
Copyright © by the American Society of Anesthesiologists. Unauthorized reproduction of this article is prohibited.
Anesthesiology, V 117 • No 6 1 December 2012

ABSTRACT

Background: Existing methods to predict recovery after 
severe traumatic brain injury lack accuracy. The aim of this 
study is to determine the prognostic value of quantitative 
diffusion tensor imaging (DTI).
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What We Already Know about This Topic

•	 Traumatic brain injury is a major public health problem, and 
current methods to predict long-term outcome and resource 
utilization are not strong

•	 Measuring white matter injury using magnetic resonance dif-
fusion tensor imaging might improve prediction but has not 
been studied in a multicenter fashion

What This Article Tells Us That Is New

•	 In a multicenter study of 105 patients with traumatic brain in-
jury, diffusion tensor imaging, using a normalization process 
across different machine types, increased the accuracy of 
long-term outcome prediction compared with standard clini-
cal and imaging approaches
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Methods: In a multicenter study, the authors prospectively 
enrolled 105 patients who remained comatose at least 7 days 
after traumatic brain injury. Patients underwent brain mag-
netic resonance imaging, including DTI in 20 preselected 
white matter tracts. Patients were evaluated at 1 yr with a 
modified Glasgow Outcome Scale. A composite DTI score 
was constructed for outcome prognostication on this train-
ing database and then validated on an independent database  
(n = 38). DTI score was compared with the International 
Mission for Prognosis and Analysis of Clinical Trials Score.
Results: Using the DTI score for prediction of unfavor-
able outcome on the training database, the area under the 
receiver operating characteristic curve was 0.84 (95% CI: 
0.75–0.91). The DTI score had a sensitivity of 64% and 
a specificity of 95% for the prediction of unfavorable out-
come. On the validation-independent database, the area 
under the receiver operating characteristic curve was 0.80 
(95% CI: 0.54–0.94). On the training database, reclassifica-
tion methods showed significant improvement of classifica-
tion accuracy (P < 0.05) compared with the International 
Mission for Prognosis and Analysis of Clinical Trials score. 
Similar results were observed on the validation database.
Conclusions: White matter assessment with quantitative 
DTI increases the accuracy of long-term outcome predic-
tion compared with the available clinical/radiographic 
prognostic score.

S EVERE traumatic brain injury (TBI) represents a major 
public health burden, generally requiring resuscitation in 

an intensive care unit (ICU) and prolonged rehabilitation. For 
patients with TBI, there is considerable uncertainty regarding 
long-term outcome in terms of a broad range of cognitive, 
behavioral, and functional impairments. Available methods 
for the prediction of long-term outcome are inaccurate and 
unreliable, in part because clinical and electrophysiological 
evaluations are limited by coma or sedation. As a result, deci-
sions regarding therapeutic intensity and goals of care are 
commonly made on the basis of limited evidence, leading to 
a potential mismatch between outcomes and resources mobi-
lized to care for a patient, with associated psychological and 
financial burdens on patients, their families, and society.1

The most extensively validated scoring system for TBI out-
come is the International Mission for Prognosis and Analysis 
of Clinical Trials (IMPACT) score.2 It is based on a multivari-
ate model that combines clinical, biochemical, and computed 
tomography (CT) variables at admission to provide a probabi-
listic estimate of the outcome at 6 months. The IMPACT score 
is accurate in predicting outcomes in populations of patients 
with moderate and severe TBI but has limited utility in making 
decisions regarding any individual patient. It has been proposed 
that clinical decision-making must be based on additional infor-
mation that reflects the biological heterogeneity of TBI.3

White matter damage, a key feature of TBI, can be 
identified and quantified with a magnetic resonance imaging 
(MRI) sequence called diffusion tensor imaging (DTI). 

Single-center studies have demonstrated the diagnostic and 
prognostic value of DTI in patients with TBI.4–6 However, 
for these results to be widely applicable, quantitative MRI 
methods must account for hardware and software disparities 
within and across institutions. The goal of the current study 
was to develop and validate, as a first step, an algorithm based 
on DTI for outcome prediction in severe TBI in a multicenter 
setup after implementation of a normalization process. We 
hypothesized that DTI would significantly increase our 
predictive ability to discriminate between favorable and 
unfavorable (death, vegetative state, or minimally conscious 
state) outcomes at 1 yr compared with the IMPACT score.

Material and Methods

Study Oversight
The institutional review boards of participating institutions 
approved the study. Written informed consent was obtained for 
all study participants (patient’s next of kin during the acute stage, 
and patients themselves after recovery of consciousness). The 
protocol was registered on December 2007 (NCT00577954).

Study Design
We enrolled patients in a prospective observational mul-
ticenter cohort between October 2006 and March 2010. 
Imaging and clinical data from comatose patients with TBI 
was collected at predetermined time points using agreed 
upon shared data elements. An outcome prediction model 
was developed using the information available in the acute 
setting. We tested the hypothesis that this model can differ-
entiate between patients with favorable and unfavorable out-
come with greater accuracy than the IMPACT model alone.

Patients
Patients were enrolled in ICUs at 10 participating institutions. 
Inclusion criteria were (1) adult patient between 18 and 75 yr 
of age; and (2) inability to follow simple commands that could 
not be explained by sedation at least 7 days, and not more 
than 45 days, after TBI. Exclusion criteria were (1) moribund 
patients (expected survival < 24 h); (2) physiological instabil-
ity (e.g., due to hemodynamic instability, increased intracra-
nial pressure, and/or rapidly deteriorating respiratory function) 
that would preclude MRI scanning; (3) contraindication to the 
MRI; (4) penetrating head injury; and (5) a central nervous 
system condition such as stroke, brain tumor, or a neurode-
generative disease preceding TBI. Five to 10 healthy volunteers 
were recruited at each center to serve as control subjects to 
account for potential variations in DTI values across centers.7

Clinical Data Collection
Using standardized case report forms, data were collected 
and stored in a central, web-based, encrypted database. 
These included patient characteristics, initial clinical status, 
and cranial CT scan; adverse events associated with MRI 
scanning; 1-yr outcome using the Glasgow Outcome Scale 
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(GOS), the Disability Rating Scale, the extended Glasgow 
Outcome Score (GOSE), and the modified Rankin Scale.  
A central study monitor verified all data for accuracy, consis-
tency, and completeness.

Head CT Scan
Head CT scans were performed within 48 h after ICU 
admission and rated using the Marshall score.8 When more 
than one CT scan was obtained, the scan showing the worst 
radiologic findings was selected and scored.

Brain MRI
An MRI scan was acquired as soon as a patient met inclu-
sion criteria, and the CT scan was clinically feasible. During 
MRI acquisition, patient sedation, if any, was continued. At 
the 10 different sites, MRI scans were performed using 12 
scanners with either 1.5 or 3.0 Tesla field strengths and from 
three manufacturers: GE Healthcare (Milwaukee, WI), Sie-
mens Medical Solutions (Erlangen, Germany), and Philips 
Medical Systems (Eindhoven, The Netherlands). The precise 
parameters of each sequence were adapted to the individual 
scanner type, field strength, coil used, and departmental pro-
tocol. The following morphologic sequences were acquired: 
sagittal localizer, axial T2/FLAIR (Fluid Attenuated Inver-
sion Recovery), axial T2, and T2*, 3D inversion recovery 
T1. In addition, DTI was acquired in an axial plane per-
pendicular to the main field B0. The DTI parameters used 
were field of view of 300 mm, matrix size 96 × 96, and slice 
thickness 3 mm (resulting in nearly isotropic voxels). Gradi-
ent (B1) was applied in at least 12 directions (range 12–50) 
with a value of 1000 mT/m. A series without the diffusion 
gradient (the B-zero image) was also acquired.

MRI results, including the morphologic sequences and 
unprocessed DTI, were assembled in a centrally adminis-
tered imaging core laboratory at the Pitié-Salpêtrière Hos-
pital (Paris, France). The clinical teams treating the patients 
had access to all MRI results, with the exception of the 
DTI data.

MRI Analysis
All MRI scans were reviewed to check for motion and other 
artifacts. DTI images were preprocessed using the FSL soft-
ware.9††††† The diffusion tensor was estimated, and the 
local diffusion parameters, namely fractional anisotropy 
(FA), mean diffusivity (MD), axial diffusivity (L1), and radial 
diffusivity (Lt), were calculated for the entire brain in each 
patient and control. These parameters were computed from 
the three estimated eigenvalues that quantify the parameters 
of water diffusion in three orthogonal directions.10 Correc-
tion for distortions caused by Eddy currents was performed 
using the B-zero images.

To make diffusion measures comparable between individ-
uals, the FA, MD, L1, and Lt maps were registered on a 1 ×  
1 × 1 mm3 standard space image (MNI152 space) using the 

Tract-based Spatial Statistics procedure.11 The whole brain 
was registered using a nonlinear technique, and individual 
FA, MD, L1, and Lt values were projected on an alignment-
invariant template for the brain. This procedure maps all 
available information to a common brain template and 
avoids misalignment between subjects.

The regions-of-interest (ROIs) for DTI analysis were 
selected from the atlas designed by Mori et al.,12 the 
so-called ICBM-DTI-81 white matter atlas. This atlas, 
which is included in FSL, consists of 48 white matter 
tracts. For the purpose of this analysis, these were merged 
in 20 larger regions shown in figure 1 and were used to 
extract the diffusion parameters. For each patient and 
control, the average values of FA, MD, L1, and Lt in these 
20 ROIs resulted in 80 DTI biomarkers for each subject.

The regional DTI parameter extraction consisted of three 
steps: a nonlinear registration of FA map to a template (pro-
vided by FSL), a projection of FA onto the FA template 
skeleton representing the centers of all tracts (also provided 
by FSL), and averaging of FA measures within the 20 ROIs 
restricted to the skeleton. The resulting maps were checked 

Fig. 1. Automatically segmented white matter tracks for 
measurement of diffusion tensor imaging variables.††††† http://www.fmrib.ox.ac.uk/fsl/. Accessed November 2, 2012.

http://www.fmrib.ox.ac.uk/fsl/
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by Dr. Galanaud; any patient with major distortion was 
excluded.

DTI Parameters Normalization
Ninety-nine normal controls underwent the same imaging 
protocol as that used for the patients. All were free of previ-
ous neurological diseases and gave written informed consent 
to participate in the study. Given the variability in raw DTI 
values, which arises because of differences in MRI vendors, 
scanners, and field strengths across centers, a normaliza-
tion procedure had to be performed. The raw value of each 
derived diffusion parameter was standardized using the data 
from control subjects for each center as described below.

The raw DTI parameter values for each patient were nor-
malized with respect to the average of each parameter mea-
sured in the control group for that center. Specifically, for 
each patient, the raw FA, MD, L1, and Lt values in each of 
the 20 preselected ROIs were divided by the corresponding 
mean value for the control group from his or her center.

Outcome Measures
Outcomes were determined via a telephone interview con-
ducted by the investigative team at each participating cen-
ter. The principal outcome was modified GOS 1 yr after 
injury. For this research, we modified the GOS (as previously 
described)6 by dividing the score of 3, which is a hetero-
geneous category of severe motor and cognitive disabilities, 
into 3− and 3+ subcategories. The 3− subcategory denotes 
the minimally conscious state ( as defined by Giacino et al.13);  
the 3+ score represents severe disability excluding minimally 
conscious state. A score of 1, 2, or 3− at 1 yr was classified as 
unfavorable, whereas higher scores (3+, 4, and 5) were clas-
sified as favorable.

Three investigators (Drs. Galanaud, Puybasset, and San-
chez) performed an audit of recorded clinical outcomes to 
check for data completeness, accuracy, and consistency.

Outcome Prediction Algorithm
DTI variables (specifically, the radial, axial and MD, and 
FA) from the 20 preselected regions were integrated with the 
following eight IMPACT score variables: age, motor score, 
pupillary reactivity, hypoxia, hypotension, CT classification, 
subarachnoid hemorrhage, and mass effect from epidural 
hematoma. Each patient was associated with a class label 
(favorable or unfavorable outcome), and the above 88 DTI 
and clinical variables.

Support Vector Machine (SVM), a supervised learning 
method, was used for classification.14 This classification 
method is known to maintain its reliability when the 
number of features is close to the number of subjects. SVM 
classification, implemented via the libsvm library,14‡‡‡‡‡ 
is based on two main concepts: decision planes and the 

nonlinear mapping. Given a set of input vectors, where 
each vector is also associated with one of two class labels 
(e.g., favorable and unfavorable), the goal of classification 
algorithm is to find the optimal surface that maximizes 
the margin between the two classes. When this surface 
is a plane, we get a linear classifier. However, the surface 
that separates the two classes may not always be linear. 
To overcome this limitation, SVM transforms the input 
vectors into a high-dimensional space using a kernel 
function in such a way that the two classes are separable 
by a linear hyperplane. The algorithm fits the maximum-
margin hyperplane in the transformed feature space. 
The goal of the SVM algorithm is then to optimize the 
parameters of the kernel function to enable the search for 
such a maximum-margin hyperplane.

Because of the heterogeneity of the GOS 3 patients, the 
SVM training process was computed on the multicentric 
cohort without the GOS 3 patients (n = 73 patients). The 
relevant variables and the optimal SVM kernel parameters 
were selected by a joint stepwise and grid search procedure 
using cross-validation (leave-one-out) maximizing the clas-
sification accuracy. In addition to the predicting class label, 
the classification process also assigned to each patient an esti-
mated probability that he or she belongs to the class of favor-
able or unfavorable outcome. This probability was termed 
the DTI score. The IMPACT score was also computed for 
each patient and compared with the DTI score.

Independent Validation
Thirty-eight patients and 15 controls described in a previous 
study6 were used as a validation dataset. MRI examinations 
were performed using the same DTI acquisition parameters 
but on a different MRI unit. They were blindly processed 
by an external observer (Dr. Dinkel) using the DTI classi-
fication method. The classification model selected with the 
training database (see previous paragraph) was used to evalu-
ate the DTI score of the patients of this validation dataset. 
IMPACT scores were also calculated for all patients of this 
dataset.

Statistical Analysis
Date are expressed as mean + SD or median (scores). Com-
parison of two proportions was performed using the chi-
square test, comparison of two means was performed using 
the Student t test, and comparison of several means was per-
formed using one-way multivariate analysis of variance.

The ability of the IMPACT and DTI scores to discrimi-
nate between favorable and unfavorable outcomes at 1 yr 
was evaluated and compared by the area under the receiver 
operating characteristic (ROC) curve analysis.15 The sensi-
tivity of the classifier was calculated for 95% specificity for 
unfavorable outcome prediction. In addition, we computed 
net reclassification improvement and integrated discrimina-
tion improvement indices to compare our DTI score with 
IMPACT16 by using R Software.§§§§§ Confidence interval 

‡‡‡‡‡ http://www.csie.ntu.edu.tw/~cjlin/libsvm/. Accessed Novem-
ber 2, 2012.

§§§§§ http://www.r-project.org/. Accessed November 2, 2012.

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.r-project.org/
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(95 % CI) of each indice (area under the ROC curve, net 
reclassification improvement, and integrated discrimination 
improvement) was provided by bootstraping the studied 
populations. This provided a large sample of each index, and 
thus the median and its associated 95% CI.

All comparisons were two tailed, and a P value of less 
than 0.05 was considered significant.

Results

Study Population and Enrolment Pattern
Of 167 patients enrolled, 33 were excluded from analysis 
because of suboptimal MRI acquisitions; 19 could not be 
processed because of a lack of acquisitions of healthy volun-
teers in two centers. An additional 10 patients were lost to 
follow-up at 1 yr (fig. 2). Clinical and imaging characteristics 
of patients are summarized in tables 1 and 2. Patients were 
predominantly young adult males with severe TBI at admis-
sion. MRI was performed on average 21 ± 9 days after trauma 
(20 ± 9 days for patients with favorable outcome and 23 ± 11 
days for patients with unfavorable outcome, P = 0.08). The 
automatic segmentation software accurately recognized the 
20 ROI in all 105 patients, even in the presence of intracra-
nial or subdural hematoma, midline shift or decompressive 
craniotomy. No adverse events related to MRI scanning were 
reported.

During the 12-month follow-up period, 21 patients 
(20%) died, 14 in the ICU and 7 after ICU discharge. At 
1 yr, 40 patients (38%) had an unfavorable GOS; of these, 
21 were dead, 5 were in a vegetative state, and 14 were mini-
mally conscious.

Normalization Process
For the 99 controls, DTI measures were extracted in each of 
the 20 preselected regions. The mean DTI measures for the 
controls were significantly different (P < 0.001) between cen-
ters before the normalization procedure (data not shown). 

This variability in raw DTI values was due to differences in 
MRI vendors, scanners, and field strengths.

Unfavorable Outcome Prediction
The ROC curves for the prediction of unfavorable GOS are 
shown in figure 3. The best model for prediction of unfavor-
able outcome used only 32 of the 88 parameters available 
(80 DTI and 8 clinical) that are summarized in table 3. As 
can be seen, all parameters used by this model were indeed 
DTI metrics.

For the cohort of patients used for deriving the prediction 
model (training base), area under the ROC curve increased 
from 0.64 to 0.84 (table 4) when the DTI score was used 
instead of the IMPACT score (P < 0.001). The sensitivity for 
predicting unfavorable outcome, with a specificity of 95%, 
was 64%. Net reclassification improvement and integrated 
discrimination improvement indicated also a significant 
improvement with the DTI score compared with the 
IMPACT score (P < 0.001).

The ROC curve was also plotted using the above-derived 
prediction model on the independently acquired database of 
38 patients with severe TBI (testing base). The area under 
this ROC curve was 0.80, and the overall shape of the curve 
was similar to the one obtained from the training database. 
Significant improvements from IMPACT to DTI score were 
also observed for net reclassification improvement (P = 0.04) 
and integrated discrimination improvement (P = 0.009). 
Figure 4 shows the likelihood of unfavorable outcome 
as a function of the DTI score in the training database. 
The sigmoidal shape of the DTI score is unmistakable 
and suggests that low and high scores, an outcome can be 
assigned with high specificity.

The DTI scores of the patients who survived with unfa-
vorable outcome was not significantly different from the 
scores of those who died in the ICU (P = 0.75). This indi-
cates a lack of systematic selection bias introduced in the 
ICU by the availability of morphologic MRI.

Figure 5 shows morphologic MRI scans, DTI images, 
and individual FA values for the 20 regions in two patients, 
one with favorable outcome and the other with unfavorable 
outcome. The morphologic images for both patients show 
widespread signal abnormalities secondary to TBI. The FA 
values for the patient with favorable outcome are nearly nor-
mal, with the exception of subcortical regions 9, 10, and 18. 
On the other hand, the patient with unfavorable outcome 
has markedly decreased FA values (i.e., in the lowest quartile 
of patients with unfavorable outcome) in all 20 regions. The 
DTI score for the first patient was 0.17 compared with 0.92 
for the patient with unfavorable outcome.

Discussion
The task of predicting long-term outcome in severe TBI is 
challenging. Patients with similar clinical and radiologic 
characteristics in the acute phase may have markedly 
different outcomes ranging from death to complete recovery, 

Fig. 2. Flowchart of patient and controls enrolment and MRI. 
MRI = magnetic resonance imaging.
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with intermediate states of impaired consciousness or 
neuropsychological dysfunction. Neurological examination 
is hindered in the acute setting by factors such as endotracheal 
intubation, sedation, and systemic metabolic alterations. 
Such examinations, therefore, lack accuracy and reliability 
in measuring the severity of TBI and in predicting outcome. 
The prognostic value of cranial CT scan is also limited.16

The IMPACT score, based on a multivariate model com-
bining clinical, biochemical, and CT scan characteristics, has 
been developed from a dataset of more than 9,000 patients 
and has been validated externally against similar large patient 
populations.17 However, this score does not have the dis-
criminative power needed for clinical decision-making in 
individual patients.3

Table 1. Patient and Injury Characteristics

Favorable  
Outcome (n = 65)

Unfavorable  
Outcome (n = 40) P Value

Age, yr 36 ± 16 38 ± 16 0.20
% Male 53 (82%) 32 (80%) 0.84
% Dead 0 21 (52%) <0.001
Associated extracranial injury 47 (72%) 31 (78%) 0.55
Type of accident (distribution)
 • MVA – motorcycle or car 44 (68%) 20 (50%) 0.07
 • MVA – pedestrian 4 (6%) 6 (15%) 0.13
 • Assault 3 (5%) 0 (0%) 0.16
 • Fall 11 (17%) 9 (23%) 0.47
 • Other 3 (5%) 5 (13%) 1.13
Characteristics at admission
 • GCS 6 (4–8) 4 (3–7) 0.09
 • Hypotension 4 (7%) 2 (5%) 0.80
 • Hypoxemia 4 (7%) 14 (36%) <0.0001
 • Mydriasis* 13 (20%) 13 (33%) 0.14
 • Hb, g/dl 12.6 ± 2.4 12.5 ± 2.0 0.47
 • ASAT, U/I 120 ± 152 95 ± 64 0.18
 • ALAT, U/I 100 ± 144 67 ± 54 0.11
 • Lactates, mM 2.4 ± 1.4 2.2 ± 1.0 0.21
 • Chronic alcohol abuse, % 6 (9%) 6 (15%) 0.36
Marshall Score (†)
 • Diffuse injury I–II 27 (42%) 18 (45%) 0.72
 • Diffuse injury III 9 (14%) 5 (13%) 0.84
 • Diffuse injury IV 3 (5%) 1 (3%) 0.58
 • Mass lesion (operated or not) 16 (25%) 15 (38%) 0.15
Hematoma
 • Epidural 11 (22%) 6 (15%) 0.79
 • Subdural 26 (40%) 14 (35%) 0.60
 • Subarachnoid hemorrhage 48 (74%) 34 (85%) 0.17
Brain edema
 • Midline shift
  ◦ Absence 45 (66%) 26 (65%) 0.65
  ◦ 0–5, mm 11 (17%) 5 (13%) 0.54
  ◦ 5–10, mm 6 (9%) 1 (3%) 0.17
  ◦ >10 mm 4 (6%) 8 (20%) 0.03
 Compressed third ventricle 21 (33%) 19 (48%) 0.11
 Compressed basal cisterns 20 (31%) 21 (53%) 0.02
 Contusion 49 (75%) 27 (67%) 0.38
 Neurosurgical intervention 17 (26%) 14 (35%) 0.33

Data are expressed as mean + SD or median or number (25–75 interquantile range).

* At least one side. (†) worst score from any CT performed in the first 48 h after admission.
ALAT = alanine aminotransferase; ASAT = aspartate aminotransferase; CT = computed tomography; GCS = Glasgow Coma Scale; 
MVA = motor vehicle accident.
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A number of studies have described the utility of conven-
tional MRI sequences,18–20 diffusion-weighted imaging,21,22 
DTI,23,24 and susceptibility-weighted imaging25,26 in patients 
with TBI. This literature demonstrates the superiority of 
MRI over CT for the visualization of lesions.18 It is also 
known that damage to critical areas such as the brainstem5,27 
or corpus callosum24 is indicative of poor prognosis. How-
ever, current imaging methods do not allow one to reliably 

predict the long-term clinical outcome of an individual 
comatose patient.

There is extensive evidence that diffuse axonal injury is a 
hallmark of severe TBI. Recent experimental data indicate 
that white matter abnormalities detected using DTI corre-
late closely with neuropathological evidence of diffuse axo-
nal injury.28,29 In a prospective study, Sidaros et al. evaluated 
30 patients with severe TBI at 8 weeks and 12 months after 
injury. They found that decreased regional FA at 8 weeks was 
predictive of unfavorable outcome at 12 months. DTI evi-
dence of white matter damage is more marked in subjects with 
moderate and severe TBI compared with those with mild TBI, 
with longlasting changes detectable years after injury.30,31

Our prospective multicenter cohort is the largest study so 
far to demonstrate that the extent and severity of white mat-
ter damage evaluated in the acute setting is a major predictor 
of outcome after severe TBI. Based on this observation, we 
have developed a prognostic model that integrates quantita-
tive diffusion variables into a composite DTI score for pre-
dicting outcome. This score, which is based solely on DTI 
variables, has a better prognostic accuracy than the IMPACT 
score that uses clinical and CT variables.

For prediction of unfavorable outcome, the area under 
the ROC curve was 0.64 for the IMPACT score; this metric 

Table 2. Distribution of Patients across Various 
Outcome Categories on Four Measurement Scales

Favorable 
Outcome 
(n = 65)

Unfavorable 
Outcome 
(n = 40)

Death in ICU NA 14 (35%)
Death after ICU discharge NA 7 (18%)
GOS
 • I (death) NA 21 (52%)
 • II (vegetative state) NA 5 (12%)
 • III− (MCS) NA 14 (35%)
 • III+ (severe disability) 16 (25%) 0

 • IV (moderate  
   disability)

22 (34%) 0

 • V (no sequella) 27 (42%) 0
GOS extended (GOSE)
 • 1 (dead) 0 21 (52%)
 • 2 (vegetative state) 0 5 (12%)
 • 3 (lower severe  
   disability)

9 (14%) 9 (35%)

 • 4 (upper severe  
   disability)

9 (14%) 5 (12%)

 • 5 (lower moderate  
   disability)

5 (8%) 0

 • 6 (upper moderate  
   disability)

17 (26%) 0

 • 7 (lower good recovery) 13 (20%) 0
 • 8 (upper good recovery) 12 (18%) 0
Modified rankin scale
 • VI (death) 0 21 (52%)
 • V (severe disability) 5 (8%) 17 (42%)
 • IV (moderately severe  
   disease)

11 (17%) 3 (8%)

 • III (moderate disability) 12 (18%) 0
 • II (slight disability) 18 (28%) 0
 • I (no significant  
   disability)

13 (20%) 0

 • 0 (no symptoms) 6 (9%) 0
Disability rating scale
 • Mean 4 19
 • Median 3 (1 to 6) 20 (16 to 24)

Data are median (25–75 interquartile range) or number (percentages).
GOS = Glasgow Outcome Scale; GOSE = extended Glasgow 
Outcome Score; ICU = intensive care unit; MCS = minimally con-
scious state; NA = not applicable.

Fig. 3. Receiver operating characteristics of IMPACT and DTI 
score for predicting coma outcome on the modified Glasgow 
Outcome Scale in the training (A) and testing (B) databases. 
AUC = area under the curve; DTI = diffusion tensor imaging; 
IMPACT = International Mission for Prognosis and Analysis of 
Clinical Trials.
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increased to 0.84 when DTI score was used for prognostica-
tion. A high specificity, potentially at the expense of a lower 
sensitivity, is critical for the prediction of unfavorable out-
come. The ROC analyses presented in this article have these 
characteristics and suggests that patient-level predictions of 
outcome are feasible in the acute setting.

Ideally, brain tissue diffusion measurements should be inde-
pendent of the MRI scanner and image acquisition param-
eters. However, we noted significant variations in apparent 
diffusion coefficient and FA values across individual scanners 
and at different sites. The variance was significant enough to 

seriously undermine the generalizability of our results and led 
us to implement a normalization step via control subjects at 
each center. Our normalization approach differs from the more 
widely used practice of scanning the same control subject(s) on 
all scanners, which is impractical in a multicenter study span-
ning a large geographical area. In addition, use of the same 
control subjects does not lend itself to the development of a 
broadly applicable outcome prediction algorithm that any cen-
ter can implement using its own set of control subjects.

Some limitations of this study should be noted. First, the 
variables used in the IMPACT score were collected in the 
hyperacute phase (<48 h after injury), whereas MRI data were 
acquired at a later time point (an average of 3 weeks after TBI). 

Table 3. Summary of the 32 Diffusion Tensor Imaging–
Derived Metrics Used to Build the DTI Score, Classified 
by Order of Importance

Name of the ROI Ordered per  
Weight in the Statistical Model

No. Voxels 
per ROI

 1. FA cerebral peduncle R 22
 2. FA cerebral peduncle L 23
 3. FA splenium of corpus callosum 85
 4. FA posterior limb of internal capsule L 32
 5. FA genu of corpus callosum 65
 6. FA anterior limb of internal capsule L 29
 7. FA posterior brainstem 47
 8. Lt splenium of corpus callosum 85
 9. FA external capsule L 53
10. FA sagittal stratum L 49
11. FA posterior limb of internal capsule R 31
12. FA body of corpus callosum 116
13. Lt cerebral peduncle L 23
14. Lt posterior limb of internal capsule L 32
15. Lt cerebral peduncle R 22
16. Lt genu of corpus callosum 65
17. Lt corona radiata L 135
18. FA anterior limb of internal capsule R 29
19. Lt external capsule L 53
20. L1 body of corpus callosum 116
21. Lt posterior limb of internal capsule R 31
22. Lt corona radiata R 138
23. FA anterior brainstem 46
24. L1 posterior brainstem 47
25. FA sagittal stratum R 22
26. Lt sagittal stratum L 23
27. Lt anterior brainstem 46
28. Lt posterior brainstem 47
29. FA middle cerebellar peduncle 77
30. L1 posterior limb of internal capsule L 32
31. L1 sagittal stratum L 23
32. L1 corona radiata L 138

The right column gives the mean size (in Voxels) of the ROI from 
which they are derived.
DTI = diffusion tensor imaging; FA = fractional anisotropy;  
L = left; L1 = axial relaxivity; Lt = transverse relaxivity;  
R = right; ROI = regions-of-interest.

Table 4. Comparison of the Performance of the 
IMPACT and DTI Score

Estimate P Value

Training base (N = 105) (leave-one-out scoring for the DTI 
model)

 IMPACT AUC 0.62 (0.52–0.76)
 DTI score AUC 0.84 (0.75–0.91)
 DTI score vs. IMPACT  
  NRI

0.30 (0.17–0.46) <0.001

 DTI score vs. IMPACT  
  IDI

0.19 (0.09–0.32) <0.001

Testing base (N = 38)
 IMPACT AUC 0.68 (0.52–0.87)
 DTI score AUC 0.80 (0.54–0.94)
 DTI score vs. IMPACT  
  NRI

0.23 (−0.04 to 0.39) 0.04

 DTI score vs. IMPACT 
 IDI

0.16 (−0.03 to 0.36) 0.009

Data are values (95% CI).
AUC = area under the receiver operating characteristic curve; 
DTI = diffusion tensor imaging; IDI = integrated discrimination 
improvement; IMPACT = International Mission for Prognosis and 
Analysis of Clinical Trials; NRI = net reclassification improvement.

Fig. 4. Probability of having an unfavorable outcome as a 
function of the DTI score in the training cohort. DTI = diffusion 
tensor imaging.
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Second, outcome evaluation at 1 yr was performed through a 
telephone interview conducted by each participating center. 
A central review was performed on the final data to correct 
for center-specific bias. Although direct clinical examination 
would have provided more detailed and accurate data, this 
was logistically prohibitive because of cost, geographical 

distance, and severe handicaps affecting some of the patients. 
Other studies have shown that remote evaluation of patients 
with altered consciousness provides acceptable accuracy 
while minimizing time and cost in data gathering.32 Third, 
we used a modified version of the GOS that has not been 
independently validated; nevertheless, we believed that this 

Fig. 5. Conventional magnetic resonance (MR) images for two patients with FO and UFO (A), fractional anisotropy (FA) maps at 
the same two levels (B). Quantification of FA for the controls (black boxes) and patients with unfavorable outcomes (red boxes) 
in the 20 white matter regions considered by the study (C). Each box indicates the median value and the adjacent quartiles. The 
FA values for these two patients are also plotted in this panel. DTI scores for these two patients, along with all the patients and 
all the controls, are shown in (D). DTI = diffusion tensor imaging; FLAIR = Fluid Attenuated Inversion Recovery; FO = favorable 
outcomes; UFO = unfavorable outcomes.
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modification is essential to account for the fact that the “severe 
disability” (GOS 3) is inherently heterogeneous. Despite the 
difficulty of dichotomization, an issue that is intrinsic to much 
clinical outcome research, it is not a fundamental limitation. 
The methodology used here can also be used to predict the 
outcome probability on any given measurement scale. A scale 
with finer gradations and granularity (e.g., the extended GOS) 
will need an increased cohort size and will necessitate a larger, 
multicenter research consortium.

This study demonstrates that it is feasible to build a 
standardized, generalizable prediction system for long-term 
neurological outcome in critically ill comatose patients. It 
further establishes the feasibility of multicenter normaliza-
tion to overcome data heterogeneity in quantitative DTI 
studies. Based on these results, one can envision a public-
domain expert system that would allow a clinician anywhere 
in the world to upload basic clinical information and DTI 
data pertaining to a particular case; the system could check 
the completeness and acceptability of the information and 
provide the probability of various outcomes on a user-
selected outcome scale. Other models will need to be evalu-
ated including ones exploiting the differential association 
between selected white matter tracts and specific outcomes. 
In addition to outcome prediction, such a database could 
also be analyzed for other purposes including research on 
the genetic basis for variance in brain injury outcomes and 
mechanisms of postinjury repair and plasticity.
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