the while loop
end if
lc(v), rc(v)← left and right child of v
compute

∏
(lc(v)) and

∏
(rc(v))

if
∏

(lc(v)) ≥ ε then
insert lc(v) in list Q sorted according to

∏
(lc(v))

end if
if
∏

(rc(v)) ≥ ε then
insert rc(v) in list Q sorted according to

∏
(rc(v))

end if
if lc(v) and rc(v) are not inserted in Q then

insert v in K sorted according to
∏

(v)
end if

end while
ε← 0
while K 6= ∅ do
v′ ← pop first element in K and apply Alg. 9 on the classifiers not handled

at this node
if
∏

(v′) ≥ ε then
v ← v′ and ε←

∏
(v′)

end if
end while
return The solution represented by v

86 CHAPTER 3. PREFERENCE LEARNING

The authors of [DWH12] conclude by showing, through an empirical valida-
tion, that their probability tree approach is more appropriate when the subset
0/1 loss, i.e. the loss is equal to 0 if the prediction perfectly matches the su-
pervision and is equal to 1 otherwise, needs to be minimized whereas the BR
algorithm should be used when the Hamming loss, i.e. the loss is the number
of independent label mistakes normalized in [0, 1], needs to be minimized.

3.4.2 Multi-label ranking (MLR)

Multi-label ranking is a combination of label ranking and multi-label classifica-
tion. The output of such a model is composed of a ranking of the set of labels
and a partition of it into two parts (relevant and irrelevant).

3.4.2.1 Solving MLR

The aggregation technique described in Section 3.3.23 was later applied to MLR
by the same authors (Brinker and Hüllermeier) [BH07]. To update this tech-
nique into MLR, a virtual label λ0 is added into the training sample between
the two partitions. As MLR is also susceptible to be applied to MLC data,
the loss function should be able to consider ties between labels (i.e. relevant
labels are preferred over irrelevant ones, but two labels from the same partition
have the same preference) and the optimization method is modified accordingly.

3.5 Existing reduction techniques

The aim of this thesis, which will be more extensively and formally described
at the beginning of Chapter 4, is to reduce the complexity of the Ranking
by Pairwise Comparison algorithm (RPC; described in Section 3.2.1.1). In a
nutshell, for a problem which has N labels, RPC requires the training of N(N−
1)/2 pairwise comparators. We develop methods and algorithms which aim at
finding a subset of T << N(N − 1)/2 comparisons, prior to the building of the
corresponding T comparators, which, if used in a RPC scheme, would perform
predictions which are nearly as accurate as the prediction of a RPC scheme using
all N(N − 1)/2 comparisons. Note that the subset of T comparisons is selected
offline, hence the same T comparators will be used to perform the predictions
of each object in the test sample.

3which is used in a kNN algorithm

3.5. EXISTING REDUCTION TECHNIQUES 87

A similar idea has already been proposed in the literature, in order to reduce
the complexity of the prediction procedure in an on-line fashion, which is dif-
ferent from our own objective although related. We will therefore describe the
QWeighted algorithm, which addresses the reduction problem at the prediction
time by trying only to predict the top ranked element, and one of its variants,
which predicts the top k elements in order to solve a multi-label classification
problem.

3.5.1 QWeighted algorithm

The QWeighted algorithm [PF07], designed by Sang-Hyeun Park and Johannes
Fürnkranz, proposes to reduce the complexity of RPC by trying to predict only
the top element in the ranking. Their algorithm 11 iteratively selects the com-
parisons which provide the most information in order to determine the best
label. They argue that “if class a has already received more than N − j votes,
and label b lost j votings, then it is impossible for b to achieve a higher total
voting mass than a”.

In the best case, only N − 1 comparisons are required to discover the top
ranked element (for instance, if the comparators are trained in classification
mode, ytop is selected as the first label in the first step and each comparator
which compares ytop to the other labels gives their preference to ytop), but
the worst case still requires the whole set of N(N − 1)/2 comparisons (when
each comparator provides a vote of 0.5). In average, the prediction of the
top class requires N logN comparisons. Note that, since the comparisons are
chosen at runtime, this supposes the availability of the whole set of N(N −1)/2
comparators. The computational gain thus only occurs at prediction time.

3.5.2 QWeighted for multi-label classification

A variant of the QWeighted algorithm has been proposed by Loza Menćıa et al.
[LMPF10]. The authors notice that the QWeighted algorithm could be applied
k times in order to obtain the top-k elements of the ranking (given that the loss
of the discovered top element is set to the infinite before the next call to the
QWeighted algorithm).

They can then solve multi-label classification problems, by inserting a fac-
tious label y0, which separates the set of relevant labels and the set of irrelevant

88 CHAPTER 3. PREFERENCE LEARNING

Algorithm 11 QWeighted algorithm [PF07]

Input : A set Y of N labels, a set of N(N − 1)/2 comparators qk,l.
Output : The top ranked label ytop
li ← 0 for all i ∈ {1, . . . , N}
while ytop not determined do
ya ← label yi ∈ Y with minimal li
yb ← label yj ∈ Y \ {ya} with minimal lj and comparator qa,b has not yet

been evaluated
if ¬∃yb then
ytop ← ya

else
vab ← Evaluate(qa,b)
la ← la + (1− vab)
lb ← lb + vab

end if
end while
return The top ranked element ytop

labels, then iteratively calling QWeighted until the predicted label is y0. Us-
ing this technique, each multi-label classification problem can be solved using
N+dN logN comparators, where d is the average number of labels per instance.

3.6 Summary and outlook

In this chapter we have sought to give an in depth analysis of the main stakes in
the field of preference learning, while reporting about the main sub-problems in
this field and the diversity of algorithmic approaches that have been proposed
in the literature.

In practice, the applications of preference learning are multitudinous, as
suggested by some of our examples used to illustrate ideas. But many of these
interesting applications lead to large scale problems, with large sample sizes n,
high input-space dimensions d, and large numbers N of items to rank.

Several preference learning approaches are based on reductions of the pref-
erence learning problem to a set of classical supervised learning problems (e.g.
RPC, most notably) or to an auxiliary problem obtained by restating the origi-
nal problem in a higher-dimensional space (e.g. the constraint based approach).

3.6. SUMMARY AND OUTLOOK 89

While very elegant, in principle, these approaches lead to algorithmic schemes
which can not be applied to very large scale preference problems, because of
computational complexity reasons.

Other approaches are based on embedded adaptations of existing supervised
learning techniques, so as to handle the particular structure of ranking problems
(e.g. the adaptation of decision tree induction, or of support vector machines,
proposed in the literature to cope with the goals of preference learning). While
very useful, per se, these latter approaches are however limited to the particular
base-learning algorithm to which they were tailored, and they also inherit its
intrinsic weaknesses. This makes it more difficult to take advantage, in the
scope of these approaches, of the many ongoing developments in the field of
supervised learning.

In this context, our investigations, reported in the subsequent chapters, were
originally motivated by the intuition that in the RPC approach it might not be
necessary, in order to learn a good ranking scheme, to exhaustively consider
the whole quadratic number of pair-wise comparisons as auxiliary subproblems.
Indeed, if it were possible to strongly trim the number of used comparators, say
to order N or N logN , without sacrificing accuracy, then this “trimmed” version
of RPC would become a very attractive approach to label-ranking problems,
since it can exploit any of the very effective supervised learning algorithms
available from the shelf.

We will analyze, in the two subsequent chapters, whether indeed this ap-
proach is interesting. In Chapter 4, we will precisely describe the algorithms
that we have designed and implemented to carry out this research, ranging from
very simple randomized schemes subsampling the set of possible comparisons, to
more sophisticated approaches aiming at finding an optimal subset of fixed size
of comparisons for a given problem by exploiting a training set for this problem.
In Chapter 5, we will provide an empirical evaluation of these approaches on
several datasets, of variable size, dimensionality and annotation quality, show-
ing that indeed it is possible to exploit these ideas in practice without loss of
accuracy, while keeping the algorithms intrinsically scalable. In the conclusion
chapter of this thesis, we will discuss whether these ideas could be carried over
to other types of algorithmic frameworks discussed in the present chapter, such
as the constraint based approach or the embedded techniques.

90 CHAPTER 3. PREFERENCE LEARNING

Chapter 4

Methods and algorithms

Contents
4.1 Formal description of the problem 93

4.1.1 Complexity reduction 94

4.1.2 Sparsity in partially ranked datasets 95

4.2 Scoring a ranking scheme on a sample 96

4.3 Dealing with sparsely ranked datasets 98

4.3.1 Modeling empty comparisons by dummy models . . 98

4.3.2 Dropping empty comparisons 98

4.4 Comparison selection algorithms 99

4.4.1 Evaluating a set of comparisons during optimization 99

4.4.2 Pure Random selection (PR) 100

4.4.2.1 Imposing a full class coverage 101

4.4.3 Estimation of Distribution Algorithm (EDA) 103

4.4.3.1 General principle of EDA 103

4.4.3.2 Application of EDA to comparator subset
selection 104

4.4.4 “Exhaustive” Greedy Search (EGS) 106

4.4.4.1 General principle of greedy algorithms . . . 106

4.4.4.2 Application of greedy algorithms to com-
parison subset selection : EGS 108

4.4.4.3 Alternative approach for EGS 109

4.4.5 Randomized Greedy Algorithm (RGS) 109

4.5 Models for learning comparators 111

4.6 Hard comparators vs soft comparators 114

91

92 CHAPTER 4. METHODS AND ALGORITHMS

4.7 Summary . 115

This chapter describes the algorithms, methods and protocols that we pro-
pose to use in order to efficiently solve the problem which we want to address.
In the first place, we will define some notions and notations which are required
to understand the sequel of this chapter.

For a given dataset, a fixed number of class labels are being considered, and
we denote them as Y = {y1, . . . , yN}, yk being a class label, Y is the total
number N of considered labels in the dataset. In each dataset, we are pro-
vided with a learning sample LS which contains n tuples {(xi, πi)}ni=1, where
xi is a feature vector describing the object oi and πi is an ordered subset of Y
corresponding to xi given as a supervision. We are also provided a test sam-
ple TS which also contains tuples (xi, πi) for (possibly) different objects than
those on the LS. LS will be used for training and TS will be used for evaluation.

For each pair of labels (yk, yl) where both labels are ranked in πi, we can
deduce a binary preference relation �ikl (also denoted as qikl) which is true if
yk is ranked before yl in πi, and false otherwise. We denote this relation by
the term “comparison”. A comparison qkl can thus only be verified for some
objects in the LS (i.e. those whose π indeed ranks yk with respect to yl). If we
want to predict the preference relation between yk and yl for any (and possible
unseen) object, we need to infer a model, based on objects in the LS providing
preference information for qkl, such that we can obtain a binary preference pre-
diction for each object. We define such a model as a “comparator” and denote
it as fkl(x).

When considering a set Y of N labels, a maximum of N(N − 1)/2 compar-
isons can be considered. We denote this set of comparisons by QFull.

In order to produce a prediction π̂ for a given vector of attributes x, we build
a comparator for each comparison in QFull. Each comparator fkl(x) will give a
vote vk to label yk and vl = 1− vk to label yl. These votes are kept in a table
of votes of size N , then each label in Y is ranked according to this table (i.e.
the label with most votes is ranked first, then the label with most votes except
the first ranked label is ranked second, and so on).

We evaluate the accuracy of one prediction by comparing π̂i, the predicted

4.1. FORMAL DESCRIPTION OF THE PROBLEM 93

ordering for xi (i.e. π̂i = π̂(xi)) to its supervision πi. The metric used to
compare two orderings will be discussed later. In order to evaluate the overall
accuracy of our predictions, we perform a prediction for each object in the TS
and compute the correlation (using the given metric) between this prediction
and its corresponding supervision label ordering given for this object. The mean
value of these correlation measures provides the ranking score STS(QFull) for
the set of comparisons.

We propose to use a subset Q ⊂ QFull of comparisons of size T << #QFull

so as to reduce the complexity of RPC (which uses QFull) without degrading
STS(Q) and we aim to design algorithms for finding the subset Q which maxi-
mizes STS(Q) for a given T .

In some cases, building a comparator for each comparison is not a trivial
task. This problem, as well as the complexity reduction issue, will be formally
defined in the next section.

We will then define the selected protocol used to compare the predictions to
the labeled orderings in Section 4.2. Section 4.3 will explain how we addressed
the issue of “hard-to-build” comparators. Section 4.4 describes the algorithms
that we will use to select a subset Q of comparisons. The SL algorithm used to
train the comparators is discussed in 4.5. Section 4.6 will discuss the possible
effect of the mode (regression vs classification) of the model used in the com-
parator training. Finally, Section 4.7 concludes by describing the way in which
we will validate our methods within the next chapter.

4.1 Formal description of the problem

The problem that we want to address can be divided into two subproblems.
Firstly, we want to reduce the complexity of the RPC algorithm by trimming
the set of considered comparisons while not drastically affecting its reliability.
Secondly, partially ranked datasets (where at least one object is not labeled by
a permutation of all possible labels) can be so sparse that some comparators
become hard to train. We will define these two subproblems in the following
two sections.

94 CHAPTER 4. METHODS AND ALGORITHMS

4.1.1 Complexity reduction

Let x ∈ X denote a vector of attributes of the object of concern, and let
Y = {y1, . . . , yN} be a set of labels (finite but often very large). The goal
of learning-to-rank is to infer a function f(x) computing complete orderings of
Y, based on a learning-sample LS composed of n pairs (xi, πi), where each
πi = (yi1 , . . . , yiki

) is an ordering of a subset of Y.

For each yk, yl ∈ πi, k 6= l, we can induce a preference relation yk �ikl yl
indicating that yk is preferred over yl in the (possibly partial) ordering πi. We
denote this preference relation based on the LS samples by the term “compari-
son” which can be true or false for a given object oi in the training sample LS
and for a pair of labels (yk, yl) where yk, yl ∈ πi . When trying to infer this
preference relation with SL algorithms, we are building a “comparator”, which
predicts the preference over two labels for a given (and possibly unseen) vector
of attributes.

In the RPC method (see [HFCB08]) one needs to train one comparator for
each comparison qkl, k = {1, ..., N − 1}, l = {k + 1, ..., N}. At prediction time,
each one of these N(N − 1)/2 comparators gives a vote vk to the label yk and
vl = 1− vk to the other label (yl), then the resulting votes are used to sort the
label set. The label with most votes is ranked first, then the label with most
votes apart from the first ranked label is ranked second, and so on. Ties are
broken arbitrarily (e.g. using a default order or at random). This method is
often accurate, but at a prohibitive computational price both for training and
prediction, because it uses O(N2) comparators. Based on the intuition that
many of the corresponding comparisons are redundant and/or unreliable, we
propose to pre-select, from a given dataset, a reduced subset of T comparisons
to be used by RPC. Once these are selected, a base learner is applied to the
LS to train a comparator for each one of them, and then used to rank unseen
objects.

Let QFull be the set of all N(N − 1)/2 comparisons and Q ⊂ QFull be a
subset of comparisons of size T . We can define a scoring function S(Q, x, π)
where x represents a vector of attributes for a given object (e.g. one from
the training sample) and π stands for the ordering labeled on x. This scoring
function S returns a real value which represents the correlation between the pre-
dicted ranking π̂; obtained by combining the predictions of the T comparators
corresponding to the comparisons in Q based on the feature vector x; and the

4.1. FORMAL DESCRIPTION OF THE PROBLEM 95

labeled rankings π. Obtaining the maximum score means that the prediction π̂
is compatible with the labeled example π (also quoted to as “control ranking”),
i.e. ∀yk, yl ∈ πi, k 6= l : yk �πkl yl ⇒ yk �π̂kl yl , where �πkl (and �π̂kl) is the
preference relation between yk and yl as given in π (respectively in π̂) while a
minimum score means that the reverse sequence of the prediction is compatible
with the control ranking. An average score (i.e. the mean between the max-
imum and the minimum score) means that the prediction has no correlation
with the control ranking.

To compute the performance of the predictions on a given sample, we av-
erage the scores S(Q, xi, πi) for all objects oi in the sample. We denote by
SLS(Q) (and STS(Q)) the performance of the predition, when using the subset
of comparisons Q, on the objects in the LS (respectively TS).

The aim of the algorithms developed in this chapter is to find an integer

value T << N(N−1)
2 and a corresponding subset of comparisons Q such that :

STS(Q) ≥ STS(QFull)− ε, (4.1)

T <<
N(N − 1)

2
. (4.2)

Although we do not define ε explicitly, we could reformulate the goal as:
“Find a value T and a subset Q ⊂ QFull of size T such that T is significantly
smaller than N(N − 1)/2 and that the accuracy of the predictions, based on a
given scoring function STS(Q), when using this set Q is not significantly lower
than the accuracy of the predictions when using all pairwise comparators.”

4.1.2 Sparsity in partially ranked datasets

In a given dataset, if each πi is a permutation of the whole set of labels, then this
dataset is said to be completely ranked, otherwise it is only partially ranked.
Typically, when N is large, the dataset is partially ranked.

In partially ranked datasets, most comparisons are only defined for a subset
of objects which is smaller than the set of all objects in the dataset. In general,
these objects are not uniformly distributed across all comparisons, hence some
comparisons might not be verified by any object (we will define them as “empty
comparisons”), thus some comparators cannot be trained (quoted “empty com-

96 CHAPTER 4. METHODS AND ALGORITHMS

parators”).

We did not find a solution to the problem of empty comparisons in the
literature. We need to find a procedure to deal with these empty comparisons
in such a way that the predicted orderings, when aggregating the comparators
outputs, remain as accurate as possible. We will discuss our proposed solutions
in Section 4.3.

4.2 Scoring a ranking scheme on a sample

Let us first describe how we compute a score to assess the quality of a given rank-
ing scheme based on a subset of comparisons Q and a sample LS = {(xi, πi)}ni=1.
We assume that for each comparison qkl ∈ Q we can compute a vote vik ∈ [0, 1]
for yk (and vil = 1−vik for yl) for any (xi, πi) ∈ LS. We can compute vik in three
ways. Firstly, we can build a comparator fkl(x) based on the LS and use this
model to perform a prediction on the preference of yk with respect to yl for the
feature vector xi in the form of a binary decision, thus vik ∈ {0, 1}. Secondly,
we can build a model, in a similar fashion, which provides a class-probability
estimation, thus vik would be a decimal value in [0,1] which represents the prob-
ability that yk is preferred over yl. Finally, we can construct our votes by
scanning πi and, for instance, give the value of 1 to vik if yk is preferred over yl
in πi, and 0 otherwise.

For any (xi, πi) ∈ LS, we start by initializing the votes of all labels in Y to
0. We then scan Q, and for each of its comparisons we add the vote vik (respec-
tively vil) given by the method to that of yk (respectively yl). Then, we consider
πi, and compute its rank correlation measure S(Q, xi, πi) with the ranking of
its subset of labels computed by the voting scheme. Finally, these correlation
measures are averaged over the sample LS to yield the overall ranking score
SLS(Q) of the ranking scheme Q. Notice that a value of 1 of this ranking score
would mean that the ranking scheme Q is able to produce orderings which are
compatible with all the partial rankings {πi}ni=1 given in our sample.

In the literature, two major correlation estimation functions arise, namely,
Spearman Rank Correlation [Spe04] (also quoted to as SRC, ρ, or rho) and
Kendall Tau [Ken38]. These two functions are defined by

4.2. SCORING A RANKING SCHEME ON A SAMPLE 97

(π, π′) 7→ 1−
6
∑#π
i=1(π(i)− π′(i))2

#π((#π)2 − 1)
,

for Spearman rank correlation and

(π, π′) 7→ 1− 4|{(i, j)|(i < j)
∧

(π(i) < π(j))
∧

(π′(i) > π′(j))}|
#π(#π − 1)

,

for Kendall tau rank correlation, where π and π′ are two rankings over the same
subset of labels, π(i) represents the position of label yi in ranking π and #π
denotes the number of labels in π. These two criteria differ only a little. They
both consider each label in the two rankings and compare their rank but, as
opposed to Kendall Tau which counts the number of pairwise disagreements
between π and π′, SRC considers the rank distance between identical labels in
π and π′.

We did not find any paper proving that the former is better than the latter
or conversely, but we will further want to compare our algorithms with pub-
lished results on the same datasets, and those results are expressed in terms of
SRC. We will thus use SRC to compute the scoring function S(Q, xi, πi) be-
tween the control rankings and our predictions. Note that this implementation
of S(Q, xi, πi) is consistent with its definition in Section 4.1.1.

In a RPC scheme, the prediction is a permutation of the whole set of labels,
but the labeled examples may only contain a subset of labels (i.e. the examples
are partially ranked). The Spearman Rank Correlation and the Kendall Tau
Rank Correlation can only be applied on two rankings over the same subset
of labels. Before computing the correlation measure, we will therefore remove,
from the complete ranking predicted, those labels which are not present in the
control ranking.

We would like to emphasize the fact that our algorithms used to select Q
(which will be presented in Section 4.4) are completely independent of the corre-
lation estimation procedure, and we could also have performed the optimization
process on Kendall Tau coefficients or any other function taking two orderings as
argument and returning a single numerical value. They are as well independent
of the precise way partial rankings given in the LS are handled.

98 CHAPTER 4. METHODS AND ALGORITHMS

4.3 Dealing with sparsely ranked datasets

In most datasets, each π is only an ordered subset of Y, thus each object
will not be able to provide any preference information for some, and often for
many, comparisons. To cope with this, the standard protocol in RPC (as ad-
vocated in [HFCB08]) is to drop, for the training of a particular comparator
fkl(x) comparing yk to yl, all observations oi, i ∈ {1, ...n} which do not pro-
vide explicitly the information about the preference of label yk over yl in πi.
However, in many cases, the datasets are so sparse that several pairwise com-
parisons are not provided with any information from the learning sample LS
(called “empty comparisons”) thus making the training of the corresponding
comparators (quoted “empty comparators”) an impossible task. We therefore
consider two approaches so as to counter this issue, and describe them in the
two following subsections.

Note that we address the problem of dealing with empty comparisons before
running our algorithms aiming at selecting the subset Q of comparisons.

4.3.1 Modeling empty comparisons by dummy models

If we really want to model all N(N−1)/2 possible comparisons, we could repre-
sent an empty comparison by a constant model which would always give a vote
of 0.5, independently of the input vector of attributes, providing half a point to
each label that it compares.

The use of such dummy models is supposed to set unseen labels near the
center of the predicted ordering. Since we evaluate the rank correlation by
computing the mean square distance between labels, we hope to reduce this
distance on most cases.

4.3.2 Dropping empty comparisons

The solution of dropping an empty comparison (and its corresponding com-
parator) is close to the original RPC algorithm in the sense that RPC removes
uninformative objects, and this solution also removes uninformative compar-
isons. It states that, in the event where it is impossible to find any object oi

∀i ∈ {1, ..., n} which could provide preference information about yk vs yl during
base model construction, the corresponding pairwise comparison qkl would not
be considered at all, i.e. QFull is replaced by one of its subset Q

′Full. Note that

4.4. COMPARISON SELECTION ALGORITHMS 99

we will further use “QFull” to represent both QFull and Q
′Full in the description

of our comparison selection and comparator training algorithms since they can
work on both.

Notice that the idea of dropping a priori from QFull all comparisons for
which no explicit supervision information is provided in the LS can be slightly
extended. Indeed, we could replace it by requiring that for a comparison to be
kept as a candidate member of the ranking scheme, it has to correspond to a
minimum number of objects in the LS for which explicit information is given
about this comparison. This idea is explored in the next chapter as a way of
pre-trimming the set of candidate comparisons.

4.4 Comparison selection algorithms

In this section, we will describe the algorithms that we propose to use in order
to select a subset of comparisons Q of a priori given size T . We formulate
an optimization problem and solve it using different heuristics1. Most of these
heuristics search for the optimal solution by considering one (or several) set(s)
of comparisons, compute the ranking score(s) SLS(Q) for this (these) scheme(s),
then use this (these) ranking score(s) in order to compute the new set(s) which
will be evaluated in the next iteration. Since the evaluation process of a given
scheme will be repeated frequently, particular attention should be given to the
implementation of this evaluation process. In the next subsection, we will define
how we chose to evaluate a set of comparisons during the optimization phase.
Sections 4.4.2 to 4.4.5 then describe four algorithms aiming to find near-optimal
solutions to the problem of selecting Q.

4.4.1 Evaluating a set of comparisons during optimization

In order to identify a subset Q of T pairwise comparisons we formulate an op-
timization problem which uses only the output information {πi}ni=1 from the
learning sample LS. For a given scheme Q, and for a given πi, this method
computes for each label pair (yk, yl) corresponding to qkl ∈ Q a vote vik which
value is 1 if yk is ranked before yl in πi, 0 if yl is ranked before yk in πi and 0.5

1A heuristic is an algorithm aiming at finding in a computationally efficient way a (nearly)
optimal solution to a given problem. Typically, a heuristic does not guarantee that it will find
the optimal solution. The use of a heuristic is justified when no efficient exact solution of the
optimization problem is available.

100 CHAPTER 4. METHODS AND ALGORITHMS

if at least one of the two labels (yk, yl) does not appear in πi .

Thus, instead of training T comparators on the LS in order to compute the
votes vij , ∀j ∈ {1, . . . , N} and use these votes to construct a predicted ranking

π̂i on the LS objects, we use (as a proxy) the labeled ranking πi given as a

supervision in the LS to extract our votes, and compute the ranking π∗
i

using
the 2T votes. Indeed, if we used comparators trained on the LS instead of
these given comparisons to construct the predicted ordering, we would expect
the base-learners to predict the votes vij on the LS in a very accurate manner.
Therefore, these trained models would with high-probability provide a predicted
ranking π̂i which would be very strongly correlated with the π∗

i

proxy derived
directly from the supervision information. Hence, optimizing Q according to
the ranking score with respect to π∗

i

rather than to π̂i should not drastically
change the final outcome.

Using this proxy, allows to compute the ranking score SLS(Q) of the rank-
ing scheme Q on the LS independently of the base-learners used subsequently
and without training these comparators, which greatly reduces the computing
times required for selecting the comparisons.

Next we describe the comparison subset selection algorithms that we have
investigated. They will aim at finding a subset Q ⊂ QFull maximizing STS(Q),
by optimizing Q according to SLS(Q) computed by our proxy.

4.4.2 Pure Random selection (PR)

In this approach we actually do not take advantage of the LS outputs. We
merely pick at random T comparisons without replacement from the uniform
distribution. We use a binary tree in order to save this distribution into memory,
such that both drawing a comparison and updating the distribution to remove
this comparison (in order to ensure that a comparison is not drawn twice in
the same set Q) is performed in O(log2(N2)) operations (see Section A.1 for
more details about this implementation). This very simple comparison selection
technique is called PR in the sequel.

This trivial approach seems useless, but it has in fact three advantages.

1. This is the fastest possible method, as no hard computations must be
performed;

4.4. COMPARISON SELECTION ALGORITHMS 101

2. The LS outputs will not be stored. These outputs will be required dur-
ing the model construction phase (for prediction), but only the T corre-
sponding outputs will have to be considered in that phase, rather than
N(N − 1)/2. It will thus save memory;

3. We will be able to see how redundant the data are, and what we can
globally expect from the method. It thus provides a baseline which can
be compared to further improvements in order to estimate the gain of
accuracy.

We will express the complexity of the PR algorithm (and subsequent ones)
with respect to the number of times that the Spearman’s ρ function is called
during the set selection phase. This method has a time complexity of 0, in terms
of the number of Spearman’s ρ evaluations, and is described by algorithm 12.

Algorithm 12 Pure Random Selection (PR)

Given: A set QFull of binary comparisons, an integer value T ≤ #QFull

Initialize P to the uniform distribution over QFull

Q← ∅
for i = 0→ T − 1 do
q ← randomly selected comparison in QFull via P , without replacement
Q(i)← q
QFull ← QFull \ {q}

end for
return Q

4.4.2.1 Imposing a full class coverage

Let us denote by CQ the coverage of the ranking scheme Q over the set of labels
Y. This coverage is defined as the number of labels which are compared at least
once to another label by a comparison in Q. We want CQ to be equal to N ,
i.e.we want that for each label yk ∈ Y, k ∈ {1, ..., N} there exists a comparison
qkl ∈ Q such that yk is compared to another label yl, l 6= k. If this condition is
not respected, some class labels are never given a chance to be well ranked, as
they are never compared to other labels in the subset Q.

During the random selection process, we will impose that each label yk is
compared at least once to another label yl by a comparison in Q. We start by

102 CHAPTER 4. METHODS AND ALGORITHMS

setting the count of occurrences of each label to the value of 0. Then, each time
a comparison qkl is randomly drawn, we scan the table of occurrences. If yk or
yl has an occurrence count of 0, then qkl is added in Q and the occurrences of
both yk and yl are set to 1. Otherwise, the comparison qkl is rejected.

In the case where we are dropping empty comparisons (see Section 4.3.2)
and, if for any set Q of size T , finding a set of comparisons Q ⊂ Q

′Full such
that every label in Y is compared at least once to another label is impossible,
then this full coverage condition falls.

The feasibility of imposing the full coverage condition is determined at first
offline (i.e. independently of the comparison selection algorithm and in an asyn-
chronous manner) by counting the occurrences of each label when using all
available comparisons in Q

′Full. This test is performed for each LS that we will
consider in the future (and for each dataset). If the condition is impossible to
satisfy when using all available comparisons in Q

′Full, it will also be impossible
to satisfy when using a smaller subset of comparisons. The feasibility is then
determined online (i.e. during the set selection) by dropping the condition if all
available comparisons were randomly drawn once, and yet #Q < T .

The pseudo-code description of this algorithm is given in Algorithm 13.

4.4. COMPARISON SELECTION ALGORITHMS 103

Algorithm 13 PR by imposing full coverage

Given: A set QFull of binary comparisons, an integer value T ≤ #QFull

Initialize P to the uniform distribution over QFull

Q← ∅
R← ∅
possible← true
for i = 0→ T − 1 do
qkl ← randomly selected comparison over yk and yl in QFull via P , without

replacement
if possible = false or CQ = N or CQ∪{qkl} > CQ then
Q← Q ∪ {qkl}

else
i = i− 1
R← R ∪ {qkl}

end if
QFull ← QFull \ {qkl}
if QFull is empty then
possible← false
QFull ← QFull ∪R

end if
end for
return Q

4.4.3 Estimation of Distribution Algorithm (EDA)

4.4.3.1 General principle of EDA

The aim of the estimation of distribution algorithm [LL01], also quoted to as
EDA, is to compute a distribution P over the solutions to a given problem,
taking into consideration that, in some cases, solutions are built by combining
several objects. The distribution P is iteratively updated. At each step i, the
distribution Pi is used to generate s solutions (each solution might consist of
several objects). The distribution Pi+1 is derived by attributing more weight to
the (objects which were comprised in the) top b solutions out of the s solutions,
according to a scoring scheme S. The distribution update process is repeated j
times.

The outcome of the EDA algorithm is strongly linked to the value of s, b and

104 CHAPTER 4. METHODS AND ALGORITHMS

j. Parameter s controls the sampling level and should be chosen high enough
such that the drawn sample is representative of the current distribution Pi.
However, the higher this value, the more computations have to be performed.
Parameter b controls the sensitivity/specificity level. Low values of b will make
the process very selective, with a high chance of missing less good but still inter-
esting solutions, but the retained solutions will be excellent. Conversely, high
values of b will make EDA consider less good solutions and make them more
likely to be drawn in the next iteration, but will lower the chance of missing an
interesting solution. In our implementation, the computational complexity of
the update of Pi+1 after obtaining the s evaluations also depends on b (if b is
low, the update will be faster than if b is high). Finally, parameter j sets the
computational effort. Too high values will make the computational time unnec-
essarily high when the probability distribution has converged with less than j
iterations, while too low values will stop the algorithm before convergence.

Figure 4.1 gives a good example of what the method can produce. At each
step i, a set of 12 objects Xs are drawn according to distribution Pi. The 6
objects Xb minimizing f(x) ∀x ∈ Xb are used to estimate Pi+1. Each iteration
will make the set of sampled objects Xs get iteratively closer to the optimum O.

4.4.3.2 Application of EDA to comparator subset selection

In our context, this algorithm first starts by assigning a uniform distribution
P0 over the comparisons in QFull, then iteratively updates this distribution by
deriving Pi+1 from the top b out of s comparison sets of size T drawn from
Pi, and stops after j iterations. The EDA method is sketched in Algorithm
14. Note that we will use EDA to find sets Q which maximize the ranking
score while we showed an example of a minimization problem. Conceptually,
this changes only a little. Instead of considering items with the lowest scores
(according to the scoring scheme S) to compute the new distribution Pi+1, we
simply consider items with the higher scores.

At each iteration, Pi+1 is computed as follows: the number of occurrences of
each comparison in the b out of s comparison sets are kept. For each comparison
qj ∈ QFull, let us denote by Nj a value which is comprised between 0 and b,
representing the number of sets in which qj appears in the top b sets. The
probability to draw a comparison qj at iteration i+ 1 is given by

4.4. COMPARISON SELECTION ALGORITHMS 105

Figure 4.1: Source : Wikipedia. Image : Johann Drého.
The EDA algorithm iteratively reduces the state space to keep interesting

elements. Here a minimization problem.

Pi+1(qj) =
Nj∑#QFull

k=1 Nk
. (4.3)

EDA should normally allow candidates which were not yet drawn in pre-
vious iterations. But, using our algorithm, it would be impossible to draw a
comparison which would not have been considered in previous iterations. To
counter this issue, we set Nj to 1 when qj was not in any of the s drawn sets,
then use these new Nj to compute Pi+1. We thus prevent a comparison to be
discarded because it was not drawn at the first iteration.

Since EDA uses PR to draw its s sets, the full class coverage property is
conserved (if possible).

106 CHAPTER 4. METHODS AND ALGORITHMS

The time complexity of the EDA method is nsj Spearman evaluations and
the corresponding pseudo-code is given in algorithm 14.

Algorithm 14 Estimation of Distribution Algorithm (EDA)

Input: dataset LS, s, b, j, T , QFull

Output: set Q of T comparisons
Initialize P to the uniform distribution over QFull

for i = 1 to j do
Draw s sets of T comparisons via P , without replacement, using PR
Keep the best b sets according to their ranking score SLS(Q)
Set P based on the counts of occurrence of kept comparisons

end for
Q = best set of T comparisons found along all iterations

4.4.4 “Exhaustive” Greedy Search (EGS)

One manner of finding the best subset Q ⊂ QFull according to the ranking
score SLS(Q) is to consider all possible subsets of size T , rank them according
to their ranking score, then select the best subset. The problem of this approach
is that the search space contains CT#QFull possible subsets2, and large values of

N , in combination with medium values of T (with respect to N(N − 1)/2), will
make this solution infeasible in practice. A very well known method to deal in
a heuristic way with this issue is the greedy search approach.

4.4.4.1 General principle of greedy algorithms

The greedy approach consists in (e.g. randomly) selecting an already considered
object in the search space, and then navigating in this space by selecting (e.g.
randomly) a neighbor among those which locally improve the performance as
much as possible. The size of the neighborhood has an influence on the per-
formances (both speed and accuracy). One of the extreme cases would be to
consider the whole search space as neighborhood, which would maximize the
accuracy but is equivalent to an exhaustive search. The other extreme is to
consider only the randomly selected object in the neighborhood, maximizing

2Ck
n = n!

k!(n−k)!

4.4. COMPARISON SELECTION ALGORITHMS 107

the speed and equivalent to a pure random selection.

In general, with a greedy approach, the true optimum is not guaranteed to
be reached because the union of all neighborhoods will typically not cover the
whole search space and, depending on the heuristic, the optimum might not be
present in this union of neighborhoods. Greedy algorithms iteratively perform
local optimizations, but the choices which are locally optimal are not necessarily
globally optimal. For instance, Figure 4.2 shows an example of a search space
with the global minimum on the right and a local minimum on the left. The
reached minimum depends on the starting point and, in the example, dots con-
nected to red arrows will find the true optimum while dots with black arrows will
be stuck on the local minimum. Moreover, if we consider that the neighborhood
only contains the closest neighbors, the two dots at the extreme left or right
will also be stuck in their respective positions since their closest neighbors do
not improve the score measure. One way to bypass this local minimum problem
is to repeat the process a certain number of times and randomize the starting
point, so that the true optimum has a higher chance to be reached in at least
one of these runs.

Figure 4.2: Dots connected to red arrows will find the true optimum while
dots with black arrows will be stuck in a local minimum

108 CHAPTER 4. METHODS AND ALGORITHMS

4.4.4.2 Application of greedy algorithms to comparison subset se-
lection : EGS

The greedy approach can be applied to our trimming problem. We first consider
the “exhaustive” greedy search (EGS) described by Algorithm 15. At each step,
this method screens all possible substitutions of a comparison q in Q by another
one (q′, not in Q), and keeps the best alternative in terms of ranking score
improvement. We are thus performing a maximization problem rather than a
minimization problem, but the principle remains the same. The advantage of
EGS is to be faster than evaluating all possible combinations while approaching
the best possible set of comparisons. However, this approach is still quite slow
and this method sometimes leads to a local maximum which can be quite far
from the global maximum (or, at least, from the best observed local maximum).

When validating this algorithm, we will run it several times and report av-
erages and standard deviations of the scores STS obtained over these runs.

The process of replacing each comparison q in Q is repeated j times. This
j value is not directly controlled but usually varies between 10 and 20 at each
run in our experimental setup. The iteration process stops when the ranking
score of Qi at iteration i is equal to the ranking score of Qi+1 at iteration i+ 1.

We chose to discard the full class coverage property (except for the first PR
selection) because EGS computes the ranking score S at each comparison swap
(in opposition to EDA which redraws T comparisons before computing SLS(Q)),
and we want to select the swap which maximizes the score, even if this swap
will disable the full class coverage property.

The EGS method has a time complexity of njT (N(N −1)/2−T) Spearman
evaluations (O(njTN2)), and is described in algorithm 15. Note that in this
case, the computational time of the Spearman evaluations is independent of T ,
which is not the case for EDA. Indeed, we can store the table of label votes for
a given set Q, then update this table by removing the effect of comparison q
and add the effect of comparison q′, which can be done in constant time. More
details about this implementation can be found in Section A.2.4.

4.4. COMPARISON SELECTION ALGORITHMS 109

Algorithm 15 Exhaustive Greedy Approach (EGS)

Input: dataset LS, T , QFull

Output: set Q of T comparisons
Initialize P to the uniform distribution over QFull

Set Q by uniformly drawing T comparisons from P without replacement using
PR
Set S = ranking score of Q computed from LS
while the score S improves do

for each q ∈ Q do
for each q′ 6∈ Q do

Compute the ranking score S∗ of Q∗ = (Q \ {q}) ∪ {q′} from LS
if S∗ > S then

set Q to Q∗ and set S to S∗

end if
end for

end for
end while

4.4.4.3 Alternative approach for EGS

As an attempt to reduce the local maxima impact, we tried to improve the EGS
method by iteratively replacing two comparisons simultaneously per iteration.
From a logical point of view, this is equivalent to extending the research radius
(neighborhood) such that some local minima would be ignored. This extension
gave very good accuracy results, as most of the runs provided the same set Q
whose ranking score was the highest across all runs, but was catastrophic in
terms of complexity. We could only test this approach on a very small database
where N = 10, thus N(N −1)/2 = 45. Yet the computational time was approx-
imately 10 minutes for T = 10 while it was in the order of the second with the
basic EGS for the same value of T . Indeed, the time complexity of this method
is njT (T − 1)(N(N − 1)/2 − T)(N(N − 1)/2 − T − 1)) Spearman evaluations
(O(njT 2N4)). We thus rejected this approach.

4.4.5 Randomized Greedy Algorithm (RGS)

Unfortunately, each iteration of the EGS algorithm needs to evaluate O(njTN2)
rank comparisons, which is unfeasible in practice for large label sets. A classical

110 CHAPTER 4. METHODS AND ALGORITHMS

strategy to reduce the computational burden of exhaustive search consists in
combining it with randomization [CLR90]. We thus modified the EGS algorithm
as follows: instead of considering all possible swaps, Algorithm 16 randomly
determines a candidate swap at each iteration and accepts it if the score is
improved. Otherwise, the previous set is kept for the next iteration. In both
cases, the sampling probability of the worst comparison is reduced so as to
reduce the probability of re-considering it in subsequent iterations. Let Sq
denote the ranking score on the LS when using the comparison q in Q, instead
of q′. In the same manner, we denote Sq′ the ranking score when using q′ in Q
instead of q. Considering that q is a worse comparison3 than q′, we compute
Pi+1(q), the probability to draw comparison q at iteration i+ 1, by

Pi(q) ∗
Sq+1

2
Sq′+1

2

.

Each other probabilities remain unchanged (Pi+1(q′) included). We then nor-

malize Pi+1 in such a way that ∀qj ∈ QFull,
∑#QFull

j=1 Pi+1(qj) = 1. We repeat
the process of swapping comparisons until stopping conditions are met. In this
study, we chose to perform at least j1 iterations and to stop when either the
last j2 iterations did not improve the score or when j3 iterations have been per-
formed. We call this method RGS (standing for “randomized greedy search”).

The analogy in our geometrical point of view corresponds to a search with
the same radius around the starting point, but only one random neighbor is con-
sidered at a time. Hence the neighbor minimizing the error is not guaranteed
to be selected. We only require the neighbor to perform a local improvement
in order to move to that point. In some sense, this can be seen as a two-level
randomization process, where the starting point is chosen within a uniform dis-
tribution and the neighbor object is selected using a weighted distribution.

We chose to drop the full class coverage property (except for the first PR
selection) for the same reason that we dropped it from EGS, namely because
if a comparison swap disables the full class coverage property but improves the
ranking score, we wish to keep this swap.

The complexity of the RGS method is n(j1 + j3)/2 Spearman evaluations
and the corresponding pseudo code is given in Algorithm 16. We chose j1

3If q′ is worse than q, replace “q” by “q′”’ in the sequel of the section, and conversely.

4.5. MODELS FOR LEARNING COMPARATORS 111

and j3 in such a way that the number of Spearman evaluations is close to the
number of Spearman evaluations when using the EDA selection algorithm (i.e.
(j1 + j3)/2 ≈ sj) in such a way that the comparison between RGS and EDA is
equitable.

Algorithm 16 Randomized Greedy Approach (RGS)

Input: dataset LS, T , QFull, j1, j2, j3
Output: set Q of T comparisons
Set the sampling distribution P to the uniform distribution over QFull

Set Q by drawing T comparisons via P without replacement
Set S = ranking score of Q computed from LS
while stopping conditions(j1, j2, j3) are not met do

Draw q ∈ Q uniformly
Draw q′ 6∈ Q according to P
Compute the ranking score S∗ of Q∗ = (Q \ {q}) ∪ {q′} from LS
if S∗ > S then

set Q to Q∗ and set S to S∗

decrease the weight of q in P and re-normalize P
else

decrease the weight of q′ in P and re-normalize P
end if

end while

4.5 Models for learning comparators

Once the set Q is determined, the RPC approach consists in using the avail-
able set LS (both inputs and outputs), for constructing one comparator for
each comparison in Q. This can be done by using a classification or a regres-
sion method, and by exploiting relevant information from the LS. To infer a
comparator fkl(x) corresponding to a comparison qkl ∈ Q for a certain label
pair (yk, yl) we will use the available LS = {(xi, πi)}ni=1 in order to generate a

comparator training set LSk,l = {(xj , yjk,l)}n
′

j=1, where yjk,l is derived from πj by

attributing 1 to yjk,l if yk �πj yl and 0 if yk �πj yl. If none of these preference

relations can be extracted from πj , the corresponding xj is dropped from LSk,l.
In the present section we motivate our choice of the base learner.

The previously depicted selection algorithms are completely independent

112 CHAPTER 4. METHODS AND ALGORITHMS

from the choice of the base learner used to compute the pairwise comparators
from the LS. However, the more accurate the comparators are, the more accu-
rate our predicted rankings will be and, since this research is based on numerous
empirical tests, we also want the base learner to be both fast at the training
time and at the prediction time, and as far as possible free of meta-parameters.

The Extra-Trees algorithm [GEW06] meets these requirements. It constructs
M randomized trees. In opposition to classical decision or regression trees, the
best feature and the best cut-point are not selected at each node. Instead, the
method picks K features (attributes) in a random fashion among the locally
non constant ones and, for each such feature, a random cut-point in its interval
of variation. Then, it selects the couple feature/cut-point which minimizes the
impurity of the output variable in the successor nodes (measured either by the
conditional entropy, in classification mode, or by the conditional variance, in
regression mode [GEW06]) and splits the node, as long as at least nmin objects
reached this node and not all features are constant. The pseudo-code for the
Extra-trees algorithm is depicted in Algorithm 17.

The algorithm has three meta-parameters (namely K, nmin and M) which
have an influence on the models that it computes. A discussion of default set-
tings of these meta-parameters can be found in Sections 3.1, 3.2 and 3.3 of
[GEW06]. Parameter K controls the dependence of the tree structure on the
output value of the learning sample. In the particular case where K = 1, feature
selection is completely independent on the output value, and one thus calls such
tree ensembles “Totally Randomized Trees”. The default setting for classifica-
tion is K =

√
#A , and it is K = #A for regression, where #A is the number

of attributes. The parameter nmin controls the pruning of the trees. With nmin

= 2, trees are fully grown, which is the default setting for classification. The
default value of nmin for regression is 5. Finally, parameter M allows to settle
the compromise between accuracy and complexity. The larger M is, the better
the model is in principle, but also the slower the model construction and their
use for prediction is and the higher the memory requirements for storing the
models is. There is thus no default setting for parameter M . The default set-
tings for the meta-parameters K and nmin, as cited from [GEW06], “appear to
be robust choices in a broad range of typical conditions”.

4.5. MODELS FOR LEARNING COMPARATORS 113

Algorithm 17 Extra-Trees algorithm [GEW06]

Input: dataset LS, M , nmin, K
Output: a set M of M trees
M← ∅
repeat
M← BuildOneTree(LS)
Add M in M

until M trees have been constructed

BuildOneTree(O)
Input: Input: the local learning subset O corresponding to the node which
we want to split
Output: a tree structure M
s← GetASplit(O)
if s = nothing then

return a leaf M labeled with O
else

Separate O in O1 and O2 using the split s such that O1 contains the objects
of O which satisfy the split condition of s and O2 containing the objects of O
which are not in O1

M1 ← BuildOneTree(O1)
M2 ← BuildOneTree(O2)
Label M with s
Attach M1 as left branch of M and M2 as right branch of M
return M

end if

GetASplit(O)
Input: the local learning subset O corresponding to the node which we want
to split
Output: a split [a < ac] or nothing
if StopSplit(O) is TRUE then

return nothing
else

select K attributes {a1, ..., aK} among all non constant (in O) candidate
attributes

Draw K splits {s1, ..., sK}, where si = PickARandomSplit(O, ai),∀i =
1, ...,K

Return a split s∗ such that Score(s∗, O) = maxi=1,...,KScore(si, O)
end if

PickARandomSplit(O, a)
Input: a subset O and an attribute a
Output: a split
Let aOmax and aOmin denote the maximal and minimal value of a in O;
Draw a random cut-point ac uniformly in]aOmin, a

O
max]

Return the split [a < ac]

114 CHAPTER 4. METHODS AND ALGORITHMS

Algorithm 17 (continuation) Extra-Trees algorithm [GEW06]

Stopsplit(O)
Input: a subset O
Output: a boolean
if #O < nmin or all attributes are constant in O or the output is constant in
O then

return TRUE
else

return FALSE
end if

When using an Extra-Trees model for prediction, each tree in the ensemble of
M trees provides an output value according to the values of the input features
of the test object and the terminal node induced by these values, by either
returning the majority class among training objects that went to this node (if
the tree is used in a classification mode), or the average output value (if it is
used in a regression mode). In order to compute a prediction over the ensemble
of M trees, the predictions of the individual trees are aggregated in the following
way: for regression, the predictions are computed as the average prediction of
the individual trees, while for classification the predicted class is computed as
the class that receives a majority of votes.

4.6 Hard comparators vs soft comparators

Using all pairwise comparators is indeed time-consuming, but it has the advan-
tage of giving a distinct score to each label between [0, N − 1], with no ties
(as long as the predicted pairwise relations are transitive and the comparators
are built in classification mode). Aggregating this information into a ranking is
thus deterministic.

Unfortunately, once the comparator set is being trimmed, even by removing
only a single comparator, one eventually has to deal with ties on some labels.
And the more comparators are removed, the more ties there are. So, we need
to define how to break these ties. The first and trivial approach is to arbitrarily
break them (e.g. at random, or using an alphanumerical order on the labels,
etc), but another approach could be to use soft comparators instead of hard ones.

4.7. SUMMARY 115

In the pairwise comparators construction, we only considered classification
mode so far, as we are only provided with a 0/1 vote in the LS. But there is no
restriction to use the regression mode in the model construction instead of the
classification mode. Having a decimal prediction rather than a 0/1 prediction
provides class-probability scores, rather than hard binary decisions. Hence,
variations in the label score table are more likely to occur, and would probably
make the breaking of ties a less arbitrary task. We will thus consider both
classification mode and regression mode when constructing our base models.

4.7 Summary

In this chapter, we have motivated and described four algorithms for selecting
a subset of comparisons to be used by RPC, namely PR, EDA, EGS and RGS.
We have also discussed the ways partial ranking information can be handled
and we motivated our choice of the Extra-Trees algorithm, which we will use
subsequently as base learner in the RPC framework. The next chapter will
analyze the preformances of these methods, in terms of ranking score, by means
of an empirical study over three different datasets.

116 CHAPTER 4. METHODS AND ALGORITHMS

Chapter 5

Results

Contents
5.1 Datasets used for experimental validation 119

5.1.1 OMIB database (synthetic, complete, N = 10) . . . 120

5.1.2 Sushi database (real life, partial, N = 100) 121

5.1.3 MovieLens database (real life, partial, N = 1682) . . 122

5.2 Effect of the model mode in a RPC scheme . . . 123

5.2.1 Using optimized tree parameters 124

5.2.2 Using sub-optimal tree parameters 125

5.2.2.1 Influence of parameter nmin 127

5.2.2.2 Influence of parameter K 128

5.2.2.3 Influence of parameter M 129

5.2.2.4 Influence of #LS 132

5.3 Evaluation of the PR selection method 133

5.3.1 Effect of imposing a full class coverage 134

5.4 Evaluation of EDA, EGS and RGS 136

5.4.1 Relevance of optimizing with respect to the LS outputs137

5.4.2 Ranking score on OMIB 139

5.4.3 Ranking score on Sushi 140

5.4.4 Ranking score on MovieLens 142

5.5 Effect of (meta-)parameters in a trimmed RPC
scheme . 145

5.5.1 Effect of the model mode 145

5.5.2 Effect of sparsity control 148

5.5.3 Influence of the tree parameters (on RGS) 154

117

118 CHAPTER 5. RESULTS

5.5.4 Influence of the default order used in tie breaking . . 158

5.5.5 Removing the object ID from the model construction 161

5.5.5.1 Using a 10-fold cross validation on both
Sushi databases 162

5.5.6 Using simulated perfect models 163

5.5.7 Setting the j1 and j3 RGS parameters to huge values 167

5.6 Complexity of our set selection algorithms 167

5.6.1 Time Complexity (computational speed) 169

5.6.2 Space Complexity (memory usage) 170

5.7 Concluding remarks 171

In order to validate the comparison set selection algorithms presented in
Chapter 4, we performed an empirical survey on three datasets. The first
dataset, called OMIB, is a synthetic dataset which can be used to train clas-
sification or regression models, and where the numerical output variable is a
function of the input variables. A perfect model would thus predict the output
variable with 0% error, hence experiments on this set would be performed in
a controlled environment. The OMIB dataset contains 8 features (attributes)
and 20.000 objects. The second database, called Sushi, is a partially ranked
database consisting of 500 objects, where each object is labeled by an ordering
on 10 classes out of 100. Sushi has 11 features. The third dataset, called Movie-
Lens, is composed of 100.000 observations, each of these being a triplet (x, y, S)
where x is the feature vector of one of the 943 objects, y is one of the 1682
labels and S is an integer value in {1, ..., 5} representing the rating of label y by
object x. MovieLens has 5 features. More details about the OMIB, Sushi and
MovieLens databases and, in particular, about the way we transformed OMIB
and MovieLens into label ranking databases will be given in Section 5.1.

The remaining sections are organized as follows : in Section 5.2, we will
study the effect of the mode of the base model (classification vs regression) on
a RPC-like ranking scheme, where Q = QFull, in terms of accuracy and ro-
bustness; we compare the ranking score of the ranking schemes when varying
the value of T 1 and using the PR algorithm to select the subset Q in Section
5.3. We evaluate the EDA, EGS and RGS algorithms as well as the relevance of
optimizing the subset based on the LS ranking scores in Section 5.4. In section
5.5, we investigate the effect of the meta-parameters, as well as the j1 and j3

1The case where T = #QFull being considered as well.

5.1. DATASETS USED FOR EXPERIMENTAL VALIDATION 119

parameters. We evaluate the complexity of each comparison set selection algo-
rithm with respect to the original RPC scheme in terms of space complexity
and time complexity in Section 5.6. Finally, Section 5.7 will end this chapter
with some concluding remarks.

Across all experiments, each dataset is partitioned into two parts: a learning
sample LS and a test sample TS. The test sample did not vary across all tests
(the last 10,000; 50; 143 objects for OMIB; Sushi; MovieLens respectively) and
the LS contained the remaining objects. When we vary the size of the con-
sidered learning sample, we select the first objects. These sizes were selected
arbitrarily for OMIB and MovieLens, but we used the same percentage for Sushi
as in its related publication ([KKA05])

We evaluate the accuracy of the ranking schemes by their overall ranking
score STS computed on the TS using the Spearman’s ρ correlation evaluations
to compare the labeled ranking πi and the prediction π̂i for each object oi ∈ TS
and calculate the mean value of these correlation measures as STS. In the case
of partial rankings in the test set, we removed, from the prediction, labels which
were not present in the control, for a given object, before performing the corre-
lation measure.

The base learners were always modeled using the Extra-Trees algorithm
[GEW06].

Because of the huge number of performed tests, we chose to select the set
of figures which are required to confirm our assessments and we discarded the
others, for readability purpose only. However, the complete set of figures can
be found in Appendix B.

5.1 Datasets used for experimental validation

In this section, we will present the three datasets used in our empirical valida-
tion, namely OMIB, Sushi and MovieLens. Table 5.1 provides an overview of
each dataset. This table contains, for each set, the number of objects (n), the
number of attributes (#A), the number of considered labels (N), the minimum
(min) and maximum (max) length of the provided rankings πi, and the ranking
score STS obtained by using the mean ordering π̂ (learned on the LS) for each
prediction on the TS. The mean ordering π̂ is obtained by using the gener-

120 CHAPTER 5. RESULTS

alized borda count discussed in Sections 3.3.5.4 and 3.3.5.5. In this scenario,
each πi in the LS is used to generate the mean ordering, and the label on rank
j ∈ {1, . . . ,#πi} receives (#πi − j + 1)(N + 1)/(#πi + 1) votes. Each missing
label receives (N + 1)/2 votes. According to the Theorem 1 of [CH09], this pro-
cedure will produce a mean ordering πi whose sum of squared rank distances is
minimal.

Database n #A N min max STS

OMIB 20.000 9 10 10 10 0.609.
Sushi 0 500 11 100 10 10 0.319.
Sushi 3 500 11 100 10 10 0.679.

MovieLens 943 5 1682 20 736 0.467.

Table 5.1: General informations about each considered dataset.

5.1.1 OMIB database (synthetic, complete, N = 10)

Figure 5.1: OMIB represents the stability of an electrical system

The OMIB database is related to a power system, depicted on Figure 5.1,
which can be secure or not with respect to its transient stability [Weh98].

It contains 7 input features (all numerical; PU, QU, XINF, VINF, PL, VL,
ObjectID), two output features (one numerical; CCT-SBS; and one symbolic;

5.1. DATASETS USED FOR EXPERIMENTAL VALIDATION 121

SECURITY) and 20,000 objects. Using some features describing these objects,
one can try to predict the degree of stability of the power system by estimat-
ing the Critical Clearing Time (quoted to as CCT-SBS, in the sequel). Larger
values of CCT-SBS correspond to more stable situations (the system is secure
if CCT-SBS > 0.155). 30.915% of the objects are labeled with the INSECURE
class, the rest being labeled with the SECURE class.

To transform the OMIB dataset into a ranking dataset, we created 10
equal-size bins according to the CCT-SBS value whose interval of variation
is [0.005, 0.495]. We set the size of each bin to 0.05, the first bin starting at
0.0 and the last bin ending at 0.5. Each object always prefers the bin in which
its corresponding CCT-SBS value falls into. Then the preference goes to other
bins, starting with the closest one and ending with the farthest one. This yields
a completely ranked dataset, as depicted in Figure 5.2.

Figure 5.2: Example of the transform of CCT-SBS = 0.18 to a ranking of size
10

Note that, considering the artificial aspect of this ranking, the experimental
results could be biased, as there exists a relation between bins. An object
preferring a bin Bi over Bj would always prefer Bi over all the bins that are
farther from it than Bj . Nevertheless, this relation was not considered and, as
far as the set selection algorithm could tell, the bins (and thus their associated
class labels) are independent.

5.1.2 Sushi database (real life, partial, N = 100)

The Sushi real life database [KKA05] contains information on the preferences
of Japanese people for various kinds of sushis according to their location. It
was built by asking some people to select, among 100 presented sushis, the 10
ones that they liked the most, and then to rank these latter according to their

122 CHAPTER 5. RESULTS

preferences.

The original dataset contained 5000 objects (people) which was reduced to
500 objects by using the k-o’s mean clustering algorithm [Kam03] and taking
the cluster whose mean square distance to the order mean was the smallest. It
uses 11 numerical features to describe the resulting objects, namely the User ID,
gender (0 or 1), age bracket (0→ 5), time to fill the questionnaire (in seconds),
prefecture ID, region ID and east/west ID of the place where they spent their
childhood, prefecture ID, region ID and east/west ID of the place where they
currently live, and 0 or 1 for the last attribute whether their currently live in
their childhood location or not.

Another version was also extracted from the original dataset. The features
remain identical but the 500 objects were selected at random from the 5000-
object database. To distinguish those sets, the authors quotes the version of
this database with 500 random objects as “Sushi 0” and the one resulting from
clustering as “Sushi 3”. Both datasets are only partially ranked.

Since the ordering which is provided as a supervision is an ordered subset of
the 10 most preferred sushis, each sushi in this ordering should be ranked higher
than any other unselected sushi. However, we will discard this information, and
reserve this problem for future work (see Section 7.2.1).

Some additional variants of these databases were also created from the two
500 object sets by truncating the labeled ranking and keeping the 2, 5 and 7 first
sushis. Another variant where the number of labeled sushis varied across objects
(but was still between 5 and 10 for each object) was also created. However, these
variants were not taken into account in our experimental validation process
and we only considered the two databases (Sushi 0 and Sushi 3) containing 10
ordered sushis per object.

5.1.3 MovieLens database (real life, partial, N = 1682)

The MovieLens real life database contains user ratings of movies [GRP73] and
exists in 3 versions; for memory usage and computational time reasons, we used
the smallest one. It contains 100,000 evaluations, in which a user gives a number
of stars (from 1 to 5) to a movie. Each one of the users has evaluated at least 20
and at most 736 movies of the 1682 ones present in the database. In the dataset
that we have used, there are 943 different objects (users), and 5 features are

5.2. EFFECT OF THE MODEL MODE IN A RPC SCHEME 123

used to describe them (4 numerical ; User ID, age, zip code and gender; and
1 symbolic; occupation). Ranks are derived from the stars by breaking ties
arbitrarily based on the alphanumerical order (see Figure 5.3 for an example of
the transform of ratings to an ordering). This yields a rather noisy and only
very partially ranked dataset.

Figure 5.3: Example of the transform of 4 ratings into a ranking of size 4
(MovieLens)

5.2 Effect of the model mode in a RPC scheme

A very simple modification of the RPC setting consists in changing the mode of
the base learners. We will investigate the effect of the use of class-probability
base learners (i.e. models trained in regression mode) instead of hard classifiers
(i.e. models trained in classification mode) in the RPC framework in the partic-
ular case where T = N(N−1)/2 and when using Extra-trees. A similar analysis
has been performed in [HFCB08], when the authors compared the ranking score
of RPC when used in classification mode or in regression mode. They obtain
probability estimations by applying a sigmoid function to the unthresholded
classification outputs [Pla99].

In this experiment, we will consider several values for the tree parameters
nmin, K and M as well as the number of objects in the LS, quoted #LS. Each
of these values is depicted in Table 5.2. We will use the symbol A to represent
the set of candidate attributes, and denote the size of the set A by #A. These
tree parameters were explored in an exhaustive manner: each possible combi-
nation was taken into account.

Note that, for this test, we only considered the Sushi 3 version of the Sushi
database (i.e., the one with the highest published ρ) because Sushi 0 is a noisy
and partially ranked dataset, and we believe that testing on this dataset would

124 CHAPTER 5. RESULTS

Parameter Values

nmin 2, 5, 10, 15 and 20.
K 1,

√
#A and #A.

M 25, 50, 100, 200 and 500.

#LS OMIB
5, 10, 20, 40, 80, 150, 300,
600, 1200, 2500, 5000 and 10000.

Sushi 5, 10, 20, 40, 80, 150, 300 and 450.
MovieLens 5, 10, 20, 40, 80, 150, 300, 500 and 800.

Table 5.2: Considered values for nmin, K, M and #LS

not provide significantly different informations than testing on the MovieLens
database, which is also noisy and partially ranked.

We chose to drop empty comparison at this stage, i.e. we dropped a com-
parison qkl if no object providing preference information about yk vs. yl were
available in the LSk,l.

We will first examine the effect of the model mode, in terms of ranking
score STS, when optimizing the tree parameters, then discuss the influence of
suboptimal tree parameters.

5.2.1 Using optimized tree parameters

To estimate the accuracy of the models, we performed a simple test, i.e. we kept
a part of the database as a test set, which was never used in model construction.

Figure 5.4 shows the maximum values of the Spearman’s ρ (on the Y axis)
when optimizing the tree parameters (which are given in Table 5.3) across all
data sets for the two different methods (hard classification vs. aggregation of
soft class-probability estimators). We observe that the two methods are nearly
equivalent in terms of ranking accuracy when each method uses its optimal tree
parameter values, including the size of the training sample.

5.2. EFFECT OF THE MODEL MODE IN A RPC SCHEME 125

Figure 5.4: Classification and regression have the same performance when
using optimal parameters

Database nmin K M #LS Mode

OMIB 10 3 500 10,000 Regr.
Sushi 3 15 3 500 450 Regr.

MovieLens 20 2 500 800 Regr.

OMIB 15 3 500 10,000 Clas.
Sushi 3 15 3 500 450 Clas.

MovieLens 20 2 500 800 Clas.

Table 5.3: Optimal tree parameters for each dataset and for each mode
(classification or regression).

5.2.2 Using sub-optimal tree parameters

As we wanted to have an idea of the relative performances of both approaches,
regardless of the values of the tree parameters, we thus counted the number of
occurrences where the regression method provided a ranking score which was
higher than the ranking score obtained using the classification method with the
same parameters, and we did this for each point in the parameter state space.

We then divided this number of occurrences by the number of possible pa-
rameter combinations, providing a percentage of “wins”, which is displayed on

126 CHAPTER 5. RESULTS

Figure 5.5, where the Y axis is the percentage of tree parameter combinations
which makes the regression mode provide better ranking score than the classi-
fication mode.

Figure 5.5: When considering sub-optimal tree parameters, regression mode is
globally better than classification mode on partially ranked datasets.

The Y axis represents the percentage of tree parameters combination which
favors regression with respect to classification in terms of ranking score.

We clearly see that the regression method has better results on the datasets
with partial rankings than on the one with full rankings. Indeed, we observe
even extremely good results as, in the case of the Sushi database, regression tree
ensembles beat decision tree ensembles on 92% of the cases.

As we expected, the base learners trained in regression mode give on aver-
age better results on datasets which contain partial rankings (Sushi and Movie-
Lens), but can also sometimes outperform models trained in classification mode
on complete datasets (OMIB), with particular values of the parameters, and
especially when the parameters are set so that the built models are quite bad
or over-fit the data (small LS, large K, small nmin, small M).

In order to evaluate the robustness of both modes with respect to each of the
tree parameters, we compared the ρ’s obtained by a model build in classifica-
tion mode versus regression mode when varying those tree parameters. For each
parameter (namely K, nmin, M and #LS), we fixed the value of one of them
while considering optimal selection for the remaining ones. We then compared

5.2. EFFECT OF THE MODEL MODE IN A RPC SCHEME 127

how the mode of the model affected the prediction.

Clearly, the regression mode is more robust (i.e. parameters has less influ-
ence) than classification mode on small and partially ranked datasets. Below,
we analyze this robustness more in detail.

5.2.2.1 Influence of parameter nmin

Our first results showed that the influence of the nmin value is marginal on
OMIB, has a similar effect on MovieLens when considering both modes, but
seemed to have a bigger impact on Sushi when building in classification mode
than in regression mode (Figure 5.6). The value of Spearman’s ρ is represented
on the Y axis, while nmin values are on the X axis.

(a) OMIB (b) MovieLens

(c) Sushi

Figure 5.6: The impact of parameter nmin can particularly be seen on Sushi.

We will define “the nmin effect” as the fact that the nmin parameter has
more influence on models built in classification mode than on models built in

128 CHAPTER 5. RESULTS

regression mode.

We then considered the differences between each dataset so as to determine
a particularity of Sushi which would explain why the nmin parameter has more
influence with respect to the mode on Sushi than on OMIB or MovieLens. We
considered the fact that Sushi is partially ranked, but MovieLens is also par-
tially ranked and the nmin effect was not observed on MovieLens. We then
considered the fact that Sushi is not very noisy, but OMIB is noise-free and we
did not notice any nmin effect on OMIB. Finally, we considered the fact that
Sushi contains few observations, and this particularity is not shared by OMIB
and MovieLens. It is hence possible that the nmin effect is more marked on
datasets with few observations.

In order to confirm (or infirm) our hypothesis implying that the nmin param-
eter would affect more models built in classification mode than models built in
regression mode when built using a small LS, we repeated the same experiment,
but limited the value of #LS to 80 for all datasets, i.e. we took the first 80
objects in each dataset to build the LS. This value was determined arbitrarily.
The results of this experiment are shown in Figure 5.7. Considering the two
partially ranked datasets (Sushi and MovieLens) that we tested, the nmin value
had much more influence on the Spearman’s ρ using classification mode than
regression mode. In regression mode, the Spearman’s ρ is more stable, with a
peak at nmin = 5, than in classification mode, where it starts decreasing from
nmin > 2. Such a difference was not observed using the completely ranked
OMIB dataset.

5.2.2.2 Influence of parameter K

We performed similar experiments but varied the K parameter instead of the
nmin parameter. We also performed two experiments: in one experiment we
limited the #LS to 80 and in the other one we did not impose this constraint.
The observed results are depicted in Figure 5.8, whose axis follows the same
structure as in Figures 5.6 and 5.7, but with a different parameter (Spearman’s
ρ on the Y axis, value of parameter K on the X axis).

The K parameter seems to act similarly on both methods. The only signif-
icant observable event is that using K = 1 (i.e. totally randomized trees) gives
worse results on the completely ranked OMIB dataset, trimming the learning

5.2. EFFECT OF THE MODEL MODE IN A RPC SCHEME 129

(a) OMIB, imposing #LS ≤ 80 (b) MovieLens, imposing #LS ≤ 80

(c) Sushi, imposing #LS ≤ 80

Figure 5.7: The influence of parameter nmin on partially ranked datasets is
stronger when limiting #LS to 80 than without this limitation.

set sample or not. This can be explained by the fact that OMIB contains an
attribute “Object ID”, whose value is not correlated to the output variable
CCT-SBS, output variable that we used to construct our orderings. In the case
of K = 1, this attribute has a chance to be selected for node split, while with
greater values of K, this attribute would be less likely to be selected, hence
reducing the number of irrelevant splits. For partially ranked datasets Sushi
and MovieLens, parameter K has little influence.

5.2.2.3 Influence of parameter M

We performed two similar experiments (limiting #LS to 80 or not) with respect
to the M parameter. Figure 5.9 shows the observed results.

The number of trees does not have a significant effect, for every considered
combination of full ranking, partial ranking, small data set and big data set,

130 CHAPTER 5. RESULTS

(a) OMIB, no constraint on #LS (b) OMIB, imposing #LS ≤ 80

(c) MovieLens, no constraint on #LS (d) MovieLens, imposing #LS ≤ 80

(e) Sushi, no constraint on #LS (f) Sushi, imposing #LS ≤ 80

Figure 5.8: The influence of parameter K is equivalent for both modes.

which only means that nearly optimal values of ρ are reached using a very small
number of trees for these particular data sets, which are thus not very demand-
ing in terms of the number of trees.

In order to quantify the magnitude of this effect, we divided the ranking
score STS when using M = 25 trees by the ranking score when using M = 500

5.2. EFFECT OF THE MODEL MODE IN A RPC SCHEME 131

(a) OMIB, no constraint on #LS (b) OMIB, imposing #LS ≤ 80

(c) MovieLens, no constraint on #LS (d) MovieLens, imposing #LS ≤ 80

(e) Sushi, no constraint on #LS (f) Sushi, imposing #LS ≤ 80

Figure 5.9: The influence of parameter M is marginal on a full RPC scheme.

trees. For both modes and across each datasets, this quotient was superior to
99.8% and was even slightly over 100% for OMIB in regression mode.

We could also explain this phenomenon by considering that the aggregation
phase (i.e. the transform of pairwise comparators into an ordering) induces

132 CHAPTER 5. RESULTS

a level of “smoothness” with respect to the predictions. For instance, if we
consider the predictions of qij , qik and qjk to be equal to 0.8;0.7;0.2 respectively,
the produced ordering i � k � j would be similar to the ordering produced by
qij = 0.7, qik = 0.55, qjk = 0.3. Thus, the accuracy of the base learners have a
moderate influence on a full RPC scheme, which would explain why the ranking
score STS would be acceptable, even with M = 25.

5.2.2.4 Influence of #LS

Finally, we performed the same experiment with respect to #LS. Of course,
the variant with the constraint #LS ≤ 80 was not taken into account. Figure
5.10 shows the observed results.

(a) OMIB (b) MovieLens

(c) Sushi

Figure 5.10: The ranking scores of the predictions start to degrade when
#LS ≤ 300 on all datasets.

The size of the training sample does not seem to have much effect on the pre-
diction when comparing classification mode and regression mode. As expected,

5.3. EVALUATION OF THE PR SELECTION METHOD 133

we see that the prediction with respect to the ranking score is improving with
#LS and reaches convergence at about #LS = 300. For instance, on the OMIB
database, the ranking scores are very similar for each LS such that #LS ≥ 1200.

5.3 Evaluation of the PR selection method

We will set the baseline of our trimming methodology by computing the ranking
score STS when using the PR (pure random) algorithm to select the set Q ⊂
QFull of comparisons. We grow the number of comparisons according to the
values in Table 5.4 where these values represent

√
N ,
√
N log10(N), N/2, N ,

2N , N log10(N), N(log10(N))2 and N
√
N . Some values of T account for several

of these representations depending on the dataset.

Database N N(N − 1)/2 #Q
′Full Values of T

OMIB 10 45 45 3, 5, 10, 20 and 30.

Sushi 0 100 4950 3408
10, 20, 50, 100, 200, 400 and
1000.

Sushi 3 100 4950 3485
10, 20, 50, 100, 200, 400 and
1000.

MovieLens 1682 1,413,721 955,623
41, 132, 841, 1682, 3364, 5436,
17503 and 68983.

Table 5.4: Considered values for T and #Q
′Full. Recall of values of N and

N(N − 1)/2.

We will only use regression trees as base learners, as we showed in Section 5.2
that both modes are approximately equivalent, with the advantage of regression
trees to be more robust with respect to the tree parameters. We will assess the
effect of the model mode in Section 5.5.1.

The parameters of the Extra-trees method are set in the following way :
K =

√
#A, nmin = 2, M = 500. We have seen in Section 5.2 that using

K =
√

#A or K = #A gave similar results, and using only the square root of
the number of attributes will speed up the split selection. We use nmin = 2 to
construct fully grown trees, which will perfectly perform on the LS, because it
works well in average on the 3 datasets (see Section 5.2.2.1). We use M = 500
in order to ensure that the variations in the ranking score will be inherent to

134 CHAPTER 5. RESULTS

the value of T , and not due to a lack of accuracy in our base models.

We will use both Sushi 0 and Sushi 3 because we have seen that the size of
the training set could have some collateral effect (e.g. the “nmin effect” in Sec-
tion 5.2.2.1) and we might observe different behaviors between MovieLens and
Sushi 0, which are both noisy and partially ranked while MovieLens has more
observations and more labels than Sushi 0. Both Sushi 0 and Sushi 3 consider
the same T values.

We will drop empty comparisons at this stage (i.e. use Q
′Full instead of

QFull) and we will repeat the selection process 100 times (we will thus evaluate
100 ranking scores) per value of T .

In this section, each graph represents, on the vertical axis, the ranking score
STS as a function of the value of T . The green line represents the ranking
score of RPC when using all available comparisons (in Q

′Full). The blue line, if
present, represents the higher published ρ for the dataset. Results are depicted
in the form of a box plot on Figure 5.11.

We can see that a large value of T is required to obtain a set whose pre-
diction is interesting, although significantly lower than RPC. If we consider, for
instance, the accuracy on Sushi 3 database, we see that even with 1000 compar-
isons (thus T = N

√
N), the ranking score STS is lower than 90% of the ranking

score when using all comparisons. The predictions are rapidly degrading with
smaller values of T .

5.3.1 Effect of imposing a full class coverage

We formulated, in Section 4.4.2.1, the hypothesis that imposing (as much as
possible) a full class coverage over the set of labels by the comparisons in Q
would improve our predictions because, without a full class coverage, some la-
bels would never be given the chance to be well ranked.

We will now verify this hypothesis by repeating the previous test2 but with-
out imposing any class coverage. That is, the comparisons are drawn from

2Performing 100 runs where each run draws T comparisons using the PR algorithm.

5.3. EVALUATION OF THE PR SELECTION METHOD 135

(a) OMIB N = 10,
#QFull = 45.

(b) MovieLens, N = 1682,
#QFull = 955, 623.

(c) Sushi 0, N = 100,
#QFull = 3408.

(d) Sushi 3, N = 100,
#QFull = 3485.

Figure 5.11: The ranking scores of the predictions are rapidly degrading when
removing comparisons in a random fashion.

the uniform distribution without replacement and without any additional con-
straint. The results are depicted in Figure 5.12.

Globally, imposing a full class coverage does not significantly improve the
predictions. In some cases, the constraint improves the prediction (e.g. OMIB,
T = 10; Sushi 0, T = 50; Sushi 3, T ≤ 200; MovieLens, T = 132), but in other
cases, the opposite holds true (e.g. OMIB, T = 3; Sushi 0, T = 1000; Sushi 3,
T ≥ 400; MovieLens, T = 3364). In most cases, however, and in particular with
MovieLens, the variations are very slight, thus hardly observable, and probably
only due to the random initialization variance. We will not perform a similar

136 CHAPTER 5. RESULTS

(a) OMIB N = 10,
#QFull = 45.

(b) MovieLens, N = 1682,
#QFull = 955, 623.

(c) Sushi 0, N = 100,
#QFull = 3408.

(d) Sushi 3, N = 100,
#QFull = 3485.

Figure 5.12: The class coverage constraint does not seem to have a significant
effect on the predictions.

comparison when using the EDA algorithm, because we think that the observed
results would be similar. Although we will still impose the full class coverage
in EDA, even if we showed that the constraint has a marginal influence on the
accuracy, because it is a more fair approach with respect to the labels.

5.4 Evaluation of EDA, EGS and RGS

In this section, we will discuss the accuracy, in terms of Spearman’s ρ, of the
EDA, EGS and RGS set selection methods.

5.4. EVALUATION OF EDA, EGS AND RGS 137

We carried out tests, for growing numbers of comparisons, with our 3 more
elaborated set selection algorithms. Each setting was tested 100 times for EDA
(while each execution of the algorithm is performed by selecting the top 50 sets
of comparators among 100), 100 times for EGS (which was only performed on
the OMIB database for computational time reasons) and 100 times for RGS.
All of these tests were performed in regression mode and we used the same tree
parameters as for the PR algorithm3.

For EDA, we selected j = 20, s = 100 and b = 50 arbitrarily. For RGS,
we chose j1 = 2000, j2 = 100 and j3 = 3000 in such a way that the number of
Spearman evaluations are at least equivalent to the number of Spearman evalu-
ations performed by EDA. With respect to EDA however, we set a small margin
during which RGS is allowed to continue its process as long as it improves the
ranking score at least once in 100 iterations.

Each graph will follow the same representation as in section 5.3 and show
a boxplot diagram per couple dataset/method. The Y-axis is the Spearman’s
ρ observed on the test set and the X-axis is the number of comparators being
used. The control is the original RPC method and is depicted with a green
horizontal line. The blue line, if present, shows the best published Spearman’s
ρ for this dataset.

We will first justify the relevance of optimizing on the LS outputs, then we
will compare the results of our trimming algorithms in terms of ranking score.

5.4.1 Relevance of optimizing with respect to the LS out-
puts

Each trimming algorithm that we will further consider (namely EDA, EGS and
RGS) have this in common that the optimization process (i.e. the search for a Q
maximizing the ranking score STS) is based on the maximization of the ranking
score SLS. That is, in each of these algorithms, we consider that the higher the
ranking score SLS on the LS outputs for a given Q is, the higher the ranking
score STS on the model predictions will be for the same Q. We thus iteratively
select the set Q which maximizes SLS. However, this only makes sense if there

3K =
√

#A, nmin = 2 and M = 500.

138 CHAPTER 5. RESULTS

effectively is a correlation between SLS and STS.

We define by “architecture” a combination of tree parameters and the pa-
rameter T . In Section 5.3, we obtained 100 sets Q per architecture when using
the PR algorithm. We now use each of these sets Q to compute SLS and STS for
each Q and compare these two values in a two dimensional graph. Figure 5.13
shows the observed results, where the vertical axis represents the ranking score
on the TS while the same measure on the LS is represented on the horizontal
axis. Each dot represents a set Q in an architecture. The corresponding figures
when drawing the set Q from the set QFull instead of Q

′Full can be found in
Section B.2.

(a) OMIB (b) MovieLens

(c) Sushi 0 (d) Sushi 3

Figure 5.13: Correlation between SLS and STS.

5.4. EVALUATION OF EDA, EGS AND RGS 139

In all four datasets, there effectively is a (approximately linear) correlation
between SLS and STS, this correlation being strongly marked. We can thus
assess that, in general, the higher the ranking score on the training sample
is, the higher the ranking score on the test sample is, thus we can assess that
performing the optimization process by using the ranking scores SLS is relevant.

5.4.2 Ranking score on OMIB

This section will discuss the observed ranking scores STS on OMIB when using
EDA, EGS and RGS. Note that EGS was only tested on the OMIB database,
as the computational time of each iteration of this method is O(N2)Tn 4 in
the number of Spearman evaluations and hence was not feasible on the other
datasets having much larger numbers of labels. The observed results are de-
picted in Figure 5.14.

Without much surprises, the EGS selection method is the most efficient one
as it can reach an average5 ranking score of nearly 0.9 (i.e. 0.877), in terms
of Spearman’s ρ, with only 5 comparisons. However, since this algorithm was
only tested on the OMIB dataset, this assessment can only be verified once.
The RGS method, while slightly better than PR, is rather disappointing in the
sense that a high value of T is still required to obtain good accuracy results, i.e.
RGS requires 10 comparisons to reach an average ranking score of 0.832 and
requires as high as 20 comparisons to reach an average ranking score of 0.88.
EDA actually performs quite well and is able to reach an average ranking score
of 0.864 with 10 comparisons.

We will define a normalized version of STS by STS which is defined in [0, 1]
by

STS =
STS + 1

2
. (5.1)

We will express the improvement in accuracy by a percentage pTS, which
is computed by dividing STS when using the method to compare (EGS, RGS,

4Note that this square order also directly depends on T . Indeed, with a very large value of
T , the number of possible candidates for replacement is strongly reduced, up to the extreme
case where T = N(N − 1)/2 and where no candidates for replacement can be found.

5computed as the mean of the ranking scores obtained over 100 runs

140 CHAPTER 5. RESULTS

(a) OMIB, PR (b) OMIB, EDA

(c) OMIB, EGS (d) OMIB, RGS

Figure 5.14: Comparison between all set selection algorithms on OMIB.

EDA) by STS when using PR, for a given Q.

With respect to the PR algorithm, each method performs much better than
PR when T is small, while the gain is marginal when T is large (e.g. pTS, when
using EGS, is 145.16% for T = 3 and is only 104.17% for T = 30). The complete
percentage results can be found in Table 5.5.

5.4.3 Ranking score on Sushi

We performed the same experiments on the Sushi databases using the same ex-
perimental setup as in OMIB. Figure 5.15 shows the observed results for Sushi 0
and Sushi 3.

5.4. EVALUATION OF EDA, EGS AND RGS 141

T EDA vs PR RGS vs PR EGS vs PR

3 137.07% 115.85% 145.16%.
5 129.36% 109.41% 133.41%.
10 114.61% 109.83% 117.48%.
20 106.57% 105.40% 109.04%.
30 102.33% 102.68% 104.17%.

Table 5.5: Comparison of the relative performance of EDA, EGS and RGS
w.r.t. PR on OMIB. The percentage represents (STS + 1)/2 when using either
EDA, EGS or RGS divided by (STS + 1)/2 when using PR for the same value

of T .

EDA and RGS still perform better than PR. RGS is better than EDA when
T ≤ 200 but is beaten by EDA by a small margin when T ≥ 400. Note that,
again, RGS and EDA improve the ranking score with respect to PR in a stronger
way when T is small than when T is large. The comparison with PR for each
considered value of T , for the two methods (EDA and RGS) and for the two
datasets (Sushi 0 and Sushi 3) is given in Table 5.6.

Sushi 0 Sushi 3
T EDA vs PR RGS vs PR EDA vs PR RGS vs PR

10 111.27% 115.73% 125.79% 137.12%.
20 111.62% 114.19% 127.54% 133.23%.
50 108.02% 111.96% 115.39% 120.44%.
100 106.29% 109.85% 109.76% 113.63%.
200 105.76% 106.65% 106.87% 107.88%.
400 104,15% 103.45% 105.47% 104.84%.
1000 102.35% 102.13% 102.39% 101.48%.

Table 5.6: Comparison of the relative performance of EDA and RGS w.r.t. PR
on Sushi 0 and Sushi 3. The percentage represents (STS + 1)/2 when using

either EDA or RGS divided by (STS + 1)/2 when using PR for the same value
of T .

142 CHAPTER 5. RESULTS

5.4.4 Ranking score on MovieLens

When performing the survey on MovieLens, we can conclude in the same way
as for Sushi that RGS is the most accurate method. This time, RGS clearly
converges more rapidly than EDA (and the former is better than the latter
for any considered value of T) and can produce a set Q whose prediction is
interesting starting at T = 841 (thus T = N/2). Figure 5.16 shows the observed
results and Table 5.7 quantifies the accuracy improvement for EDA and RGS.

T EDA vs PR RGS vs PR

41 107.68% 146.88% .
132 108.72% 159.16%.
841 105.80% 129.29%.
1682 104.28% 120.23%.
3364 103.51% 113.54%.
5426 102.82% 109.65%.
17503 101.36% 103.64%.
68983 100.64% 100.74%.

Table 5.7: Comparison of the relative performance of EDA and RGS w.r.t. PR
on MovieLens. The percentage represents (STS + 1)/2 when using either EDA

or RGS divided by (STS + 1)/2 when using PR for the same value of T .

5.4. EVALUATION OF EDA, EGS AND RGS 143

(a) Sushi 0, PR (b) Sushi 3, PR

(c) Sushi 0, EDA (d) Sushi 3, EDA

(e) Sushi 0, RGS (f) Sushi 3, RGS

Figure 5.15: Comparison between all set selection algorithms on Sushi 0 and
Sushi 3.

144 CHAPTER 5. RESULTS

(a) MovieLens, PR (b) MovieLens, EDA

(c) MovieLens, RGS

Figure 5.16: Comparison between all set selection algorithms on MovieLens.

5.5. EFFECT OF (META-)PARAMETERS IN A TRIMMEDRPC SCHEME145

5.5 Effect of (meta-)parameters in a trimmed
RPC scheme

We will differentiate the regular parameters, which are directly related to the
set selection algorithms and can change its output (e.g. s, b, j, j1, j2, j3, ...) from
the meta-parameters, which also have an impact on the ranking score, but not
on the set selection algorithms output (e.g. the tree parameters, the mode of
the model (classification or regression), ...).

In this section, we perform an analysis of the latter, as well as the j1 and
j3 parameters, with respect to the impact that they have on the accuracy. In
Section 5.5.1, we analyze the effect of the model mode. Then, we investigate the
effect on the sparsity control in Section 5.5.2. The effect of the tree parameters
on RGS will be discussed in Section 5.5.3. In Section 5.5.4, we analyze the effect
of the default order used to break the ties. In section 5.5.5, we remove the “Ob-
jectID” attribute and evaluate its impact on the predictions. In Section 5.5.6,
we evaluate the RGS set selection algorithm when simulated perfect models are
used as comparators. Finally, in Section 5.5.7, we perform a small experiment
to validate our arbitrary choice of the j1 and j3 parameters.

5.5.1 Effect of the model mode

So far, we only considered the regression mode in our experiments, as we have
shown that on a full RPC scheme, this choice was generally beneficial. We will
now consider the effect of classification vs regression when trimming the set of
comparators. We will consider the effect on the most accurate trimming meth-
ods (EGS for OMIB, RGS for Sushi and MovieLens) and display this effect on
Figure 5.17 for OMIB and Figure 5.18 for Sushi and MovieLens. Note that
we performed this experiment for all set selection methods. The corresponding
figures can be seen in Section B.1.

Regression mode improves the accuracy with small values of T , while this
effect is less pronounced with higher values of T , meaning that using class-
probability estimators (models in regression mode) rather than binary classifiers
allows to use less comparators for the same desired ranking score STS. This ef-
fect is more pronounced on the OMIB database, but can be seen across all sets.

The general trend of regression outperforming classification can be seen

146 CHAPTER 5. RESULTS

(a) OMIB, EGS, Classification (b) OMIB, EGS, Regression

Figure 5.17: Effect of the model mode on the predictions when using optimal
selection algorithm on OMIB.

across all datasets and for each set selection method. We will thus not de-
tail each figure separately. Note that regression mode outperforms classification
mode for any considered value of T < N(N − 1)/2.

5.5. EFFECT OF (META-)PARAMETERS IN A TRIMMEDRPC SCHEME147

(a) MovieLens, RGS, Classification (b) MovieLens, RGS, Regression

(c) Sushi 0, RGS, Classification (d) Sushi 0, RGS, Regression

(e) Sushi 3, RGS, Classification (f) Sushi 3, RGS, Regression

Figure 5.18: Effect of the model mode on the predictions when using optimal
selection algorithm for Sushi and MovieLens.

148 CHAPTER 5. RESULTS

5.5.2 Effect of sparsity control

Until now, we have addressed the problem of sparsity in partial rankings by
dropping empty comparisons. In this section, we will now consider the effect of
our alternative manner of dealing with sparsity in partial rankings, namely mod-
eling the absence of information by using a dummy model (or “UDM”, which
stands for “Using a Dummy Model”, see Section 4.3.1). We will refer to the fact
of dropping empty comparisons as “DEC”. We only show the performances of
models in regression mode and use the same architectures as in Sections 5.3 and
5.4. We will compare accuracy in terms of ranking score STS on all datasets
and for the RGS set selection algorithms, these results being depicted in Figure
5.19 for Sushi 0, Sushi 3 and MovieLens. OMIB being a fully ranked dataset,
we did not have to deal with the sparsity issue. The performances of models
used in classification mode as well as the performances for the other comparison
selection methods can be seen in Section B.1.

Dropping empty comparisons is detrimental to RPC as it slightly reduces
the ranking score (as you can see by comparing the green lines). However, when
using a trimmed set, dropping empty comparisons improves the ranking score
when compared to the ranking score obtained by using constant models to rep-
resent empty comparisons, for any value of T . Both effects can be seen across
all sets and for all set selection method.

5.5. EFFECT OF (META-)PARAMETERS IN A TRIMMEDRPC SCHEME149

(a) Sushi 0, RGS, DEC (b) Sushi 0, RGS, UDM

(c) Sushi 3, RGS, DEC (d) Sushi 3, RGS, UDM

(e) MovieLens, RGS, DEC (f) MovieLens, RGS, UDM

Figure 5.19: Effect of the manner of dealing with sparsity in Sushi 0, Sushi 3
and MovieLens.

150 CHAPTER 5. RESULTS

Since we have seen that removing empty comparisons was beneficial when
using a trimmed set, we will investigate how the ranking score evolves (both
when Q = QFull and when using trimmed sets) when removing even more com-
parisons a priori from QFull. Indeed, we assume that using a comparison which
only has one object in its own LS would also be detrimental as the correspond-
ing comparator would be a constant model.

We will thus investigate the effect of removing comparisons containing only
few objects in their own LS. We will perform two additional experiments. In
the first one, a comparison must have at least two objects in its LS in order
to have a chance to be selected. In the second one, this criterion is raised to 5
objects. We only tested the most accurate selection method, RGS, in regression
mode. Results are depicted in Figure 5.20 for Sushi 0, Figure 5.21 for Sushi 3
and Figure 5.22 for MovieLens.

What we see, by comparing the green lines, is that the performance of RPC
when using all available comparisons decreases when the constraint is stronger.
However, RGS will converge faster to the performance of RPC. Therefore, for a
small T , the performance of RGS is improved when #Q

′Full is strongly reduced.
Once again this can be seen across all figures, which we will not detail. In
the case when we only wish to use T = N , we should thus impose that each
comparison is represented by at least 5 objects in order to be modeled by a
comparator. We wanted to push this idea to the extreme case and compute the
ranking score of a scheme that ranks the comparisons according to their #LS
and use the first T of these comparisons. Results are shown in Table 5.8.

5.5. EFFECT OF (META-)PARAMETERS IN A TRIMMEDRPC SCHEME151

(a) Sushi 0, UDM,
#QFull = 4950

(b) Sushi 0, DEC,
#QFull = 3408

(c) Sushi 0, at least 2 objects,
#QFull = 2487

(d) Sushi 0, at least 5 objects,
#QFull = 1278

Figure 5.20: Effect of alternative manners of dealing with sparsity in Sushi 0.

T Sushi 0 Sushi 3 MovieLens
√
N -0.104 (0.048 ± 0.053) 0.120 (0.178 ± 0.101) -0.213 (-0.089 ± 0.021)√

N log10(N) 0.079 (0.113 ± 0.062) 0.240 (0.296 ± 0.109) -0.140 (0.151 ± 0.021)
N/2 0.143 (0.209 ± 0.052) 0.392 (0.486 ± 0.073) 0.083 (0.374 ± 0.017)
N 0.174 (0.241 ± 0.042) 0.403 (0.556 ± 0.047) 0.145 (0.398 ± 0.015)
2N 0.190 (0.249 ± 0.043) 0.500 (0.583 ± 0.042) 0.217 (0.403 ± 0.013)

N log10(N) 0.190 (0.249 ± 0.043) 0.500 (0.583 ± 0.042) 0.254 (0.408 ± 0.015)
N log10(N)2 0.218 (0.262 ± 0.035) 0.544 (0.616 ± 0.033) 0.369 (0.439 ± 0.010)

N
√
N 0.287 (0.294 ± 0.029) 0.595 (0.650 ± 0.026) 0.421 (0.477 ± 0.006)

Table 5.8: Ranking score obtained by selecting the comparators with the most
objects in their own LS. The numbers in brackets represents the average (left)

and standard deviation (right) of STS over 100 runs of the RGS algorithm
when using dummy models.

152 CHAPTER 5. RESULTS

(a) Sushi 3, UDM,
#QFull = 4950

(b) Sushi 3, DEC,
#QFull = 3485

(c) Sushi 3, at least 2 objects,
#QFull = 2544

(d) Sushi 3, at least 5 objects,
#QFull = 1290

Figure 5.21: Effect of alternative manners of dealing with sparsity in Sushi 3.

When selecting the comparisons based only on the number of objects in their
LS, we see that the performance is strongly degrading and, for instance, when
T = N , letting RGS select the set of size T of comparisons which have 5 objects
or more is better than selecting the T comparisons which have the most objects.

5.5. EFFECT OF (META-)PARAMETERS IN A TRIMMEDRPC SCHEME153

(a) MovieLens, UDM,
#QFull = 1, 413, 721

(b) MovieLens, DEC,
#QFull = 955, 623

(c) MovieLens, at least 2 objects,
#QFull = 665, 936

(d) MovieLens, at least 5 objects,
#QFull = 393, 685

Figure 5.22: Effect of alternative manners of dealing with sparsity in
MovieLens.

154 CHAPTER 5. RESULTS

5.5.3 Influence of the tree parameters (on RGS)

In this section, we perform a similar experiment as in Section 5.2.2, i.e. we ana-
lyze the impact of each tree parameter on the ranking score STS, when using the
RGS set selection algorithm, since we have proven that this algorithm was the
most efficient. We consider the same architectures as in Section 5.6 and show
the results when using regression mode and dropping empty comparisons. The
corresponding figures when building the models in classification mode and/or
using constant models to represent an empty comparison can be found in Sec-
tion B.4. Figures 5.23, 5.24, 5.25 and 5.26 show the observed results for OMIB,
MovieLens, Sushi 0 and Sushi 3 respectively.

(a) OMIB, parameter K (b) OMIB, parameter nmin

(c) OMIB, parameter M (d) OMIB, #LS

Figure 5.23: Influence of the tree parameters on OMIB when using RGS.

5.5. EFFECT OF (META-)PARAMETERS IN A TRIMMEDRPC SCHEME155

(a) MovieLens, parameter K (b) MovieLens, parameter nmin

(c) MovieLens, parameter M (d) MovieLens, #LS

Figure 5.24: Influence of the tree parameters on MovieLens when using RGS.

For each dataset, the observed results are similar. The tree parameters does
not seem to have a significant effect on the accuracy of the predictions. What is
more interesting is that the parameter M follows the same trend. This means
that using as few as 25 trees in the model is sufficient, hence the smoothing ef-
fect that we noticed in Section 5.2.2.3 is also noticed when using trimmed sets.
A similar effect was observed in classification mode (see Appendix B).

Interestingly, a similar number of observations (with respect to the full RPC)
are required to produce accurate models, meaning that the trimming method-
ology does not increase the “learning effort”.

156 CHAPTER 5. RESULTS

(a) Sushi 0, parameter K (b) Sushi 0, parameter nmin

(c) Sushi 0, parameter M (d) Sushi 0, #LS

Figure 5.25: Influence of the tree parameters on Sushi 0 when using RGS.

5.5. EFFECT OF (META-)PARAMETERS IN A TRIMMEDRPC SCHEME157

(a) Sushi 3, parameter K (b) Sushi 3, parameter nmin

(c) Sushi 3, parameter M (d) Sushi 3, #LS

Figure 5.26: Influence of the tree parameters on Sushi 3 when using RGS.

158 CHAPTER 5. RESULTS

5.5.4 Influence of the default order used in tie breaking

Until now, we used the reverse alphanumerical order as default order to
break our ties. However, this choice was completely arbitrary and we wish to
estimate how relevant this choice is and, if not, what other alternatives could
be interesting.

To evaluate the reverse alphanumerical order in tie breaking, we computed
the ranking score, obtained on the TS, when using this order as unique pre-
diction for each object. This score is given in Table 5.9. We can see that, on
each dataset, the ranking score is negative. By definition of the Spearman’s
rank correlation coefficient, we can obtain the opposite score by reversing the
sequence and obtain better predictions. However, we wanted to achieve state-
of-the-art and applied Theorem 1 of [CH09]. This theorem states that, for any
set of partial orderings of size p and under certain assumptions, it is possible to
find an ordering which minimizes the average Spearman’s rho by attributing,
for each partial ordering in the set:

(p− i+ 1)(N + 1)/(p+ 1) votes to each label on rank i ∈ {1 . . . p} , and

(N + 1)/2 votes to each missing label.

These votes are aggregated and used to form the mean ordering, by ranking
the label with most votes at the first place, then the label with most votes except
the first one in the second place and so on. The ranking score obtained by using
this mean order as unique prediction is also depicted in Table 5.9. We now
see that this order outperforms the two other ones and, according to [CH09],
minimizes the average Spearman distance.

Database Reverse Alphanum Alphanum Mean

OMIB -0.255 0.255 0.609
Sushi 0 -0.175 0.175 0.319
Sushi 3 -0.322 0.322 0.679

MovieLens -0.429 0.429 0.467

Table 5.9: Ranking score obtained by using the default order (i.e.
alphanumerical, reverse alphanumerical, or mean) as unique prediction for

each object of the TS.

We now perform an experiment where we use the mean order to break our

5.5. EFFECT OF (META-)PARAMETERS IN A TRIMMEDRPC SCHEME159

ties. We performed this experiment using EGS on OMIB and RGS on MovieLens
and on both Sushi databases. We trained our comparator in both classification
and regression mode. We dropped empty comparisons. Results are depicted in
Figure 5.27.

We can clearly see that, for small values of T , the effect is very significant:
using the mean order to break ties is far more efficient than using the reverse
alphanumerical order. When T gets bigger, this effect fades.

We also see that the mode of the comparators have less effect on the accu-
racy. Since the ties are broken in a more efficient manner, we assume that the
fact that classification mode implies more of these ties is less detrimental.

Please note, however, that we still use the reverse alphanumerical order dur-
ing the evaluation process of our set selection algorithm. Indeed, we noticed
that using the mean order in the learning phase causes the algorithm to pro-
duce worse predictions than when using the reverse alphanumerical order. The
possible reason for this behaviour is that using the mean order to break ties
makes the predictions very accurate, hence improving these predictions is more
difficult than with the reverse alphanumerical order, where there is more room
for improvement. The figures corresponding to this alternative experiment (i.e.
when using the mean order to break ties in the learning phase) are shown in
Appendix B.1.3.

We also want to repeat the experiment where we select the comparisons
based on the size of their auxiliary LS, but using the mean order to break the
ties. Results are shown in Table 5.10. We see that we obtain similar results
as when using RGS. This time, however, models trained in classification mode
clearly outperform models trained in regression mode.

Our major concern w.r.t. the results (both for RGS and when sorting the
comparisons based on their #LSaux) is that we observe, for the two partially
ranked databases, that adding some comparisons can degrade the prediction
quite significantly and, as a matter of fact, the most efficient method consists
in using the mean order as unique prediction, which is quite disappointing. Of
course, this assessment is only valid on the databases that we used and given
the values of T which we chose to analyze. We assume that our comparators
are not built in the most efficient manner and we will discuss this issue in the
next section.

160 CHAPTER 5. RESULTS

(a) OMIB, EGS, Classification (b) OMIB, EGS, Regression

(c) Sushi 0, RGS, Classification (d) Sushi 0, RGS, Regression

(e) Sushi 3, RGS, Classification (f) Sushi 3, RGS, Regression

(g) MovieLens, RGS, Classification (h) MovieLens, RGS, Regression

Figure 5.27: Ranking score when using the mean order to break ties.

5.5. EFFECT OF (META-)PARAMETERS IN A TRIMMEDRPC SCHEME161

T Clas Regr

10 0.272 0.234
20 0.292 0.275
50 0.285 0.261
100 0.255 0.229
200 0.269 0.233
400 0.263 0.242
1000 0.297 0.288

(a) Sushi 0

T Clas Regr

10 0.618 0.597
20 0.633 0.588
50 0.634 0.577
100 0.594 0.506
200 0.592 0.543
400 0.578 0.561
1000 0.621 0.596

(b) Sushi 3

T Clas Regr

41 0.454 0.449
132 0.454 0.446
841 0.438 0.416
1682 0.429 0.409
3364 0.414 0.394
5426 0.409 0.394
17503 0.423 0.409
68983 0.442 0.428

(c) MovieLens

Table 5.10: Ranking score obtained by sorting the comparisons based on their
number of examples and using the mean order to break ties.

5.5.5 Removing the object ID from the model construc-
tion

In order to construct our comparators, we used all available information (i.e.
we used each attribute in the feature vector). This seems to have sense, but can
actually be counter-productive. Indeed, we know, from general machine learn-
ing knowledge, that using an attribute which is not correlated to the output
adds bias to the prediction because, in that case, performing a class separation
based on this attribute is equivalent to performing a random class separation.
The “Object ID” is such an attribute, and appears in all of our databases. In
OMIB and MovieLens, this attribute is sorted. Since we chose to use the first
part of our databases as learning set, and the last part as test set, we have an
even worse problem, which is that the object in the test set will always follow
the left branch of a split based on that attribute.

We wanted to know how this attribute degrades our predictions, and there-
fore we performed an experiment, where the object ID is removed from the
list of candidate attributes in the comparator construction. We run the EGS
algorithm on OMIB and RGS on both Sushi and MovieLens. We drop empty
comparisons. We perform this experiment in classification mode and in regres-
sion mode, but only show the results in classification mode in Figure 5.28. The
figures corresponding to the regression mode can be found in the Appendix B.

162 CHAPTER 5. RESULTS

Actually, the ranking score does not seem to be much affected by the “Ob-
jectID” attribute, as observed by comparing Figure 5.28 to Figure 5.27. This
can be explained by the fact that the extra-trees algorithm is very robust to the
presence of irrelevant features, especially when we built 500 of these trees.

(a) OMIB, EGS (b) Sushi 0, RGS

(c) Sushi 3, RGS (d) MovieLens, RGS

Figure 5.28: Ranking score when using the mean order to break ties and
removing the object ID from the model construction (Classification mode).

5.5.5.1 Using a 10-fold cross validation on both Sushi databases

So far, we compared ourself to the state-of-the-art provided in [KKA05]. How-
ever, the authors performed a 10-fold cross validation and we only perform a
single test. It is hence possible that our predictions are too optimistic (or con-
versely too pessimistic) depending on our selected fold. We thus repeated the

5.5. EFFECT OF (META-)PARAMETERS IN A TRIMMEDRPC SCHEME163

previous test on both Sushi databases, but performed a 10-fold validation. Fig-
ure 5.29 shows the results where we display the mean value of the 1000 ranking
scores per value of T .

As we see no significant difference from the general trend which we observed
until now, we can conclude that our accuracy estimates were acceptable.

(a) Sushi 0, RGS (b) Sushi 3, RGS

Figure 5.29: Ranking score when using the mean order to break ties and
removing the object ID from the model construction (Classification mode).
The mean value of the 100 runs of RGS in the 10-Fold cross validation is

shown.

5.5.6 Using simulated perfect models

The last results are quite disappointing, because we discovered that using the
mean order as unique prediction was equivalent or better on all of our partial
ranking datasets than any other trimming technique. We assumed that the use
of an attribute which is not related to the output in the model construction was
one of the reasons, but we showed in the previous section that it is not the case.

What is reassuring though, is that the performance of RPC is similar to the
performance of RGS, although slightly better than the mean order prediction. If
we could use perfect models, the RPC would provide a ranking score of 1, which
is not the case, and implies that supervised learning algorithms somehow fail at
predicting the correct output from the input vector (at least for the partially
ordered datasets). We can guess that, effectively, predicting the sushi preference

164 CHAPTER 5. RESULTS

of Japanese people based on their age, gender and location is a quite hard task,
as well as predicting the movie preference of users based on their age, gender,
occupation and zip code. On the other hand, since the CCT-SBS variable (in
the OMIB database) is a function of attributes in the input vector, we should
be able to accurately predict this variable.

To evaluate the accuracy of our set selection algorithms without the influence
from the supervised learning algorithm, we considered perfect models, i.e. we
scanned the ordering given as a supervision to extract our votes during the pre-
diction phase. Note that, in opposition to what we do during the learning phase,
when a class label is missing for a particular object, all comparisons related to
this label give a vote of 0 to each label (as opposed to 0.5 in the learning phase).
We used EGS for OMIB and RGS for MovieLens and both Sushi databases.
With the partially ordered datasets, we perform two variants of the experiment:
in the first variant, we dropped empty comparisons, in the other one we impose
a comparison to be provided with at least 5 examples in the LS in order to be
a candidate. Figure 5.30 shows the results for the OMIB database. Figure 5.31
shows the results for the MovieLens and both Sushi databases.

Figure 5.30: Ranking score when using the mean order to break ties and using
perfect models (OMIB).

5.5. EFFECT OF (META-)PARAMETERS IN A TRIMMEDRPC SCHEME165

(a) Sushi 0, RGS, #LSaux ≥ 1 (b) Sushi 0, RGS, #LSaux ≥ 5

(c) Sushi 3, RGS, #LSaux ≥ 1 (d) Sushi 3, RGS, #LSaux ≥ 5

(e) MovieLens, RGS, #LSaux ≥ 1 (f) MovieLens, RGS, #LSaux ≥ 5

Figure 5.31: Ranking score when using the mean order to break ties and using
perfect models (Sushi 0, Sushi 3 and MovieLens).

166 CHAPTER 5. RESULTS

On OMIB, the use of perfect models do not change much, which was pre-
dictable since the extra-trees were able to predict, in a very efficient manner,
the output. On MovieLens and both Sushi databases, however, we now see that
adding more comparisons become beneficial, up to the point where all compar-
isons are used, hence producing a prediction which has a ranking score of 1.
As already observed, imposing #LSaux ≥ 5 to a comparison in order to be a
candidate for selection is also beneficial.

We have seen that #LSaux has an impact on the accuracy, which might
seems quite intriguing at first sight as we are using perfect models (hence, the
size of the LS should not have any influence), but since RGS updates the set of
comparisons based on the ranking score observed on the LS and since a com-
parison which is highly represented in the LS would be likely to be also highly
represented in the TS, then focusing on #LSaux to improve the performance
makes sense. We thus perform an experiment where we sort the comparisons
based on the number of examples in the LS. Results are shown in Table 5.11.
The ranking scores in this table are more or less equivalent to the ranking score
observed when using RGS, which means that sorting the comparisons based on
the #LSaux is a good alternative.

T Score

10 0.343
20 0.354
50 0.417
100 0.456
200 0.559
400 0.680
1000 0.828

(a) Sushi 0

T Score

10 0.684
20 0.687
50 0.704
100 0.705
200 0.741
400 0.798
1000 0.884

(b) Sushi 3

T Score

41 0.481
132 0.489
841 0.512
1682 0.530
3364 0.561
5426 0.587
17503 0.683
68983 0.827

(c) MovieLens

Table 5.11: Ranking score obtained by sorting the comparisons based on their
number of examples, using the mean order to break ties and simulated perfect

models.

5.6. COMPLEXITY OF OUR SET SELECTION ALGORITHMS 167

5.5.7 Setting the j1 and j3 RGS parameters to huge values

In our experiments, we arbitrarily fixed the j1, j2 and j3 parameters of RGS to
2000, 100 and 3000 respectively6. We wonder how sound this choice was.

In this section, we will not thoroughly evaluate the effect of the variation of
each of these parameters on the ranking score; this study is left open for future
work; but we will compare the ranking score of the RGS method with our arbi-
trarily chosen parameters to the ranking score of RGS when the j1 parameter
is set to 100,000 and the j3 parameter is set to 150,000. We expect the RGS
method to be very slow with such high parameters, but at least we will have
an idea about the performance of RGS with a very large number of iterations,
and we will be able to ensure that setting the j1 and j3 parameters to 2000 and
3000 respectively is sufficient.

In this experiment, we use simulated perfect models, break the ties with
the mean order and impose a comparison to have #LSaux ≥ 5 in order to be
a candidate. We perform this experiment on Sushi 0, Sushi 3 and MovieLens
and set the j1 parameter to 100,000 and the j3 parameter to 150,000. The j2
parameter remains at 100. Figure 5.32 shows the results. We see no significant
differences w.r.t. to the smaller arbitrary parameters which we used in the
previous sections (see Figure 5.31 for comparison). We can thus deduce that
setting j1 and j3 to 2000 and 3000 respectively is wise enough.

5.6 Complexity of our set selection algorithms

From the accuracy analysis, we were able to assess that the RGS selection
method was the most appropriate for large values of N . However, we now want
to consider the complexity of our methods when we impose a given STS(Q) to
be reached. This complexity will be expressed in terms of computational time
for time complexity in section 5.6.1 and in terms of number of comparisons for
space complexity in section 5.6.2

We define a “meta-architecture” as a combination of an architecture and a
mode (classification or regression) We consider several architectures, starting
from the architecture used in PR, EDA, EGS and RGS and create variants by

6i.e. The RGS algorithm stops when either 3000 iterations have been performed or when
2000 iterations have been performed and the last 100 iterations did not improve the score.

168 CHAPTER 5. RESULTS

(a) Sushi 0 (b) Sushi 3

(c) Movielens

Figure 5.32: Ranking score obtained by using the mean order to break ties and
using perfect models. The j1 parameter is set to 100,000 and the j3 parameter

is set to 150,000.

varying one meta-parameter at a time according to the values in table 5.2. Each
possible meta-architecture based on those architectures was taken into account.
We dropped empty comparisons in each architecture and used the reverse al-
phanumerical order to break our ties.

For each set, we first consider the Spearman’s ρ observed with the full RPC
(with optimal meta-architecture among the considered ones, fixing T to #QFull)
and considered it as the reference. We then calculated 0.7, 0.8 and 0.9 of this
value, which would represent the fact that a meta-architecture reaching this
level would be “barely acceptable”, “satisfying” and “good” respectively.

5.6. COMPLEXITY OF OUR SET SELECTION ALGORITHMS 169

5.6.1 Time Complexity (computational speed)

Time complexity results are shown in Figure 5.33. The graphs are composed
of an histogram and a green curve. The Y-axis represents the computational
time in seconds for the histogram, and the ranking score STS in terms of ρ
for the green line. Each histogram bar is composed of two series: the red se-
ries represents the computational time required to build the base learner while
the blue series is the time required to select the subset of size T and to gener-
ate and store the LS outputs. The X-axis represents different combinations of
Method/Expected rho on a logarithmic scale. In addition to the three expected
rho values, we also show the most accurate meta-architecture for each selection
method and for RPC. Each selected meta-architecture has been chosen so as
to minimize the computational time while the ranking score on the TS reaches
at least the required percentage (0.7, 0.8 or 0.9). When a histogram bar is
missing, it means that none of our considered meta-architecture can be used to
reach the required ranking score for a given set selection algorithms, and that
larger values of T should have been considered.

.

For OMIB and both Sushi databases, which are very small in terms of num-
ber of labels N , none of our selection methods can beat the computational time
of RPC, unless the expectation is low (i.e. 0.70-0.80 of RPC’s rho), In that case,
the random selection is generally the best option.

On MovieLens, however, the RGS and PR selection method are faster than
RPC, even when 0.9 of RPC’s rho is expected.

The computational complexity of comparator subset selection of RGS is lin-
ear in the size T of the target comparator subset and in the parameters j1 and
j3. Indeed, each swap of one comparator can be carried out in constant time,
independently of the value of T . To fix ideas, in the most demanding of our
trials (MovieLens), we evaluated about 72,000 comparisons out of 1,413,721.
Notice also that this elementary operation (evaluation of the ranking score on
the LS) is quite fast compared to training a base learner, even with the very
efficient Extra-Trees method.

Finally, the EDA approach is very time consuming and can only beat RPC
in terms of time complexity with the lowest rho expectation.

170 CHAPTER 5. RESULTS

(a) OMIB (b) MovieLens

(c) Sushi 0 (d) Sushi 3

Figure 5.33: Comparison of the computational times. The blue histogram
represents the time required to store the LS outputs in memory, select the set
Q and compute its ranking score on LS. The red histogram represents the

time required to build the corresponding models and compute its ranking score
on TS. The green line represents STS.

5.6.2 Space Complexity (memory usage)

The space complexity (and, as a corollary, the time complexity of the prediction
phase) of our approach is determined essentially by T , the number of selected
comparisons. This section will consider the quality of our selection methods (i.e.
how many comparisons are required to form a “good” set) with respect to our
requirements (rho value). Results are depicted in Figure 5.34. Note that, in this
case, the green dots represents the ranking score of the “standard architecture”
(nmin = 2, K =

√
#A, M = 500, Regression mode) for the corresponding T

5.7. CONCLUDING REMARKS 171

value.

(a) OMIB (b) MovieLens

(c) Sushi 0 (d) Sushi 3

Figure 5.34: Comparison of the required T for a given ρ. The blue histogram
represents the required T . The green line represents STS.

In many cases, the RGS method requires smaller subsets to cope with our
requirements than any other considered set selection method. For instance, on
MovieLens, 1682 comparisons are sufficient to reach 0.7 of RPC’s rho. In general
however, N

√
N comparisons are required to reach 0.9 of RPC’s rho, no matter

what method is being used.

5.7 Concluding remarks

From all performed experiments, we extrapolate several important facts.

172 CHAPTER 5. RESULTS

• When using the RPC scheme, the use of regression mode in the base learn-
ers construction is beneficial for any value of T , including T = #QFull.

• Selecting the set Q which maximizes the ranking score on the LS outputs
is relevant.

• When trimming the set of comparators, the RGS algorithm is the best
method (compared to the other considered algorithms in this study) in
most cases, as the number of required comparators is significantly reduced
while not drastically affecting the ranking score STS.

• Considering only the comparators which have at least a certain number
of objects in their own LS is beneficial when trimming the set of avail-
able comparators. The extreme case of taking the T most represented
comparators is not.

• The default order used to break ties can play an important role w.r.t
the predictive accuracy, and especially when T is small. We have shown
that, on the two partially ranked databases which we tested (Sushi and
MovieLens), the problem is so hard to learn, from the given features,
that the use of the mean order as unique prediction is actually the best
alternative.

• The computational time of RGS does not depend on the number of labels
N (since it is essentially determined by the parameters j1 and j3) and can
be adjusted easily, which can be seen as another advantage of RGS.

• The RGS method is robust with respect to its tree parameters and does
not require more observations than the full RPC scheme.

To conclude, we have proven that finding a nearly optimal subset Q ⊂ QFull
is not an easy task and we proposed several algorithms in order to achieve this
goal, RGS, in combination with the drop of comparisons having less than 5 ob-
jects in their LS, being so far the best alternative. We thus have proven that
one can efficiently trim the set of comparators when the number N of labels
makes a problem impossible to be considered in a full RPC scheme.

In fine, we performed 120,000 tests on the OMIB database, 180,600 tests on
the two Sushi databases and 107,400 tests on the MovieLens database which
makes a total of 408,000 tests. Performing this huge amount of computations
was made possible thanks to the SEGI (SErvice Général d’Informatique) which

5.7. CONCLUDING REMARKS 173

placed the NIC3 computing array at our disposal. This super-computer is com-
posed of 1500+ cores, each of which has a maximum available memory of 32
gigabytes. Each user can access to a maximum of 240 cores simultaneously.

174 CHAPTER 5. RESULTS

Chapter 6

Applications

Contents
6.1 Decision support systems 175

6.2 Recommender systems 176

6.3 Personalized devices 178

6.4 Ranking search results 179

6.5 Text categorization 180

Preference learning has many applications. Birlutiu et al., in their article
[BGH10] divide them in three groups: Decision support systems (DSS), recom-
mender systems and personalized devices.

We will also consider text categorization and search results clustering as ap-
plications which can be addressed using preference learning protocols.

This chapter will describe the role of preference learning (and especially
label ranking) in those five fields of application and show how our trimming
methodology could improve (or simply be used instead of) existing techniques.

6.1 Decision support systems

A DSS agent is a computer software which uses observations (and sometimes a
knowledge base) to help a human user take an optimal decision. Mostly used in
business companies, current implementation are satisfactory since the decision

175

176 CHAPTER 6. APPLICATIONS

can in general be taken asynchronously from the observations. That is, if a soft-
ware needs several days to compute the annual policy, it could be considered as
acceptable.

However, in the medical field, a clinical DSS (or CDSS) should choose a
valid action in a limited period of time. We could for instance think of a med-
ical device which monitors a patient and could automatically provide medicine
according to the patient state. The workflow of such a system in depicted on
Figure 6.1. If the machine fails to compute the correct action or if the response
is delayed, death can be the final result. Some CDSS systems currently do ex-
ist, but either (i) the relevant data is too huge to perform a decision process in
real time or (ii) only a few symptoms are monitored and the system can thus
only work for a specific disease. Using our methodology, an accurate and quick
response could be obtained and would help current systems in monitoring more
symptoms in real time.

An example of asynchronous CDSS is given in [Rul99]. This study inves-
tigates the relation between nurse care planning based on patient preferences
and the patient outcome. The patient preferences were collected using pref-
erence elicitation techniques and displayed on the patient’s chart. The study
concludes that “decision support for eliciting patient preferences and including
them in nursing care planning is an effective and feasible strategy for improving
nursing care and patient outcomes”.

Rather than collecting the patients’ preferences, we could train a preference
learning model based on patients’ features and apply the nursing care protocol
according to the model predictions.

6.2 Recommender systems

In recommender systems, the objective is to design an agent which is able to
propose some references to items which the user should find interesting accord-
ing to his profile or his past preferences. An online book store would typically
use a recommender system in order to boost its sales.

Algorithmically speaking, we can differentiate collaborative filtering, which
builds a model according to the user’s past preference and/or similar preferences
of other users, and content-based filtering, which uses the features (character-

6.2. RECOMMENDER SYSTEMS 177

Figure 6.1: CDSS workflow
(Source:

http://motorcycleguy.blogspot.com/2008/06/clinical-decision-support.html)

istics) of selected items in order to define the profile of the user, then use this
profile as feature vector of a model in order to predict items which are relevant
for the given profile [dGIL+]. Amazon.com and Facebook.com are websites us-
ing the former ([LSY03]) while Internet Movie Database (IMDb) and Pandora
Radio are website using the latter [Raf10] (Figure 6.2).

Collaborative filtering can be addressed using label ranking algorithms (as
quoted in [HFCB08] and in [WK10]). However, in website recommendations,
a small number of items are generally provided, due to computational time is-
sue. Indeed, if the website requires more than a few seconds to predict the user
preferences, the customer will probably leave the website and the sale will be
missed. But, using our trimming method, a lot more items could be provided,
giving more chance that at least one of them would attract a customer, or the
system response would be significantly lower for the same number of offered
items, which should theoretically increase the sale rate.

178 CHAPTER 6. APPLICATIONS

Figure 6.2: Very famous websites use recommender systems

6.3 Personalized devices

Personalized devices are designed to be kept by a person at all times.

A hearing aid (Figure 6.3) is such a device. It amplifies and modulates
sound for the wearer. As the required added intensity and modulation differs
from a person to another, adjustments have to be performed before installing
the device. Birlutiu et al. [BGH10] proposed the use of Multi-Task Preference
Learning in order to model user preferences about different sound qualities. Our
models could also be used in this context.

6.4. RANKING SEARCH RESULTS 179

Figure 6.3: A hearing aid is a personalized device

6.4 Ranking search results

Although similar, the task of ranking search results differs from the task of a
recommender system in the sense that the ordering depends both on the user
preferences and on the query. Typically, a recommender system in a book store
context will not consider the genre of the book it suggests. However, a user will
not expect his search results to contain references to items which are not related
to his query even if, on a general scale, he would be interested by those items.

One of the major issues when using search engines is that the number of
relevant results can be huge (e.g. if the query is broad, like “power” or “tree”).
The cluster hypothesis [vR79] suggests that clustering the search results would
be beneficial, assuming that relevant documents are close to each other in the
document space.

The task of clustering search results by using label ranking was proposed by
Zhang et al. in [ZLTC07] where the authors extract the cluster labels from the
documents content, from words appearing in similar search queries and from

180 CHAPTER 6. APPLICATIONS

snippets (a short description of the web page provided by the search engine).
They then build a utility function based on these three features and use this
function to rank cluster labels. The top ranked cluster labels are then used
to perform clustering and the corresponding clusters are ordered according to
this ranking. Although the task of ranking cluster labels is performed without
supervision, we could, instead of computing a utility function, compute pairwise
comparisons according to the probability that the cluster label yk is preferred
over label yl, and apply our trimming methodology on those comparisons.

6.5 Text categorization

The task of assigning one or more category to a text is called “Text categoriza-
tion”. Usually, a multi-label classifier is trained on a set of texts labeled with
one or more classes. The prediction of such models will be strict, i.e. either a
text belongs to a category or it does not belong into it.

The use of preference learning protocols to solve text categorization problems
was already addressed in [ASS07] where the prediction is a ranking over the set
of categories for a given object, representing the degree of suitability of this
category with respect to the object. Clearly, this label ranking problem could
also be solved using our methodology.

Chapter 7

Future work

Contents
7.1 Limits of this work 181

7.2 Possible improvements 182

7.2.1 Using prior knowledge 182

7.2.2 Other trimming algorithms 183

7.2.2.1 Best first 183

7.2.2.2 Greedy backward elimination 184

7.2.2.3 Conditional frequencies in EDA 185

7.2.3 Method parameters 185

7.2.4 Controlling partial ranking and noise 186

7.2.5 Extremely Randomized Ranking 186

7.2.6 Optimizing with a given budget 187

7.2.7 Using the mean ordering to select Q 187

7.2.8 Weighted distribution based on comparator LS . . . 188

Although this research was consequent, it did not explore all possible im-
provements and let some parts of this work open. We will first set the limits of
the current work, then give hints and thoughts about possible future work.

7.1 Limits of this work

Firstly, our method was only tested on three dataset (four if one considers that
Sushi actually contains two separate datasets). For an empirical research, this

181

182 CHAPTER 7. FUTURE WORK

could be considered as low. However, one should take into account the fact
that the preference learning field emerged only a few years ago. Hence, finding
preference learning datasets is not a trivial task.

Secondly, only a few comparison selection methods were tested, but other
trimming methods might exist and might potentially be even more accurate
and/or robust. Concerning the EDA and RGS trimming methods, the number
of iterations was chosen arbitrarily. We think that it would be interesting to test
the evolution of the accuracy curve according to the number of iterations. And,
to conclude with RGS, the weight update function was also chosen arbitrarily.
It is possible that more constraining functions will make the model converge to
a good solution more rapidly.

Finally, in this thesis, the hypothesis were only confirmed (or infirmed) by
an empirical survey. A mathematical proof would probably be more convincing.

7.2 Possible improvements

In this section, we will present some thoughts and ideas which could be inter-
esting to implement and test. Even if we cannot guarantee that these will help
improving the model, they should at least be considered in future work.

7.2.1 Using prior knowledge

A generic approach consists in considering that the labeled partial orderings are
strict information (i.e. elements in this ordering are not necessarily preferred
over the unlabeled ones).

But sometimes, we know that the partial ranking is an ordering of selected
objects and that unselected objects are less important. This is the case of the
Sushi database, where we know that selected Sushis are preferred over unse-
lected ones. We could then add this information into the model to improve the
method.

Formally, on a qkl comparison, the value 1 means that yk is preferred over
yl, 0 that yl is preferred over yk, and 0.5 means that this information is not
provided.

7.2. POSSIBLE IMPROVEMENTS 183

So there are three way of transforming an ordering into a set of pairwise com-
parisons. When considering strict information on partial rankings, we attribute
the value of 0.5 to any comparison where neither yk nor yl is in the control
ranking. This is the usual procedure and we only considered this transform in
this thesis. If we know that the partial ordering is a first selection, we can give
a score of 1 to a qkl comparison if yk is in the control ranking and yl is not.
Finally, if we want to avoid decimal values, we can also consider that every label
in the control ranking is preferred over the unlabeled ones and, moreover, that
these unlabeled labels are sorted alphanumerically. So, with this last method,
we are ensured that each comparison will always predict a preference of 0 or 1,
even if this value is somewhat factious.

Of course, these transforms would not impact the control ordering, and the
scoring scheme would be identical, even with the last proposed transform.

7.2.2 Other trimming algorithms

As previously explained, this study only accounted four trimming algorithms,
namely PR, EGS, RGS and EDA.

Finding inspiration from existing variable selection techniques, we could
transpose some of them in ensemble trimming methods. These methods will
be explained in the following sections.

7.2.2.1 Best first

Best first algorithms work by constructing and evaluating partial solutions, then
improving those which provide the best scores. The search is performed along a
solution tree and, at each step, each solution improvement from the best node is
considered and represented as a branch. The node which has a locally optimal
score is fully expanded.

This could easily be applied to our preference learning problem, by iteratively
expanding the set of comparators which provides so far the best ranking score.

184 CHAPTER 7. FUTURE WORK

Figure 7.1: Set selection using best first search

Figure 7.1 provides an example of this solution building. In this example,
we are provided with 6 binary comparisons (A to F) and wish to find the set of
three comparisons which maximizes the ranking score. Starting from the empty
set, the first iteration considers every comparison. The use of comparison F
provides the best score (0.42) and its branch is thus expanded. However, after
expanding the branch, every possible combination of F and another comparison
provides a score which is worse than the score obtained by using only compar-
ison A, which is now the best solution and will thus be expanded at the next
iteration. Continuing this process, we find that the set [AEC] is the best solu-
tion.

However, this technique has the same drawback as the greedy approach,
namely that the solver can be stuck in a local maximum. Indeed, if we consider
the previous example, it is possible that a solution expanded from the node
containing the set [D] would be eventually better than the proposed solution,
but this path is never considered in the solution building due to a very low score
on the first node of this branch.

So, as well as the greedy approach, this solution can potentially provide a
good solution, but not necessarily the optimal one.

7.2.2.2 Greedy backward elimination

The previously depicted method builds a solution by growing partial ones.

However, the dual approach can be considered. Instead of iteratively adding
comparisons to progressively improve the solution, we could start with the com-

7.2. POSSIBLE IMPROVEMENTS 185

plete set QFull of comparisons and iteratively compute the ranking score of the
method when using the sets QFull\{qi}∀qi ∈ QFull, then updating QFull such
that

QFull = QFull\{arg max
qi

SLS(QFull\{qi})}. (7.1)

Of course, starting from a huge set QFull, the computational time could be
prohibitive (i.e. each update requires O(N2) Spearman evaluations). But we
could, instead of considering one comparison at a time, remove a certain number
j of comparisons. Again, the optimum is not guaranteed to be reached.

7.2.2.3 Conditional frequencies in EDA

The Estimation of Distribution Algorithm generally provided poor results (i.e.
close to results observed with random selection). One possible explanation
would be that the combination of some comparisons makes the prediction very
accurate while the effect of those comparisons taken independently is marginal.
If this hypothesis is true, producing sets of comparisons based on individual
frequencies observed on top ranked sets would effectively provide poor results.

To take the correlation between comparisons into account, we could count
conditional frequencies instead of independent frequencies. That is, how many
times comparison qkl was observed on top ranked sets given that comparison
qij was observed in such sets. These conditional frequencies could then be used
to build a conditional distribution from which comparisons would be drawn.

Another approach could be the use of Bayesian Inference to compute, at each
iteration, the posterior distribution over the model parameters and use this dis-
tribution to derive the posterior predictive distribution, rather than maximizing
the likelihood of the parameters [GWKS08].

7.2.3 Method parameters

As emphasized in the first section of this chapter, several parameters were fixed
arbitrarily. For instance, the randomized greedy algorithm will perform at least
2,000 iterations, and at most 3,000 iterations. Also, the EDA approach counts
the frequencies of comparisons in the top 50 sets out of 100. These parameters
were chosen by following our intuition, but we do not have any guarantee that

186 CHAPTER 7. FUTURE WORK

these are optimal. We think that fine-tuning these parameters could be inter-
esting, as we could estimate the impact of these parameters on the accuracy of
the set selection methods.

7.2.4 Controlling partial ranking and noise

The use of the fully ranked database OMIB and the partially ranked databases
Sushi and MovieLens helped us to infer a general hypothesis about the effect of
partial ranking and noise on our trimming methods.

However, a more controlled experiment can be performed by creating vari-
ants of the synthetic OMIB database. We could add noise (either by modifying
the feature vectors or by performing swaps in the labeled orderings) or simulate
partial rankings by removing labels from the labeled ordering. Several levels of
noise/missing information could be considered (e.g. 10%, 30%, 50%, 70% and
90%) and the effect on the accuracy be measured.

7.2.5 Extremely Randomized Ranking

In this thesis, we constructed one ranking model, based on T comparisons, each
corresponding comparator model consisting of M trees.

But, getting inspiration from the Extra-Tree ensemble algorithm, we could
construct R ranking models, still based on T comparisons, each corresponding
comparator model consisting of M/R trees. The predictions on the R models
would be aggregated so as to produce the final ordering.

In the same manner that building M identical trees using a deterministic
approach does not have any sense (in that case, building one of these trees would
produce the same result), building R models with the same sets of T compar-
isons would not be useful. The PR selection method could then be used in that
purpose. Hence, the computational time required to build R models based on
M/R trees would be similar to the computational time required to build one
model based on M trees. This would not be necessarily true when using more
complex selection methods (EGS, RGS or EDA) as their computational com-
plexity cannot be neglected.

We hope that this technique would, as in Extra-trees, reduce the variance
while not significantly increase the bias.

7.2. POSSIBLE IMPROVEMENTS 187

The rank aggregation could be performed in two manners. Either the ma-
jority ordering is selected (as in classification mode), but this would only have
sense if some orderings are significantly represented (e.g. their number of occur-
rences in the R outputs are strictly bigger than 2 ∗ d RN !e), or we could compute
a mean ordering (as in regression mode) by using one of the rank aggregation
techniques seen in Section 3.3.

7.2.6 Optimizing with a given budget

In this study, we trimmed the comparison set by training only a subset of size T ,
each corresponding comparator being modeled using M trees, M being identical
for all comparators.

We could add more flexibility and consider the total number of trained trees
(TM) as a budget. Each tree in this budget would be allocated to the mod-
elization of one comparison, but two distinct comparisons could be modeled by
a different number of trees. For instance, instead of training 100 comparators
with 500 trees each, we could train 1000 comparators with 50 trees each, or we
could allocate 25,000 trees to build 500 comparators and then the remaining
25,000 trees on 1000 other comparators,... Any combination would be accept-
able as long as the budget is respected.

The problem of allocating the trees for a given budget could be solved using
an optimization technique, based on the ranking score of a given tree allocation.

Once a nearly optimal protocol for tree allocation is discovered, we could
monitor the accuracy curve when progressively decreasing the allocated budget,
in the same manner that we monitored the accuracy curved for various values
of parameter T .

7.2.7 Using the mean ordering to select Q

In order to select our set Q of comparisons, we could first compute the mean
ordering of Π, then use this ordering to select N comparisons by choosing every
qkl where yk is ranked directly before yl in the mean ordering.

We think that such a set Q would have a ranking score which is in average
greater than the ranking score of a randomly drawn set, with the advantage of
satisfying the surjectivity condition described in Section 4.4.2.1.

188 CHAPTER 7. FUTURE WORK

7.2.8 Weighted distribution based on comparator LS

We have shown in Section 5.5.2 that pre-selecting the set of available compar-
isons based on the number of objects in their own LS is a good idea.

We could compute a weighted distribution over the set of all comparisons
where the probability to draw a comparison would be proportional to the number
of objects in its own LS. Then, we could use apply our PR algorithm to draw
a comparison set from this distribution (with no rematch).

Chapter 8

Conclusion

In this thesis, we first provided an introduction to artificial intelligence, by de-
scribing the historical context and by defining the numerous domains in that
field.

Then we provided the reader with some gentle background information and
definitions about machine learning, model construction, preference learning, and
we presented the Ranking by Pairwise Comparison algorithm.

Our main contribution was to study the interest of pre-selecting in a dataset
dependent way a small subset of size T , preferably with T = O(N) of binary
label comparisons in order to scale the Ranking by Pairwise Comparison frame-
work to problems with a large number of labels. The motivations of this idea are
similar to those of feature selection largely studied in the context of supervised
learning, in the sense that selecting a subset of comparisons may both improve
computational complexity and accuracy, specially on partially ranked and/or
noisy datasets.

Among several randomization based comparison filtering methods that we
have studied, we found that the Randomized Greedy Search was the most
effective one, both in terms of computational complexity and accuracy. Our
empirical evaluations on both synthetic and real-world datasets from the litera-
ture, show that this method may yield nearly state-of-the-art accuracy with
a computational complexity essentially linear in the number N of labels.

189

190 CHAPTER 8. CONCLUSION

We also showed that using class-probability estimators (regression mode)
rather that hard classifiers further helps the method to reach a sufficient level
of accuracy by using a smaller number of label comparators and adds some
robustness to RPC with respect to its nmin meta-parameter. Finally, we also
discussed about the robustness of the method, and showed that RGS is quite
robust with respect to meta-parameter choices of the base learner.

We have shown that pre-trimming the set of available comparisons and keep-
ing the comparisons which have at least 5 objects in their own LS is beneficial
when selecting T = O(N) comparisons. However, the extreme case of ranking
the comparisons based on the number of objects in their own LS and using the
top T comparisons is too restrictive.

Our proposed methodology reduces the computational and space complexity
of RPC while producing accurate models. Thus applying our methods on label
ranking applications would be beneficial.

Chapter 9

Published work

Contents
9.1 Bioinformatics publications 191

9.2 Preference learning publications 193

During my PhD studies, I had the opportunity to work on various topics and
to publish my work in conferences and journals. You will find below the list of
my “first author” publications. The first section contains publications that are
not directly related to my work on preference learning but which were produced
during the earlier stages of my PhD studies when I focused on Bioinformatics,
and the second section is more specific to my thesis on preference learning.

9.1 Bioinformatics publications

Hiard, S., Marée, R., Colson, S., Hoskisson, P. A., Titgemeyer, F., van Wezel,
G. P., Joris, B., Wehenkel, L. & Rigali, S. (2007). PREDetector: A new tool to
identify regulatory elements in bacterial genomes. Biochemical and Biophysical
Research Communications, 357(4), 861-864.

Abstract
In the post-genomic area, the prediction of transcription factor regulons by
position weight matrix-based programmes is a powerful approach to deci-
pher biological pathways and to modelize regulatory networks in bacteria.
The main difficulty once a regulon prediction is available is to estimate its
reliability prior to start expensive experimental validations and therefore

191

192 CHAPTER 9. PUBLISHED WORK

trying to find a way how to identify true positive hits from an endless
list of potential target genes of a regulatory protein. Here we introduce
PREDetector (Prokaryotic Regulatory Elements Detector), a tool devel-
oped for predicting regulons of DNA-binding proteins in bacterial genomes
that, beside the automatic prediction, scoring and positioning of poten-
tial binding sites and their respective target genes in annotated bacterial
genomes, it also provides an easy way to estimate the thresholds where
to find reliable possible new target genes. PREDetector can be down-
loaded freely at http://www.montefiore.ulg.ac.be/-hiard/PreDetector (c)
2007 Published by Elsevier Inc.

Hiard, S., Charlier, C., Coppieters, W., Georges, M. & Baurain, D. (2010).
Patrocles: a database of polymorphic miRNA-mediated gene regulation in ver-
tebrates. Nucleic Acids Research, 38(Database), 640-D651.

Abstract
The Patrocles database (http://www.patrocles.org/) compiles DNA se-
quence polymorphisms (DSPs) that are predicted to perturb miRNA-
mediated gene regulation. Distinctive features include: (i) the cover-
age of seven vertebrate species in its present release, aiming for more
when information becomes available, (ii) the coverage of the three com-
partments involved in the silencing process (i.e. targets, miRNA precur-
sors and silencing machinery), (iii) contextual information that enables
users to prioritize candidate ‘Patrocles DSPs, including graphical infor-
mation on miRNA-target coexpression and eQTL effect of genotype on
target expression levels, (iv) the inclusion of Copy Number Variants and
eQTL information that affect miRNA precursors as well as genes encoding
components of the silencing machinery and (v) a tool (Patrocles finder)
that allows the user to determine whether her favorite DSP may perturb
miRNA-mediated gene regulation of custom target sequences. To support
the biological relevance of Patrocles’ content, we searched for signatures
of selection acting on ‘Patrocles single nucleotide polymorphisms (pSNPs)
in human and mice. As expected, we found a strong signature of puri-
fying selection against not only SNPs that destroy conserved target sites
but also against SNPs that create novel, illegitimate target sites, which is
reminiscent of the Texel mutation in sheep.

9.2. PREFERENCE LEARNING PUBLICATIONS 193

9.2 Preference learning publications

Hiard, S. & Wehenkel, L. (2011). Using Class-probability Models instead of
Hard Classifiers as Base Learners in the Ranking by Pairwise Comparison Al-
gorithm. In S., Thatcher (Ed.), ICMLC 2011 3rd International Conference on
Machine Learning and Computing Volume 1 (pp. 218-222). Chengdu, China:
IEEE.

Abstract
In the field of Preference Learning, the Ranking by Pairwise Comparison
algorithm (RPC) consists of using the learning sample to derive pairwise
comparators for each possible pair of class labels, and then aggregating
the predictions of the whole set of pairwise comparators for a given object
in order to produce a global ranking of the class labels. In its standard
form, RPC uses hard binary classifiers assigning an integer (0/1) score to
each class concerned by a pairwise comparison. In the present work, we
compare this setting with a modified version of RPC, where soft binary
class-probability models replace the binary classifiers. To this end, we
compare ensembles of extremely randomized classprobability estimation
trees with ensembles of extremely randomized classification trees. We em-
pirically show that both approaches lead to equivalent results in terms of
Spearman’s rho value when using the optimal settings of their metapa-
rameters. However, we also show that in the context of small and noisy
datasets (e.g. with partial ranking information) the use of class-probability
models is more robust with respect to variations of its meta-parameter
values than the hard classifier ensembles. This suggests that using (soft)
class-probability comparators is a sensible option in the context of RPC
approaches.

Hiard, S., Geurts, P. & Wehenkel, L. (2012). Comparator selection for RPC with
many labels, To appear in ECAI 2012 20th European Conference on Artificial
Intelligence. Montpellier, France.

Abstract
The Ranking by Pairwise Comparison algorithm (RPC) is a well estab-
lished label ranking method. However, its complexity is of O(N2) in the
number N of labels. We present algorithms for selecting, before model
construction, a subset of comparators of size O(N), to reduce computa-
tional complexity without loss in accuracy.

194 CHAPTER 9. PUBLISHED WORK

Chapter 10

Acknowledgments

Firstly, I would like to thank my promoter, Louis Wehenkel, who dedicated a
lot of his time to my supervision and whose advices were always very relevant.
I also enjoyed our more informal discussions, and he proved many times that I
could count on him, even on darker days during my thesis.

I also want to thank the University of Liège for its funding as well as the
ARC Biomod and PAI BioMAGNet, giving me the opportunity to work on this
research, which was challenging but also thrilling.

Johannes Fürnkranz and Eyke Hüllermeier helped me to understand the
RPC algorithm during conferences or by e-mail, and I am very grateful for this.

The extra-tree implementation was provided by Pierre Geurts and it helped
me focus on the trimming part of the job without having to develop this super-
vised learning algorithm from scratch. Many thanks for this significant saving
in time. I also would like to thank Pierre for being the co-reviewer of the thesis
and for his feed-back.

I thank Toshihiro Kamishima and the GroupLens project for the database
usage allowance, and again Dr. Kamishima for his complete explanation on the
way that the Sushi database was constructed.

During my PhD thesis, I had many informal discussion with some other PhD
students or postdocs, and great ideas often emerged from that. These people

195

196 CHAPTER 10. ACKNOWLEDGMENTS

are, in alphabetical order, Florence Belmudes, Vincent Botta, Jing Dai, Damien
Ernst, Raphaël Fonteneau, Pierre Geurts, Fabien Heuze, Vân Anh Huynh-Thu,
Francis Maes, Raphaël Marée, Jonathan Pisane, Olivier Stern, François Van-
Lishout and Da Wang.

I thank all my colleagues in the research unit or at the GIGA, which I did
not explicitly quote but who contributed to a very nice working environment,
with also a part of fun and laugh.

Finally, I would like to finish with a special thanks to my friends and relatives
for their support, and in particular to my companion, Frédérique, who spent
several evenings alone and who did the household chores far more often than
me without complaining.

Appendix A

Efficient implementations

Contents
A.1 Weighted distribution 198

A.1.1 Simple array . 199

A.1.2 Linked List . 199

A.1.3 Binary tree . 200

A.2 Spearman’s ρ correlation coefficient 201

A.2.1 Naive method . 201

A.2.2 Optimized method 203

A.2.3 Computational gain 204

A.2.4 Efficient computation of ρ in an EGS/RGS context . 205

A.3 Pre-computing . 206

A.3.1 Tree building . 207

A.3.2 Rejected comparisons 207

During the implementation phase, we had to face some technical difficulties
which do not directly appear in the abstract concept, but which arises when
trying to put the formalism into shape. We though that mentioning these issues
and the manner that we chose to solve them is important and will be helpful to
anyone who would want to implement our methods.

Indeed, from a mathematical point of view, any implementation of a func-
tion would be acceptable as long as it produces the desired output. From a
computer science point of view though, computational time is a critical aspect
of function implementation as inappropriate coding could lead a function to

197

198 APPENDIX A. EFFICIENT IMPLEMENTATIONS

produce its correct output several months or years later than an optimally im-
plemented function. One of the most common example is the implementation of
the Fibonacci series. The computation of one element in this series is performed
by

Fib(0) = 0,

F ib(1) = 1,

F ib(N) = Fib(N − 1) + Fib(N − 2).

The most direct (and naive) implementation of this function is given in Al-
gorithm 18 where the computation of Fib(N −1) and Fib(N −2) are performed
recursively. The main issue is that Fib(N − 1) needs to compute Fib(N − 2)
and Fib(N − 3), thus Fib(N) will be computed by Fib(N − 2) + Fib(N − 2) +
Fib(N − 3), and so on, leading to unnecessary computations. Computing the
value in a loop while keeping the values of Fib(N − 1) and Fib(N − 2) in two
variables (as depicted in Algorithm 19) would be a more optimized implemen-
tation of this function.

Algorithm 18 Fibonacci naive implementation (FibNaive)

Input: An integer value v ≥ 0
Output: The value of element v in the Fibonacci series

if v < 2 then
return v

else
return FibNaive(v − 1)+FibNaive(v − 2)

end if

In this section, we will emphasize on our implementation of some time-
consuming methods.

A.1 Weighted distribution

When drawing a comparison q from the distribution P , we wish to ensure that
q /∈ Q. Moreover, the Estimation of Distribution Algorithm (see section 4.4.3
page 103) iteratively updates a (possibly) non uniform distribution. We thus

A.1. WEIGHTED DISTRIBUTION 199

Algorithm 19 Fibonacci optimized implementation (FibOptim)

Input: An integer value v ≥ 0
Output: The value of element v in the Fibonacci series

if v = 0 then
return 0

else
v1 ← 0
v2 ← 1
for i = {2, ..., v} do
v3 ← v1 + v2

v1 ← v2

v2 ← v3

end for
return v2

end if

need to efficiently handle this kind of distribution such that picking with no
rematch but also updating should be done quickly.

Several options were taken into account.

A.1.1 Simple array

Storing the elements in an array and giving a variable number of slots to each
of them is a good way to represent a weighted distribution. To give a real world
representation, this technique is similar to dividing a slice of paper into areas of
different sizes, and throwing a dart at it. Objects with a greater area are more
likely to be hit. (Figure A.1).

Unfortunately, if the picking is done in an order of O(1), the updating pro-
cess is O(N) in the number N of elements, since the entire array needs to be
considered.

A.1.2 Linked List

To counter the order O(N) in the previous method, one could instead use a
linked list (Figure A.2).

200 APPENDIX A. EFFICIENT IMPLEMENTATIONS

Figure A.1: Objects with more weight are more likely to be picked if the area
is larger (b) or, informatically, if the number of slots is bigger(a)

Figure A.2: A linked-list improves the updating process, but the gain is
canceled in the picking phase

Advantages are two-fold. In the first place, memory usage is smaller, as one
slot is sufficient to represent an element and, secondly, the updating process is
performed in the order of O(1), considering that pointers to the current and
previous element are kept after picking. However, the picking phase needs in
average N/2 iterations.

A.1.3 Binary tree

Using a tree structure (Figure A.3) is actually a very good compromise.

The node structure contains a maximum value, a threshold, the value of the
element, two pointers to sons and a pointer to the parent. The structure is built

A.2. SPEARMAN’S ρ CORRELATION COEFFICIENT 201

is the following way : given a set of objects O, each oi ∈ O having its own weight
wi and its value vi, we select a pivot at the center of the set. This pivot sets the
last element of the subset O1 ⊂ O, the remaining items form the subset O2. A
node is created, with the threshold set to

∑#O1

i=1 wi and the maximum value of∑#O
i=1 w

i. We recurse on O1 and O2 and attach the corresponding structures to
the left and right pointer (respectively) of the node. In the case where #O = 1,
the created node is a leaf, and the value vi is labeled on this node.

At each pick, a random value is drawn from 0 to the maximum value of the
root node. Then, as long as we do not reach a leaf, we continue to the left son if
this value is smaller than the threshold or to the right otherwise (in that case,
the random value is decreased by the threshold). This is done in O(logN).

To update the tree structure, one only has to modify to nodes in the direct
hierarchy of the selected node, which is also done in O(logN)

So, the complexity of this structure is O(logN), which is better than O(N)
from the previous structures for any value of N .

A.2 Spearman’s ρ correlation coefficient

Optimizing the Spearman’s ρ correlation function is extremely important since
it is called every time that two rankings are to be compared, which occurs very
frequently. We will first present the naive method for solving this problem, then
present our solution and finally compare the computational speed of both imple-
mentations. We will conclude by explaining how we re-used some computations
in the particular case of EGS and RGS.

A.2.1 Naive method

We will first present the naive version of the function’s implementation. Al-
though not time efficient, it has the benefit of being easy to understand, as it
follows the procedure that one would intuitively apply to solve this problem.

The concept is very simple. It works in two loops. The first loop will remove
objects which are not common in both rankings. Since each prediction is an
ordering over the whole set of labels, it is impossible to find a label in the control
which is not be present in the prediction, thus the search has to be performed

202 APPENDIX A. EFFICIENT IMPLEMENTATIONS

Figure A.3: A binary tree has a complexity of O(logN) for picking and
updating.

only in one direction. The second loop will compute the distance between those
new rankings.

A.2. SPEARMAN’S ρ CORRELATION COEFFICIENT 203

Algorithm 20 Spearman’s ρ naive implementation

Input: A control ranking π of size #π, a table of votes V of size N ≥ #π
representing another ranking
Output: The correlation measure between π and the ranking represented by
V

Ranking ← result of sorting the N labels according to the votes in V
for every i ∈ Ranking do
found← false
for j = 0; j < #π && ¬found; j + + do

if Ranking[i] = Control[j] then
found← true

end if
end for
if ¬found then
Ranking ← Ranking\{i}

end if
end for
diff ← 0
for every i ∈ Ranking do

for every j ∈ Control do
if Ranking[i] = Control[j] then
diff ← diff + (i− j)2; BREAK

end if
end for

end for
rho← 1− 6∗diff

#π∗((#π)2−1)

return rho

A.2.2 Optimized method

Searching for matches using a nested loop is far from being the optimal solution.
Ingeniously sorting can help us achieve the same goal in less iterations. Indeed,
efficient sorting algorithms can perform in the order of O(N logN). One could
then sort the ranking according to the position of its elements (i.e. Ranking[i]
would not represent the ith preferred object but the position of object i in
the ranking) and one pass would be sufficient to compare the two rankings
afterwards.

204 APPENDIX A. EFFICIENT IMPLEMENTATIONS

Algorithm 21 Spearman’s ρ optimized implementation

Input: A control ranking π of size #π, a table of votes V of size N ≥ #π
representing another ranking
Output: The correlation measure between π and the ranking represented by
V

sort π according to the position of its elements
for every i ∈ {1, 2, ..., N} do
NewTab[i]← −1
if i ∈ π then
NewTab[i]← V [i]

end if
end for
Ranking ← result of sorting the N labels according to the values NewTab
and truncate it to the first #π top objects.
diff ← 0
sort Ranking according to the position of its elements
for every i ∈ Ranking do
diff ← diff + (Ranking[i]− control[i])2

end for
rho← 1− 6∗diff

#π∗((#π)2−1)

return rho

A.2.3 Computational gain

In order to measure the computational gain of using the optimized solution
rather than the naive one, we performed several simulations. In each of these
simulations, an ordering of size #π, representing the control, was compared
to an ordering of size N , representing the prediction. Both orderings were
artificially created. We varied the value of parameters #π and N across the
simulations, and compared the computational time of both implementations.
As an attempt to search for best and worse cases, we performed three variations
of these simulations. In the first case, items in the control were ranked identically
to the prediction (correlation = 1); in the second case, the control was a partial
ordering of the reverse prediction (correlation = -1); and in the third case both
orderings were generated using an uniform distribution (correlation ≈ 0). The
observed results are depicted in Table A.1.

Clearly, the optimized implementation outperforms the naive one. The com-

A.2. SPEARMAN’S ρ CORRELATION COEFFICIENT 205

Parameters Perfect correlation Reverse correlation Null correlation
#π N Naive Optim. Naive Optim. Naive Optim.

10 10 3.68 11.22 3.59 11.2 3.85 13.31
10 100 1088.9 30.94 1062.4 29.97 1110.7 31.84
10 1000 960190 234 963460 229.3 961280 260.5
100 100 1090.4 168.5 1104.5 177.9 1143.5 219.9
100 1000 958630 408.7 958470 405.6 962060 464.9
1000 1000 956910 1937.5 966270 1964 963470 3163.7
736 1682 4548990 2160.6 4542750 1926.6 4549770 2600.6

Table A.1: Comparison between optimized and naive implementations of the
Spearman’s rho evaluation (time in milli-seconds).

putational time is approximately proportional to N3 (without much influence
of parameter #π) in the latter, while the order of magnitude is hard to guess
for the former, but which is at most linear with respect to #π and N .

The naive form does not seem to be much affected by the correlation of the
rankings, while the optimized form requires significant additional time, yet in
an acceptable range, to compute when the rankings are not correlated.

Also note that for very small values of #π and N , the naive version is more
efficient and should be used instead. In this thesis, this would only concern the
OMIB database, while the computational time would be reduced by (97.13% -
97.18%) for Sushi and (99.94% - 99.96%) for MovieLens.

A.2.4 Efficient computation of ρ in an EGS/RGS context

The EGS (and its derivate RGS) performs only a single comparison swap before
recomputing the Spearman’s ρ correlation coefficient. We could thus use a part
of the computations performed in the previous iteration in order to compute
this ρ in a more efficient manner than recomputing everything at each iteration.

Each comparison qkl provides preference information about yk and yl for any
given x. If we store the table of votes for each object, we can thus update this
table at each swap qkl ↔ qij by removing the votes vk and vl from the table,
and add vi and vj into it. Hence, the table will not have to be reconstructed
at each iteration, and the update process is independent of T . Algorithm 22

206 APPENDIX A. EFFICIENT IMPLEMENTATIONS

describes the implementation of this protocol.

Algorithm 22 Optimized handling of the table of votes for RGS

First Initialization
Input: A set LS of n objects and a set Q of T comparisons based on N labels
Output: A table of votes

V ← a table of size n×N filled with zeros
for every object xi ∈ LS do

for every comparison qkl ∈ Q do
V [i][k]← V [i][k] + vik
V [i][l]← V [i][l] + vil

end for
end for
return V

Update process
Input: A table of votes V of size n×N and a comparator swap qkl ↔ qjm
Output: An updated table ready for the Spearman’s ρ evaluation

for every i ∈ {1, 2, ..., n} do
V [i][k]← V [i][k]− vik
V [i][l]← V [i][l]− vil
V [i][j]← V [i][j] + vij
V [i][m]← V [i][m] + vim

end for
return V

A.3 Pre-computing

Computing in advance some calculations in order to be able to re-use them one
or several times later is called “pre-computing”. The advantage is a gain in time
since the same calculations are performed only once but, as a counterpart, it
requires disk storage in order to maintain access to the results.

We performed pre-computing in two stages of our framework : tree building
and rejected comparisons and objects.

A.3. PRE-COMPUTING 207

A.3.1 Tree building

In addition to time gain, pre-computing the tree ensemble used as base learning
reduces the variance as the observable accuracy variations are only caused by
the trimming method and not by the base learner model.

A.3.2 Rejected comparisons

Depending on the manner of dealing with sparsity in partially ranked datasets,
we might have to reject comparisons from the model construction if they do
not provide any pairwise preference information. However, trying to select T
comparisons in a set Q

′Full of informative comparators would be an impossible
task if #Q

′Full < T . Thus, rather than iteratively selecting comparisons and
later discover that these comparisons are not in a sufficient number, we could
pre-compute the number of usable comparisons and select them all if this num-
ber is smaller than the desired T .

In the dual case, scanning the database in search for an object which provides
preference information on the considered pair of labels can also be pre-computed.

These pre-computations must still be repeated for each value of the learning
set size which we want to consider.

208 APPENDIX A. EFFICIENT IMPLEMENTATIONS

Appendix B

Result figures

Contents
B.1 Accuracy . 210

B.1.1 Reverse alphanumerical order 210

B.1.1.1 Using dummy models 211

B.1.1.2 Dropping empty comparisons 215

B.1.2 Reverse alphanum / Mean order 219

B.1.2.1 Classification 219

B.1.2.2 Regression 221

B.1.2.3 Perfect models 222

B.1.3 Mean order . 224

B.2 Correlation between LS and TS ranking scores . 226

B.3 Complexity . 227

B.4 Robustness of RGS 229

B.4.1 Omib . 229

B.4.2 Sushi 0, Dropping empty comparisons 231

B.4.3 Sushi 0, Using a dummy model 232

B.4.4 Sushi 3, Dropping empty comparisons 233

B.4.5 Sushi 3, Using a dummy model 235

B.4.6 MovieLens, Dropping empty comparisons 236

B.4.7 MovieLens, Using a dummy model 237

This Appendix contains all the result figures which are being discussed in
Chapter 5, while some were not displayed in that chapter for readability purpose.

209

210 APPENDIX B. RESULT FIGURES

In Section B.1, you will find boxplot figures showing the accuracy, in terms of
ranking score, of the tested methods in various settings, as discussed in Sections
5.3, 5.4, and 5.5. Section B.2 shows the correlation between ranking score on the
TS and ranking score on the LS for a given set Q as discussed in Section 5.4.1.
Section B.3 shows the result figures concerning time and space complexity of
our presented algorithms, as discussed in Section 5.6. Finally, Section B.4 shows
the effect of sub-optimal meta-parameters on the RGS algorithm, as discussed
in Section 5.5.3.

B.1 Accuracy

In this section, we will present the result figures which we obtained over various
experiments in which the parameters are : (i) The default order used to break
the ties (the reverse alphanumerical order or the mean order) either during the
learning phase or the prediction phase, (ii) the required #LSaux for a given
comparison in order to be a candidate for selection, (iii) the mode of the model
(Classification or Regression) as well as the fact that the “ObjectID” attribute
is being used or not and (iv) the size T of the subset Q of comparisons. The
tree parameters are set to the following: nmin = 2, K =

√
#A and M = 500 for

each experiment shown in this section.

This section will be subdivided in three parts, based on the default order used
to break the ties. In section B.1.1, the reverse alphanumerical order is used at
both learning and prediction stage. In section B.1.2, the reverse alphanumerical
order is used at the learning stage and the mean order is used at the prediction
stage and finally, in section B.1.3, the mean order is used at both learning and
prediction stage.

B.1.1 Reverse alphanumerical order

In this section, the reverse alphanumerical order is used to break the ties at
both learning at prediction stage. This section will be subdivided in two parts:
in the first part, we use a dummy model1 to represent empty comparisons and,
in the second part, we drop empty comparisons, hence reducing the set of com-
parisons to draw from. Since both settings would act similarly on the OMIB
database (which is completely ranked), we chose to display its related figures in
the first part. In both subsections, figures on the left hand side are obtained by

1The dummy model which we use always outputs the value of 0.5.

B.1. ACCURACY 211

training the models in classification mode, while figures on the right hand side
are obtained by training the models in regression mode.

B.1.1.1 Using dummy models

The figures in this section were obtained after using a dummy model to represent
empty comparisons.

B.1.1.1.1 Omib

Figure B.1: Accuracy using the PR
selection method in classification mode

Figure B.2: Accuracy using the PR
selection method in regression mode

Figure B.3: Accuracy using the EGS
selection method in classification mode

Figure B.4: Accuracy using the EGS
selection method in regression mode

212 APPENDIX B. RESULT FIGURES

Figure B.5: Accuracy using the EDA
selection method in classification mode

Figure B.6: Accuracy using the EDA
selection method in regression mode

Figure B.7: Accuracy using the RGS
selection method in classification mode

Figure B.8: Accuracy using the RGS
selection method in regression mode

B.1.1.1.2 Sushi 0, Using a dummy model

Figure B.9: Accuracy using the PR
selection method in classification mode

Figure B.10: Accuracy using the PR
selection method in regression mode

B.1. ACCURACY 213

Figure B.11: Accuracy using the EDA
selection method in classification mode

Figure B.12: Accuracy using the EDA
selection method in regression mode

Figure B.13: Accuracy using the RGS
selection method in classification mode

Figure B.14: Accuracy using the RGS
selection method in regression mode

B.1.1.1.3 Sushi 3, Using a dummy model

Figure B.15: Accuracy using the PR
selection method in classification mode

Figure B.16: Accuracy using the PR
selection method in regression mode

214 APPENDIX B. RESULT FIGURES

Figure B.17: Accuracy using the EDA
selection method in classification mode

Figure B.18: Accuracy using the EDA
selection method in regression mode

Figure B.19: Accuracy using the RGS
selection method in classification mode

Figure B.20: Accuracy using the RGS
selection method in regression mode

B.1.1.1.4 MovieLens, Using a dummy model

Figure B.21: Accuracy using the PR
selection method in classification mode

Figure B.22: Accuracy using the PR
selection method in regression mode

B.1. ACCURACY 215

Figure B.23: Accuracy using the EDA
selection method in classification mode

Figure B.24: Accuracy using the EDA
selection method in regression mode

Figure B.25: Accuracy using the RGS
selection method in classification mode

Figure B.26: Accuracy using the RGS
selection method in regression mode

B.1.1.2 Dropping empty comparisons

The figures displayed in this section were obtained after dropping empty com-
parisons.

216 APPENDIX B. RESULT FIGURES

B.1.1.2.1 Sushi 0, Dropping empty comparisons

Figure B.27: Accuracy using the PR
selection method in classification mode

Figure B.28: Accuracy using the PR
selection method in regression mode

Figure B.29: Accuracy using the EDA
selection method in classification mode

Figure B.30: Accuracy using the EDA
selection method in regression mode

Figure B.31: Accuracy using the RGS
selection method in classification mode

Figure B.32: Accuracy using the RGS
selection method in regression mode

B.1. ACCURACY 217

B.1.1.2.2 Sushi 3, Dropping empty comparisons

Figure B.33: Accuracy using the PR
selection method in classification mode

Figure B.34: Accuracy using the PR
selection method in regression mode

Figure B.35: Accuracy using the EDA
selection method in classification mode

Figure B.36: Accuracy using the EDA
selection method in regression mode

Figure B.37: Accuracy using the RGS
selection method in classification mode

Figure B.38: Accuracy using the RGS
selection method in regression mode

218 APPENDIX B. RESULT FIGURES

B.1.1.2.3 MovieLens, Dropping empty comparisons

Figure B.39: Accuracy using the PR
selection method in classification mode

Figure B.40: Accuracy using the PR
selection method in regression mode

Figure B.41: Accuracy using the EDA
selection method in classification mode

Figure B.42: Accuracy using the EDA
selection method in regression mode

Figure B.43: Accuracy using the RGS
selection method in classification mode

Figure B.44: Accuracy using the RGS
selection method in regression mode

B.1. ACCURACY 219

B.1.2 Reverse alphanum / Mean order

In this section, the reverse alphanumerical order is used to break the ties at the
learning stage and the mean order is used to break the ties at the prediction
stage. This section will be subdivided in three parts: in the first part, the
models are built in classification mode; in the second part, the models are built
in regression mode and, in the last part, we use simulated perfect models to
represent our comparators. To select a subset Q of comparisons, we used EGS
for the OMIB database, and RGS for MovieLens and both Sushi’s. In the first
two parts, we dropped empty comparisons and, in the last part, we also perform
an experiment where #LSaux ≥ 5.

B.1.2.1 Classification

In this section, the models are trained in classification mode. The figures on the
left hand side are obtained when the “objectID” attribute is used as feature in
the model construction and, in the right hand side figures, this attribute is not
considered in the model construction.

Figure B.45: Accuracy using EGS in
classification mode with the
“objectID” attribute (Omib)

Figure B.46: Accuracy using EGS in
classification mode without the
“objectID” attribute (Omib)

220 APPENDIX B. RESULT FIGURES

Figure B.47: Accuracy using RGS in
classification mode with the

“objectID” attribute (Sushi 0)

Figure B.48: Accuracy using RGS in
classification mode without the
“objectID” attribute (Sushi 0)

Figure B.49: Accuracy using RGS in
classification mode with the

“objectID” attribute (Sushi 3)

Figure B.50: Accuracy using RGS in
classification mode without the
“objectID” attribute (Sushi 3)

Figure B.51: Accuracy using RGS in
classification mode with the

“objectID” attribute (MovieLens)

Figure B.52: Accuracy using RGS in
classification mode without the

“objectID” attribute (MovieLens)

B.1. ACCURACY 221

B.1.2.2 Regression

In this section, the models are trained in regression mode. The figures on the
left hand side are obtained when the “objectID” attribute is used as feature in
the model construction and, in the right hand side figures, this attribute is not
considered in the model construction.

Figure B.53: Accuracy using EGS in
regression mode with the “objectID”

attribute (Omib)

Figure B.54: Accuracy using EGS in
regression mode without the
“objectID” attribute (Omib)

Figure B.55: Accuracy using RGS in
regression mode with the “objectID”

attribute (Sushi 0)

Figure B.56: Accuracy using RGS in
regression mode without the

“objectID” attribute (Sushi 0)

222 APPENDIX B. RESULT FIGURES

Figure B.57: Accuracy using RGS in
regression mode with the “objectID”

attribute (Sushi 3)

Figure B.58: Accuracy using RGS in
regression mode without the

“objectID” attribute (Sushi 3)

Figure B.59: Accuracy using RGS in
regression mode with the “objectID”

attribute (MovieLens)

Figure B.60: Accuracy using RGS in
regression mode without the

“objectID” attribute (MovieLens)

B.1.2.3 Perfect models

In this section, we do not train any model. Instead, the “prediction” is obtained
by scanning the supervision. The figures on the left hand side are obtained when
#LSaux ≥ 1 and, in the right hand side figures, when #LSaux ≥ 5, except for
the OMIB database which is not affected by this parameter.

B.1. ACCURACY 223

Figure B.61: Accuracy using EGS and
perfect models (Omib)

Figure B.62: Accuracy using RGS and
perfect models with #LSaux ≥ 1

(Sushi 0)

Figure B.63: Accuracy using RGS and
perfect models with #LSaux ≥ 5

(Sushi 0)

Figure B.64: Accuracy using RGS and
perfect models with #LSaux ≥ 1

(Sushi 3)

Figure B.65: Accuracy using RGS and
perfect models with #LSaux ≥ 5

(Sushi 3)

224 APPENDIX B. RESULT FIGURES

Figure B.66: Accuracy using RGS and
perfect models with #LSaux ≥ 1

(MovieLens)

Figure B.67: Accuracy using RGS and
perfect models with #LSaux ≥ 5

(MovieLens)

B.1.3 Mean order

In this section, the mean order is used to break the ties at both learning at
prediction stage. In this experiment, we drop empty comparisons. Figures on
the left hand side are obtained by training the models in classification mode,
while figures on the right hand side are obtained by training the models in
regression mode.

Figure B.68: Accuracy using EGS in
classification mode (Omib)

Figure B.69: Accuracy using EGS in
regression mode (Omib)

B.1. ACCURACY 225

Figure B.70: Accuracy using RGS in
classification mode (Sushi 0)

Figure B.71: Accuracy using RGS in
regression mode (Sushi 0)

Figure B.72: Accuracy using RGS in
classification mode (Sushi 3)

Figure B.73: Accuracy using RGS in
regression mode (Sushi 3)

Figure B.74: Accuracy using RGS in
classification mode (MovieLens)

Figure B.75: Accuracy using RGS in
regression mode (MovieLens)

226 APPENDIX B. RESULT FIGURES

B.2 Correlation between LS and TS ranking scores

In this section, one can find the figures, discussed in Section 5.4.1, representing
the correlation between SLS and STS. On these graphs, each dot represents a
set Q, obtained by the PR algorithm, in a given architecture, i.e. a combination
of the tree parameters and the parameter T . We performed two variants of
the experiment: in one experiment, we dropped empty comparisons (left hand
side figures) and, in the second experiment, we used a dummy model to rep-
resent empty comparisons (right hand side figures). In each case, and for each
database, there is a (more or less) linear correlation between SLS and STS,
hence optimizing the set Q based on SLS is relevant.

Figure B.76: LS vs TS correlation
(Omib)

Figure B.77: LS vs TS correlation
(Sushi 0, dropping

empty comparisons)

Figure B.78: LS vs TS correlation
(Sushi 0, using

a dummy model)

B.3. COMPLEXITY 227

Figure B.79: LS vs TS correlation
(Sushi 3, dropping

empty comparisons)

Figure B.80: LS vs TS correlation
(Sushi 3, using

a dummy model)

Figure B.81: LS vs TS correlation
(MovieLens, dropping
empty comparisons)

Figure B.82: LS vs TS correlation
(MovieLens, using
a dummy model)

B.3 Complexity

In this section, the figures concerning the complexity, as discussed in Section 5.6,
can be found. Figures on the left hand side provide information about the time
complexity and figures on the right hand side provide information about the
space complexity. In both cases, each histogram bar represents the minimum
required amount of resource (computational time or memory, depending on the
case) for a given accuracy, which is given by the green line.

228 APPENDIX B. RESULT FIGURES

Figure B.83: Accuracy vs
Computational time (Omib)

Figure B.84: Accuracy vs Number of
classifiers (Omib)

Figure B.85: Accuracy vs
Computational time (Sushi 0)

Figure B.86: Accuracy vs Number of
classifiers (Sushi 0)

Figure B.87: Accuracy vs
Computational time (Sushi 3)

Figure B.88: Accuracy vs Number of
classifiers (Sushi 3)

B.4. ROBUSTNESS OF RGS 229

Figure B.89: Accuracy vs
Computational time (MovieLens)

Figure B.90: Accuracy vs Number of
classifiers (MovieLens)

B.4 Robustness of RGS

In this section, we provide the figures, discussed in Section 5.5.3, concerning the
analysis of robustness of the RGS algorithm with respect to the tree parameters
and to the parameter T . We also analyze the effect of #LS, which is also
contained in this section although we cannot really speak about robustness in
that case but rather about the learning effort w.r.t. parameter T . However, since
varying #LS is very similar to varying the tree parameters, we chose to display
the results of this experiment in the same section as the robustness experiments.
We separate this section by database, and by the manner of dealing with sparsity
(i.e. dropping empty comparisons or using a dummy model to represent them).

B.4.1 Omib

Figure B.91: Effect of #LS in
classification

Figure B.92: Effect of #LS in
regression

230 APPENDIX B. RESULT FIGURES

Figure B.93: Effect of parameter K in
classification

Figure B.94: Effect of parameter K in
regression

Figure B.95: Effect of parameter nmin

in classification
Figure B.96: Effect of parameter nmin

in regression

Figure B.97: Effect of parameter M in
classification

Figure B.98: Effect of parameter M in
regression

B.4. ROBUSTNESS OF RGS 231

B.4.2 Sushi 0, Dropping empty comparisons

Figure B.99: Effect of #LS in
classification

Figure B.100: Effect of #LS in
regression

Figure B.101: Effect of parameter K in
classification

Figure B.102: Effect of parameter K in
regression

Figure B.103: Effect of parameter nmin

in classification
Figure B.104: Effect of parameter nmin

in regression

232 APPENDIX B. RESULT FIGURES

Figure B.105: Effect of parameter M
in classification

Figure B.106: Effect of parameter M
in regression

B.4.3 Sushi 0, Using a dummy model

Figure B.107: Effect of #LS in
classification

Figure B.108: Effect of #LS in
regression

Figure B.109: Effect of parameter K in
classification

Figure B.110: Effect of parameter K in
regression

B.4. ROBUSTNESS OF RGS 233

Figure B.111: Effect of parameter nmin

in classification
Figure B.112: Effect of parameter nmin

in regression

Figure B.113: Effect of parameter M
in classification

Figure B.114: Effect of parameter M
in regression

B.4.4 Sushi 3, Dropping empty comparisons

Figure B.115: Effect of #LS in
classification

Figure B.116: Effect of #LS in
regression

234 APPENDIX B. RESULT FIGURES

Figure B.117: Effect of parameter K in
classification

Figure B.118: Effect of parameter K in
regression

Figure B.119: Effect of parameter nmin

in classification
Figure B.120: Effect of parameter nmin

in regression

Figure B.121: Effect of parameter M
in classification

Figure B.122: Effect of parameter M
in regression

B.4. ROBUSTNESS OF RGS 235

B.4.5 Sushi 3, Using a dummy model

Figure B.123: Effect of #LS in
classification

Figure B.124: Effect of #LS in
regression

Figure B.125: Effect of parameter K in
classification

Figure B.126: Effect of parameter K in
regression

Figure B.127: Effect of parameter nmin

in classification
Figure B.128: Effect of parameter nmin

in regression

236 APPENDIX B. RESULT FIGURES

Figure B.129: Effect of parameter M
in classification

Figure B.130: Effect of parameter M
in regression

B.4.6 MovieLens, Dropping empty comparisons

Figure B.131: Effect of #LS in
classification

Figure B.132: Effect of #LS in
regression

Figure B.133: Effect of parameter K in
classification

Figure B.134: Effect of parameter K in
regression

B.4. ROBUSTNESS OF RGS 237

Figure B.135: Effect of parameter nmin

in classification
Figure B.136: Effect of parameter nmin

in regression

Figure B.137: Effect of parameter M
in classification

Figure B.138: Effect of parameter M
in regression

B.4.7 MovieLens, Using a dummy model

Figure B.139: Effect of #LS in
classification

Figure B.140: Effect of #LS in
regression

238 APPENDIX B. RESULT FIGURES

Figure B.141: Effect of parameter K in
classification

Figure B.142: Effect of parameter K in
regression

Figure B.143: Effect of parameter nmin

in classification
Figure B.144: Effect of parameter nmin

in regression

Figure B.145: Effect of parameter M
in classification

Figure B.146: Effect of parameter M
in regression

Appendix C

Alternative approach

Contents
C.1 Introduction . 239

C.2 LRANN loss function 240

C.3 Experimental setup 240

C.4 Results . 241

C.5 Conclusion . 242

Although our main task was to find a solution to the complexity burden of
RPC by trimming the set of comparators, another completely different approach
was considered and we will present this idea as a preliminary work.

C.1 Introduction

The application of ANNs to label ranking problems has already been studied in
the literature. However, either the computation requires several models (one per
class label [CDK+06] or per pair of labels [FISS03]) or uses an artifact, as pro-
posed by Burges et al. in [BSR+05], where the authors perform two consecutive
forward passes in order to compute the loss function. Indeed, when considering
training examples of the form {xi, yk, yl}, the network should output a greater
score to yk than to yl when xi is input (see 3.2.1.3 for more details about this
procedure).

Crammer et al. proposed in [CDK+06] a methodology to assign a score to
each label. However, they applied this technique to multi-label classification in

239

240 APPENDIX C. ALTERNATIVE APPROACH

such a way that the lowest score of relevant items should be higher than the
highest score of irrelevant items.

Inspired by this previous research, we propose a new loss function for train-
ing a multiple output ANN, while coping with partially ranked datasets. The
resulting method is called LRANN.

The subsequent sections are organized as follow : the proposed loss function
will be given in Section C.2, the experimental setup will be described in Section
C.3. Section C.4 will present the results and the conclusion for this part will be
given in Section C.5.

C.2 LRANN loss function

The loss function that we propose is the following :

∀i ∈ N,Loss[i] =

{ (
1− τ(i)

#τ−1 −Output[i]
)2

if i ∈ τ
0 Otherwise

(C.1)

where τ is the (possibly partial) ranking associated to a given training example,
N is the total number of class labels, #τ is the number of class labels in the τ
ranking, Output[i] is the value of the ith node in the output layer1, and where
τ(i) represents the position of label i in the τ ranking (from 0 to #τ − 1).
Graphically, the representation of the expected prediction is shown in Figure
C.1.

C.3 Experimental setup

We tested our LRANN method on the four previously depicted datasets. We
vary the number of hidden layers from 1 to 3 and the number of nodes per
layer in {5, 10, 20, 50, 100}. We used a sigmoid function (f(x) = 1

1+e−x) to
model each neuron. The starting weights were randomly set in the interval
[−1, 1]. Each layer was added a bias neuron b. We applied the back-propagation
algorithm [Roj96] using the gradient descent to update the network weights.
Since Wilson and Martinez discussed in [WM03] about the general inefficiency

1Each Output[i] is constrained to stay between [0, 1]

C.4. RESULTS 241

Figure C.1: Expected output value for a control ranking {C,B,E, F}.
Nothing is expected for A and D, so the loss will be equal to 0.

of batch training in ANN, we updated the network weights after evaluating each
object in the dataset. Each training consisted of 100 epochs. The learning rate
α was set to 0.01.

C.4 Results

We compared the prediction of LRANN to predictions from the Ranking by
Pairwise Comparison algorithm [HFCB08] using Extra-trees [GEW06] as base
learner2, as well as the best previously published value, when available3. For
each dataset, we performed a 10-fold cross validation test, both with RPC and
our method. For each training fold, we split the corresponding fold into two
parts : 66.6% were used as training set and the remaining 33.3% were used as
validation set to evaluate the error rate. Based on this split, we trained different
architectures by varying, as parameters, the number of hidden layers and the
number of nodes per layer as explained in Section C.3. Parameters yielding the
lower error rate on the validation set determine the optimal architecture for this
fold. A new model based on this architecture is trained on the combination of
the previous training set and the validation set, and the error rate of this fold
is estimated using the holdout. We then proceed with the next fold. However,

2We used standard parameter values. K =
√

#A, nmin = 2, M = 100
3In this study, we only considered the values published in [KKA05]

242 APPENDIX C. ALTERNATIVE APPROACH

Figure C.2: Our preliminary results are promising

we did not perform such a parameter optimization on RPC, which could ex-
plain why RPC has lower scores. The comparison between two rankings was
performed using the Spearman Rank Correlation coefficient [Spe04] and the per-
formances are shown on Figure C.2, showing a slight advantage of the proposed
approach with respect to the RPC method, on three out of 4 datasets, while on
Movielens RPC remains significantly better.

C.5 Conclusion

We presented a new approach to solve label ranking problems using a single
artificial neural network. Although our results are preliminary and they would
require a deeper analysis, they are nevertheless promising. At this stage, the
proposed algorithm is already competitive with state-of-the art methods on most
of our tested datasets.

Bibliography

[ACN05] N. Ailon, M. Charikar, and A. Newman, Aggregating inconsistent
information: ranking and clustering, Proceedings of the thirty-
seventh annual ACM symposium on Theory of computing (New
York, NY, USA), STOC ’05, ACM, 2005, pp. 684–693.

[AIS93] R. Agrawal, T. Imieliński, and A. Swami, Mining association rules
between sets of items in large databases, SIGMOD Rec. 22 (1993),
no. 2, 207–216.

[ASS07] F. Aiolli, F. Sebastiani, and A. Sperduti, Preference Learning for
Category-Ranking based Interactive Text Categorization, August
2007, pp. 2034–2039.

[Bay63] T. Bayes, An essay towards solving a problem in the doctrine of
chances, Phil. Trans. of the Royal Soc. of London 53 (1763), 370–
418.

[BFKM85] L. Brownston, R. Farrell, E. Kant, and N. Martin, Programming
expert systems in ops5: an introduction to rule-based programming,
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1985.

[BFSO84] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Clas-
sification and Regression Trees, 1 ed., Chapman and Hall/CRC,
January 1984.

[BGH10] A. Birlutiu, P. Groot, and T. Heskes, Multi-task preference learning
with an application to hearing aid personalization, Neurocomputing
73 (2010), 1177–1185.

243

244 BIBLIOGRAPHY

[BH06] K. Brinker and E. Hüllermeier, Case-based label ranking, Pro-
ceedings of the 17th European Conference on Machine Learn-
ing (ECML-06) (Berlin, Germany) (Johannes Fürnkranz, To-
bias Scheffer, and M. Spiliopoulou, eds.), Springer-Verlag, 2006,
pp. 566–573.

[BH07] , Case-Based Multilabel Ranking, Proceedings of the 20th
International Conference on Artificial Intelligence (IJCAI ’07) (Hy-
derabad, India), 2007, pp. 702–707.

[BM98] A. Blum and T. Mitchell, Combining labeled and unlabeled data
with co-training, Proceedings of the eleventh annual conference on
Computational learning theory (New York, NY, USA), COLT’ 98,
ACM, 1998, pp. 92–100.

[BSR+05] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamil-
ton, and G. Hullender, Learning to rank using gradient descent,
Proceedings of the 22nd international conference on Machine learn-
ing (New York, NY, USA), ICML ’05, ACM, 2005, pp. 89–96.

[BTT89] J. Bartholdi, C. A. Tovey, and M. A. Trick, Voting schemes for
which it can be difficult to tell who won the election, Social Choice
and Welfare 6 (1989), 157–165, 10.1007/BF00303169.

[CC00] Y. Cheng and G. M. Church, Biclustering of expression data, 2000.

[CDK+06] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and
Y. Singer, Online passive-aggressive algorithms, J. Mach. Learn.
Res. 7 (2006), 551–585.

[CH08] W. Cheng and E. Hüllermeier, Instance-based label ranking using
the mallows model., ECCBR Workshops (Martin Schaaf, ed.), 2008,
pp. 143–157.

[CH09] , A new instance-based label ranking approach using the mal-
lows model, ISNN (1) (Wen Yu, Haibo He, and Nian Zhang, eds.),
Lecture Notes in Computer Science, vol. 5551, Springer, 2009,
pp. 707–716.

[CHH09] W. Cheng, J. C. Huhn, and E. Hüllermeier, Decision tree and
instance-based learning for label ranking., ICML (Andrea Po-
horeckyj Danyluk, Lon Bottou, and Michael L. Littman, eds.),

BIBLIOGRAPHY 245

ACM International Conference Proceeding Series, vol. 382, ACM,
2009, p. 21.

[CLR90] T. Cormen, C. Leiserson, and R. Rivest, Introduction to Algo-
rithms, ch. 16: “Greedy algorithms”, The MIT Press, Cambridge,
MA, 1990.

[Cri09] N. Cristianini, Are we there yet?, European Conference on Machine
Learning and Principles and Practice of Knowledge Discovery in
Databases, 2009.

[CV95] C. Cortes and V. Vapnik, Support-vector networks, Machine Learn-
ing, 1995, pp. 273–297.

[dGIL+] M. de Gemmis, L. Iaquinta, P. Lops, C. Musto, F. Narducci, and
G. Semeraro, Preference Learning in Recommender Systems.

[DLR77] A. P. Dempster, N. M. Laird, and D. B. Rubin, Maximum likelihood
from incomplete data via the em algorithm, JOURNAL OF THE
ROYAL STATISTICAL SOCIETY, SERIES B 39 (1977), no. 1,
1–38.

[DWH12] K. Dembczynski, W. Waegeman, and E. Hüllermeier, An analysis
of chaining in multi-label classification, ECAI, 2012, pp. 294–299.

[EGWL05] D. Ernst, P. Geurts, L. Wehenkel, and L. Littman, Tree-based
batch mode reinforcement learning, Journal of Machine Learning
Research 6 (2005), 503–556.

[EKJX96] M. Ester, H. Kriegel, S. Jrg, and X. Xu, A density-based algorithm
for discovering clusters in large spatial databases with noise, AAAI
Press, 1996, pp. 226–231.

[EW02] A. Elisseeff and J. Weston, A kernel method for multi-labelled clas-
sification, Advances in Neural Information Processing Systems 14
(NIPS-01) (T. G. Dietterich, S. Becker, and Z. Ghahramani, eds.),
2002, pp. 681–687.

[FH10] J. Fürnkranz and E. Hüllermeier, Preference learning: An in-
troduction, Preference Learning (Johannes Fürnkranz and Eyke
Hüllermeier, eds.), Springer-Verlag, 2010, pp. 1–17.

246 BIBLIOGRAPHY

[FISS03] Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer, An efficient
boosting algorithm for combining preferences, J. Mach. Learn. Res.
4 (2003), 933–969.

[FK99] A. M. Frieze and R. Kannan, Quick approximation to matrices and
applications., Combinatorica 19 (1999), no. 2, 175–220.

[FSST97] Y. Freund, H. S. Seung, E. Shamir, and N. Tishby, Selective sam-
pling using the query by committee algorithm, Mach. Learn. 28
(1997), no. 2-3, 133–168.

[GEW06] P. Geurts, D. Ernst, and L. Wehenkel, Extremely randomized trees,
Machine Learning 36 (2006), no. 1, 3–42.

[GRP73] University of Minnesota GroupLens Research Project, Movielens
data set, http://www.grouplens.org/node/73.

[GV10] T. Gärtner and S. Vembu, Label ranking algorithms: A survey,
Preference Learning (Eyke Hüllermeier Johannes Fürnkranz, ed.),
Springer–Verlag, 2010.

[GWKS08] M. Gallagher, I. Wood, J. Keith, and G. Sofronov, Bayesian infer-
ence in estimation of distribution algorithms, 2008.

[HF04] E. Hüllermeier and J. Fürnkranz, Ranking by pairwise comparison
: A note on risk minimization, the IEEE International Conference
on Fuzzy Systems, 2004.

[HFCB08] E. Hüllermeier, J. Fürnkranz, W. Cheng, and K. Brinker, Label
ranking by learning pairwise preference, Artificial Intelligence 172
(2008), 1897–1916.

[HGBSO98] R. Herbrich, T. Graepel, P. Bollmann-Sdorra, and K. Obermayer,
Learning preference relations for information retrieval, Training,
vol. 0, 1998, pp. 80–84.

[HpRZ02] S. Har-peled, D. Roth, and D. Zimak, Constraint classification: A
new approach to multiclass classification and ranking, In Advances
in Neural Information Processing Systems 15, 2002, pp. 365–379.

[HTF03] T. Hastie, R. Tibshirani, and J. H. Friedman, The Elements of
Statistical Learning, corrected ed., ch. 14.3.12 : Hierarchical clus-
tering, Springer, July 2003.

BIBLIOGRAPHY 247

[Hub06] M. Huber, Fast perfect sampling from linear extensions., Discrete
Mathematics (2006), 420–428.

[Kam03] T. Kamishima, Clustering orders, The 6th International Confer-
ence on Discovery Science, 2003, pp. 194–207.

[Ken38] M. Kendall, A new measure of rank correlation, Biometrika 30
(1938), no. 1-2, 81–89.

[KKA05] T. Kamishima, H. Kazawa, and S. Akaho, Supervised ordering —
an empirical survey, The 5th IEEE International Conference on
Data Mining, 2005, pp. 673–676.

[KMS07] C. Kenyon-Mathieu and W. Schudy, How to rank with few errors,
STOC (D. S. Johnson and U. Feige, eds.), ACM, 2007, pp. 95–103.

[Knu98] D. E. Knuth, Art of Computer Programming, Volume 3: Sorting
and Searching (2nd Edition), 2 ed., ch. 5.2.2 : Sorting by Exchang-
ing, Addison-Wesley Professional, May 1998.

[LHT07] L. Ling and L. Hsuan-Tien, Ordinal regression by extended bi-
nary classification, Advances in Neural Information Processing
Systems 19 (B. Schölkopf, J. C. Platt, and T. Hofmann, eds.),
2007, pp. 865–872.

[LL01] P. Larranage and J. A. Lozano, Estimation of distribution algo-
rithms : A new tool for evolutionary computation, Kluwer Aca-
demic Publishers, Dordrecht, Netherland, 2001.

[LMPF10] E. Loza Menćıa, S. Park, and J. Fürnkranz, Efficient voting predic-
tion for pairwise multilabel classification, Neurocomput. 73 (2010),
no. 7-9, 1164–1176.

[LSY03] G. Linden, B. Smith, and J. York, Amazon.com recommendations:
item-to-item collaborative filtering, Internet Computing, IEEE 7
(2003), no. 1, 76–80.

[Mac67] J. B. MacQueen, Some methods for classification and analysis of
multivariate observations, Proc. of the fifth Berkeley Symposium
on Mathematical Statistics and Probability (L. M. Le Cam and
J. Neyman, eds.), vol. 1, University of California Press, 1967,
pp. 281–297.

248 BIBLIOGRAPHY

[Mar71] A. Markov, Extension of the Limit Theorems of Probability Theory
to a Sum of Variables Connected in a Chain, Dynamic Probabilistic
Systems (Volume I: Markov Models) (R. Howard, ed.), John Wiley
& Sons, Inc., New York City, 1971, pp. 552–577.

[McC79] P. McCorduck, Machines who think, Freeman, 1979.

[Men87] E. Mendelson, Introduction to mathematical logic; (3rd ed.),
Wadsworth and Brooks/Cole Advanced Books & Software, Mon-
terey, CA, USA, 1987.

[Min74] M. Minsky, A framework for representing knowledge, Tech. report,
Cambridge, MA, USA, 1974.

[Mit97] T. M. Mitchell, Machine learning, McGraw-Hill International Edi-
tions, 1997.

[Pea84] J. Pearl, Heuristics: intelligent search strategies for computer
problem solving, Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1984.

[Pea85] , Bayesian networks: A model of self-activated memory
for evidential reasoning, Proceedings of the 7th Conference of the
Cognitive Science Society, University of California, Irvine, August
1985, pp. 329–334.

[PF07] S. Park and J. Fürnkranz, Efficient pairwise classification, ECML
2007, Springer, 2007, pp. 658–665.

[Pla98] J. C. Platt, Sequential minimal optimization: A fast algorithm for
training support vector machines, 1998.

[Pla99] , Probabilistic outputs for support vector machines and com-
parisons to regularized likelihood methods, ADVANCES IN LARGE
MARGIN CLASSIFIERS, MIT Press, 1999, pp. 61–74.

[Qui92] J. R. Quinlan, C4.5: Programs for Machine Learning (Morgan
Kaufmann Series in Machine Learning), 1 ed., Morgan Kaufmann,
October 1992.

[Raf10] R. Rafter, Evaluation and conversation in collaborative filtering,
Ph.D. Thesis, University College Dublin, School of Computer Sci-
ence & Informatics, 2010.

BIBLIOGRAPHY 249

[Roj96] R. Rojas, Neural Networks: A Systematic Introduction, 1 ed., ch. 7
: The backpropagation algorithm, Springer, July 1996.

[Ros56] M. Rosenblatt, Remarks on Some Nonparametric Estimates of
a Density Function, The Annals of Mathematical Statistics 27
(1956), no. 3, 832–837.

[RPHF09] J. Read, B. Pfahringer, G. Holmes, and E. Frank, Classifier chains
for multi-label classification, Proceedings of the European Confer-
ence on Machine Learning and Knowledge Discovery in Databases:
Part II (Berlin, Heidelberg), ECML PKDD ’09, Springer-Verlag,
2009, pp. 254–269.

[Rul99] C. M. Ruland, Decision support for patient preference-based care
planning: effects on nursing care and patient outcomes., Journal
of the American Medical Informatics Association 6 (1999), no. 4,
304–312.

[SBZH07] C. Strobl, A. Boulesteix, A. Zeileis, and T. Hothorn, Bias in ran-
dom forest variable importance measures: Illustrations, sources and
a solution, BMC Bioinformatics 8 (2007).

[SE87] S. C. Shapiro and D. Eckroth, Encyclopedia of artificial intelligence
/ stuart c. shapiro, editor in chief, david eckroth, managing editor,
Wiley, New York :, 1987 (English).

[Sha48] C. E. Shannon, A mathematical theory of communication, Bell Sys-
tem Technical Journal 27 (1948), 379–426 and 623–656.

[Sow91] J. F. Sowa, Principles of semantic networks, Morgan Kaufmann,
1991.

[Spe04] C. Spearman, The proof and measurement of association between
two things, The American Journal of Psychology 15 (1904), no. 1,
72–101.

[Sut88] R. S. Sutton, Learning to predict by the methods of temporal dif-
ferences, Machine Learning, 1988, pp. 9–44.

[Tok10] M. Tokic, Adaptive ε-greedy exploration in reinforcement learning
based on value differences, Proceedings of the 33rd annual German
conference on Advances in artificial intelligence (Berlin, Heidel-
berg), KI’10, Springer-Verlag, 2010, pp. 203–210.

250 BIBLIOGRAPHY

[vR79] C. J. van Rijsbergen, Information Retrieval, 2 ed., Butterworths,
London, 1979.

[VZPW07] A. Van Zuylen and D. P. Williamson, Deterministic algorithms
for rank aggregation and other ranking and clustering problems,
Proceedings of the Fifth International Workshop on Approximation
and Online Algorithms, 2007.

[Weh98] L. Wehenkel, Automatic learning techniques in power systems,
Kluwer Academic Publishers, Norwell, MA, USA, 1998.

[WGIA] L. Wehenkel and P. Geurts, http://www.montefiore.ulg.ac.be/ lwh/AIA/,
Applied inductive learning course, lesson 3 : Decision and regres-
sion trees, general principles.

[WK10] W. Wang and I. King, Label ranking with semi-supervised learning,
Australian Journal of Intelligent Information Processing Systems
12 (2010), no. 1.

[WM03] D. R. Wilson and T. R. Martinez, The general inefficiency of batch
training for gradient descent learning, Neural Networks 16 (2003),
no. 10, 1429–1451.

[ZLTC07] Gang Zhang, Yue Liu, Songbo Tan, and Xueqi Cheng, A novel
method for hierarchical clustering of search results, Web Intelli-
gence and Intelligent Agent Technology, International Conference
on 0 (2007), 181–184.

BIBLIOGRAPHY 251

	Introduction
	Context and History
	Definition of AI
	Problem solving
	Knowledge representation
	Machine Learning
	Objective
	Thesis outline

	A gentle introduction to Machine Learning
	Machine Learning
	Types of ML protocols
	Supervised learning
	Unsupervised learning
	Semi-supervised learning
	Reinforcement learning
	Interoperability of ML techniques

	Supervised learning algorithms
	Definition of ``model''
	Problem settings
	Definition of ``good model''
	Predictive accuracy
	Examples of SL algorithms

	Preference Learning
	Preference representations
	Utility function
	Pairwise information
	Orderings
	Interchangeability

	Learning to rank
	Label ranking
	Object ranking
	Instance ranking

	Combining (partial) orderings
	Difficulty of combining orderings
	Minimizing pairwise disagreements
	FAS-PIVOT
	PTAS
	Mallows model

	Similar domains
	Multi-label classification (MLC)
	Multi-label ranking (MLR)

	Existing reduction techniques
	QWeighted algorithm
	QWeighted for multi-label classification

	Summary and outlook

	Methods and algorithms
	Formal description of the problem
	Complexity reduction
	Sparsity in partially ranked datasets

	Scoring a ranking scheme on a sample
	Dealing with sparsely ranked datasets
	Modeling empty comparisons by dummy models
	Dropping empty comparisons

	Comparison selection algorithms
	Evaluating a set of comparisons during optimization
	Pure Random selection (PR)
	Estimation of Distribution Algorithm (EDA)
	``Exhaustive'' Greedy Search (EGS)
	Randomized Greedy Algorithm (RGS)

	Models for learning comparators
	Hard comparators vs soft comparators
	Summary

	Results
	Datasets used for experimental validation
	OMIB database (synthetic, complete, N = 10)
	Sushi database (real life, partial, N = 100)
	MovieLens database (real life, partial, N = 1682)

	Effect of the model mode in a RPC scheme
	Using optimized tree parameters
	Using sub-optimal tree parameters

	Evaluation of the PR selection method
	Effect of imposing a full class coverage

	Evaluation of EDA, EGS and RGS
	Relevance of optimizing with respect to the LS outputs
	Ranking score on OMIB
	Ranking score on Sushi
	Ranking score on MovieLens

	Effect of (meta-)parameters in a trimmed RPC scheme
	Effect of the model mode
	Effect of sparsity control
	Influence of the tree parameters (on RGS)
	Influence of the default order used in tie breaking
	Removing the object ID from the model construction
	Using simulated perfect models
	Setting the j1 and j3 RGS parameters to huge values

	Complexity of our set selection algorithms
	Time Complexity (computational speed)
	Space Complexity (memory usage)

	Concluding remarks

	Applications
	Decision support systems
	Recommender systems
	Personalized devices
	Ranking search results
	Text categorization

	Future work
	Limits of this work
	Possible improvements
	Using prior knowledge
	Other trimming algorithms
	Method parameters
	Controlling partial ranking and noise
	Extremely Randomized Ranking
	Optimizing with a given budget
	Using the mean ordering to select Q
	Weighted distribution based on comparator LS

	Conclusion
	Published work
	Bioinformatics publications
	Preference learning publications

	Acknowledgments
	Efficient implementations
	Weighted distribution
	Simple array
	Linked List
	Binary tree

	Spearman's correlation coefficient
	Naive method
	Optimized method
	Computational gain
	Efficient computation of in an EGS/RGS context

	Pre-computing
	Tree building
	Rejected comparisons

	Result figures
	Accuracy
	Reverse alphanumerical order
	Reverse alphanum / Mean order
	Mean order

	Correlation between LS and TS ranking scores
	Complexity
	Robustness of RGS
	Omib
	Sushi_0, Dropping empty comparisons
	Sushi_0, Using a dummy model
	Sushi_3, Dropping empty comparisons
	Sushi_3, Using a dummy model
	MovieLens, Dropping empty comparisons
	MovieLens, Using a dummy model

	Alternative approach
	Introduction
	LRANN loss function
	Experimental setup
	Results
	Conclusion

	Bibliography

